The present disclosure generally relates to fluid fittings or couplings, including thread together quick disconnect couplings.
This background description is set forth below for the purpose of providing context only. Therefore, any aspect of this background description, to the extent that it does not otherwise qualify as prior art, is neither expressly nor impliedly admitted as prior art against the instant disclosure.
With some fluid fittings, it may be difficult to connect and disconnect a fluid connection. For example, such fluid fittings may require excessive force or be unable to connect in the event of hydraulic lock; can cause a significant pressure drop in cooling, pressurized or closed systems; and may introduce unwanted air and dirt. Typical fluid fittings may result in a difficult and lengthy connection and disconnection process with pressurized or closed systems.
There is a desire for solutions/options that minimize or eliminate one or more challenges or shortcomings of fluid fittings. The foregoing discussion is intended only to illustrate examples of the present field and should not be taken as a disavowal of scope.
In embodiments, a fluid coupling may comprise a first assembly, a second assembly and a retainer. The first assembly may include first ratchet teeth and a body with external threads. The second assembly may include second ratchet teeth and a nut with internal threads. The second ratchet teeth may be configured to engage the first ratchet teeth. The internal threads may be configured to engage the external threads.
The retainer may include at least one floating lobe configured to be positioned between the external and internal threads. The at least one floating lobe may include first and second lobes. The first and second lobes may have a semi-circular structure. The first and second lobes may be configured to be arranged in a ring configuration.
The body may include a seal and at least one floating lobe is configured to urge the seal against the second assembly. This may, for example, be in response to threading the external and internal threads. The nut may include a thread relief groove with a recess configured to receive at least one floating lobe and urge the at least one floating lobe against the body. The body may include a groove configured to receive the at least one floating lobe and urge at least one floating lobe against the nut.
The foregoing and other aspects, features, details, utilities, and/or advantages of embodiments of the present disclosure will be apparent from reading the following description, and from reviewing the accompanying drawings.
Reference will now be made in detail to embodiments of the present disclosure, examples of which are described herein and illustrated in the accompanying drawings. While the present disclosure will be described in conjunction with embodiments and/or examples, it will be understood that they are not intended to limit the present disclosure to these embodiments and/or examples. On the contrary, the present disclosure is intended to cover alternatives, modifications and equivalents.
In embodiments, such as generally illustrated in
With embodiments, such as generally illustrated in
As generally illustrated in
With embodiments, fitting 100 may be configured in the form of a thread together quick disconnect (QD) coupling. Fitting 100 may be utilized in various cooling systems, e.g., liquid cooling systems. Fitting 100 may be configured to eliminate the need to drain, refill and bleed air from a cooling system. Fitting 100 may be configured to provide a break point for connection and removal of other devices such as one or more line replaceable units (LRUs).
Fitting 100 may be configured to eliminate or reduce impurities such as air or particle inclusion during connection and disconnection. Fitting 100 may include a partial or complete axial face seal configuration. One or more rings or molded seals may be compressed and trapped in a seal groove to prevent or minimize sealing loss. Fitting 100 may be configured to provide improved pressure drop. Fitting 100 may include optimized valve arrangements. Fitting 100 may allow connection and disconnection against hydraulic lock in a closed looped circuit. Fitting 100 may be configured for connection and disconnection against higher pressures. Fitting 100 may be configured to eliminate or reduce damage to components, e.g., seals.
With embodiments, fitting 100 may be configured as a mechanical pull sleeve for reliable connection and disconnection. Fitting 100 may be configured to eliminate or minimize air inclusion during connection. Fitting 100 may be configured to eliminate or reduce fluid loss during disconnection. Fitting 100 may be configured to connect against a hydraulic lock in a closed loop circuit, e.g., of a cooling system.
With embodiments, such as generally illustrated in
With embodiments, fitting 100 may be configured with ratcheting, floating lobe, threaded, and or seal connections. These connections may be relative to and/or between the first assembly 102 and the second assembly 104. One or the combination of these connections may facilitate the functions and advantages described herein.
With embodiments, such as generally illustrated in
With embodiments, such as generally illustrated in
With embodiments, such as generally illustrated in
With embodiments, such as generally illustrated in
Fitting 100 may be configured to provide a body sealed condition and a valve sealed condition. For example, the body and valve sealed conditions may be provided by any of the seals herein, e.g., a main seal (e.g., seal 116) and a valve seal (e.g., seal 124). In a body sealed condition, the main seal may be closed against any or all of the surrounding structures while the valve seal is open, e.g., to permit fluid flow through the male and female sides while they are connected. In a valve sealed condition, the valve seal may be closed against any or all of the surrounding structures while the main seal remains open, e.g., to retain fluid to the respective male and female sides while they are disconnected.
With embodiments, such as generally illustrated in
With embodiments, fitting 100 may include a lobe groove 152. For example and without limitation, the lobe groove 152 may be configured to receive the at least one floating lobe 112a, 112b. The lobe groove 152 may be configured to urge the at least one floating lobe 112a, 112b against the second assembly 104, e.g., against nut in a radially outward direction and/or in a second longitudinal direction toward the second assembly 104
Additionally, with embodiments, an inclusion of an angled sealing surface, such as generally illustrated in
As generally illustrated in
With reference to the embodiment generally illustrated in
So, with respect to the squeeze of the seal 216 going from just touching to the extent of the squeeze (e.g., the squeeze associated with the 8 thousandths of an inch of travel—calculated in the axial direction component), that generally corresponds to the amount of air that is going to be trapped. Moreover, there may be a baseline gap provided between valves 226, 228 to accommodate associated tolerances. Such a baseline gap may also add to a total air inclusion volume.
With embodiments, it may not be desirable to include too shallow of a sealing surface angle α. Among other things, too shallow of a sealing surface angle α may result in or require increased or an increasingly significant air inclusion. With some embodiments, a sealing surface angle α may range from about 15° up to about 90° (wherein 90° may work for some low pressure applications and may be an optimum for the reduction of associated air inclusion). For some applications, a sealing surface angle α may range from about 30° up to about 60°. Further, with some embodiments the sealing surface angle α may be about 30° or the sealing surface angle α may be at least 30° (and less than 90°). Generally, the greater the sealing surface angle α, the lower an amount of additional “squeeze,” i.e., additional longitudinal travel, that will be desired or necessary following first contact of the seal components and trapping of air. For example, with a sealing surface angle α of 30°, the amount of additional added longitudinal travel for the intended amount of squeeze effect may be about 0.016 of an inch; while, in comparison, for a sealing surface angle α of about 90°, the amount of additional added longitudinal travel for the squeeze may be about 0.008 of an inch—i.e., about half of the additional amount of longitudinal travel. Moreover, for most embodiments, the fitting 200 will be intended for low pressure systems (as that term is known in the industry for such fittings and applications), which might for example and without limitation, be about 150 psi.
Various embodiments are described herein for various apparatuses, systems, and/or methods. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, operations, components, and elements that are readily understood by an artisan have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments.
Reference throughout the specification to “various embodiments,” “with embodiments,” “in embodiments,” or “an embodiment,” or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments. Thus, appearances of the phrases “in various embodiments,” “with embodiments,” “in embodiments,” or “an embodiment,” or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment/example may be combined, in whole or in part, with the features, structures, functions, and/or characteristics of one or more other embodiments/examples without limitation given that such combination is not illogical or non-functional. Moreover, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the scope thereof.
It should be understood that references to a single element are not necessarily so limited and may include one or more of such element. Any directional references (e.g., plus, minus, upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present disclosure, and do not create limitations, particularly as to the position, orientation, or use of embodiments.
Joinder references (e.g., attached, coupled, connected, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily imply that two elements are directly connected/coupled and in fixed relation to each other. The use of “e.g.” in the specification is to be construed broadly and is used to provide non-limiting examples of embodiments of the disclosure, and the disclosure is not limited to such examples. Uses of “and” and “or” are to be construed broadly (e.g., to be treated as “and/or”). For example and without limitation, uses of “and” do not necessarily require all elements or features listed, and uses of “or” are intended to be inclusive unless such a construction would be illogical.
It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the present disclosure.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/975,821, filed Feb. 13, 2020, the disclosure of which is hereby incorporated by reference in its entirety as though fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
2254997 | Fisher | Sep 1941 | A |
2391022 | Main | Dec 1945 | A |
2451441 | Main, Jr. | Oct 1948 | A |
2456045 | Brock | Dec 1948 | A |
2485006 | Main, Jr. | Oct 1949 | A |
2491406 | Zeeb | Dec 1949 | A |
2504569 | Murphy | Apr 1950 | A |
2709093 | Zeeb | May 1955 | A |
2731058 | Smisko | Jan 1956 | A |
2884981 | Wurzburger | May 1959 | A |
2931668 | Baley | Apr 1960 | A |
2958544 | Wurzburger | Nov 1960 | A |
3446245 | Snyder, Jr. | May 1969 | A |
4287914 | Buseth | Sep 1981 | A |
4815495 | Remsburg | Mar 1989 | A |
5401066 | Remsburg | Mar 1995 | A |
6176263 | Lacroix | Jan 2001 | B1 |
7575024 | Zeiber | Aug 2009 | B2 |
7762279 | Zeiber | Jul 2010 | B2 |
11137100 | Zhang | Oct 2021 | B2 |
11199283 | Jenski, Jr. | Dec 2021 | B2 |
Number | Date | Country |
---|---|---|
2112094 | Jul 1983 | GB |
2 230 070 | Oct 1990 | GB |
Entry |
---|
French Preliminary Search Report for Application No. FR2101390 dated Aug. 18, 2022 (17 pages). |
Number | Date | Country | |
---|---|---|---|
20210254769 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62975821 | Feb 2020 | US |