This invention relates to improvements for window locks for sashes which are both slideable and rotatable or tiltable such as single hung, double hung, sliding or tilt and slide window.
A window lock and its use for a single hung, double hung, or sliding window or the like is known. Typically, a cam-lock and its housing are centrally attached to a framing part of a moveable inner window sash and the cam-lock is moved by a handle into and out of engagement with a slot or keeper disposed with an outer frame part or window sash. In order to tilt the window away from the frame a separate operator accessible tilt latch is required adjacent each end of the free end of a pivoting window. These latches are moved into and out of engagement with the track to permit tilting of the window and include spring biased plungers which normally engage in the tracks and which are retractable by the user by the operation of a separate operator engaged with the plunger.
Past structures for a tilt latch include a plunger having a nose portion which typically engages the track of the window assembly. The ability of the latch to wind loads can depend on the depth to which the nose portion extends into the track. The only portion available to stop the nose from releasing from the track under for example higher wind loads is the actual track profile itself which depending on the thickness of the vinyl utilized, could result in the inadvertent release of the nose portion and hence the tilt latch resulting in potential damage to the window assembly. In order to address this problem, our prior patent, U.S. Pat. No. 5,946,857 teaches in FIGS. 13 and 13C an adjustable block assembly which includes a portion (202) to receive the nose portion (251). In our prior patent the adjustable block system is incorporated with a central locking system and is utilized to reinforce the latch portion (251) in the triangular shaped detent of the block. Since the adjustable block is fixed to the frame any force tending to unlatch the nose portion of the latch (251) will be passed on to the frame instead of to the vinyl track. However, such an installation is quite costly and does not find application generically within various window assemblies. It would therefore be advantageous to provide such a block mechanism for incorporation in simpler structures while providing an improved reinforcing for the latch and particularly for the combination cam lock/tilt latch of the present invention.
It is also known in the art to provide various forms of simplified latches. For example, U.S. Pat. No. 5,715,631 attempts to combine a cam lock with a tilt latch but it is required that a separate latching portion be included within the sash framing part which renders the construction difficult to implement universally.
U.S. Pat. No. 5,139,291 teaches a flush mounted tilt latch for a window which includes a finger operator (74) to operate a plunger portion (47).
U.S. Pat. No. 5,992,907 teaches a lock and tilt latch combination which may be double acting.
U.S. Pat. No. 5,356,667 teaches a tilt latch for a sliding window which is simple but which may not be reliable in terms of its locking capacity. This is true also for U.S. Pat. No. 6,135,510.
U.S. Pat. No. 6,076,304 teaches a latching assembly including a rack and pinion member operated by a user accessible handle and including a tab (58) to operate said latch.
U.S. Pat. No. 4,961,286 also includes a tilt latch which is simple and which may also be toggled as seen in FIG. 2 therein.
Nowhere in the prior art is there provided a simple combined cam lock/tilt latch which is surfaced mounted, and which may be utilized with any window construction.
It is also known to provide security systems in combination with window assemblies. Examples of such systems are found in U.S. Pat. Nos. 5,164,705 and 5,007,199 which includes a magnet (14) contained within a pivot shoe (70) which may slide in a track portion to and from the reed switch sensor (15) disposed within the alarm system (90) contained within the jam portion. The alarm system therefore is pre-installed in the window and may be sold as original equipment or on replacement windows. Further U.S. Pat. No. 3,896,404 teaches a hinge having two leafs with a magnet (22) disposed in one leaf and the read switch (26) disposed in the other leaf with the security system being alarmed when the hinges are located proximate one another, and with the hinge being installable within any door, being pre-wired and thereby being adaptable to security systems.
It would therefore be advantageous to include with a tilt latch reinforcing block for a track for a single hung, double hung, sliding or tilt and slide window the necessary receiver portions of a security system fixed in position in relation to a tilt latch nose portion carrying the transmitter. Alternatively it is heretofore unknown to have the transmitter and receiver for a security system integrated with a camlock and keeper or slot of a latch assembly.
It is also known to provide a tilt latch for an outside sash member for a window assembly. It is also known that the outside sash member can only be tilted inwardly for cleaning because of the window framing section on the exterior of the building it is not possible for the outside sash to pivot outwardly. When the inside sash therefore is in it's lock position, wind loads are passed from the outside sash to the inside sash relying on the locking mechanism and the tilt latch assembly for whatever resistance it may provide to the wind load. Many of the latch systems utilized on the outside window sash are excessive and it would be advantageous to simplify such a latch to a one piece latch system with accomplishes all the necessary objectives for an outside sash latch while simplifying the expense of manufacture and installation.
It is also known within the industry to provide a clamping pivot shoe as taught in U.S. Pat. No. 5,927,014 to Mr. Shaul Goldenberg, one of the inventors of this present invention. As best seen in FIGS. 14, 19, 22, and 22B of U.S. Pat. No. 5,927,014 a clamping system requires that flanges that extend laterally or vertically from the track be provided in the window assembly with these track flanges riding at all times within the gap (130) between the two clamping surfaces (P2 and P3). These clamping surfaces P2 and P3 therefore do not carry the laterally extending flanges but there is a manufacturing clearance made available in order for the clamping assembly to move freely in the track when it is free to do so, and for the clamping to take effect only when the operator for example, handle (140) is moved to a horizontal position as seen in FIG. 20 in that particular patent. As seen in FIG. 22A such a system is preferably embodied between two pivot shoes (100 and 500) which are interconnected by interconnecting portion (520). Although such a system works very well, it may be uneconomical for many window producers because of the stiff competition found in the market place. It would therefore be advantageous to provide a clamping system which has most of the advantages of those taught in U.S. Pat. No. 5,927,014 to Mr. Goldenberg while reducing the cost of such a system.
Accordingly, it is an object of the present invention to combine a cam lock and tilt latch into one assembly which will much simplify present known structures and provide broader application in window assemblies.
A primary object of this invention is to provide a combination camlock/tilt latch assembly which much simplifies prior known structures and which is surface mounted to any window assembly where appropriate.
It is a further object of the invention to provide a latch reinforcing block which may be utilized with a tilt latch, and preferably the combination camlock/tilt latch, in order in improve the reinforcement of the latch and its ability to resist wind loads at a higher wind pressure.
It is yet a further object of this invention to provide such a latch reinforcing block which includes at least one latching position and which further incorporates components of a security system so that the security system may be alarmed at both a locked and at a latched position.
It is yet a further object of this invention to provide a cam lock/tilt latch combination which provides for hyperextension of long nose portion at the locked position which nose portion extends well into the track or alternatively within the reinforcing block to further improve the reinforcement of the latch assembly.
It is yet a further object of the invention to provide alarm components within the hardware of a window assembly including the latch reinforcing block and the cam lock/tilt latch combination and the keeper, slot or the like to enable a security system to be pre-wired into a pre-assembled original or replacement window assembly.
It is a further object of the invention to provide a simple one piece outside sash latching mechanism which is inexpensive compact.
It is yet a further object of the invention to provide a quick locking pivot shoe which clamps against the track sections prior to the free end of the pivoting window sash leaving the frame section of the window assembly.
Further and other objects of the invention will become apparent to those skilled in the art when considering the following summary of the invention and the more detailed description of the preferred embodiments illustrated herein.
According to one aspect of the invention there is provided a combination lock/latch for a window assembly for installation on a moveable sash adjacent a track jamb of the window assembly, and preferably a double hung or tilt and slide window assembly, said combination lock/latch comprising:
wherein said lock/latch combination obviates the need for a separate cam-lock and a separate tilt latch.
Preferably said detent of said cam-lock is a shoulder and the detent of said tilt latch is a tab disposed at the end of a flexible finger, these parts engaging to convert the rotary motion of said cam to linear motion of said tilt latch. Preferably a return spring is disposed within said housing to engage the tilt latch intermediate said nose and said tab to bias the sliding linear motion of said latch to the track engaging position. In one embodiment the keeper or slot may further comprise a receiver/transmitter for an alarm system while the camlock includes the corresponding transmitter/receiver.
According to yet another aspect of the invention, there is provided a latch reinforcing block for engagement with the nose portion of any tilt latch assembly and preferably with the above-mentioned camlock/tilt latch combination, said block comprising a top and bottom and having extending from proximate the top to proximate the bottom there-through fastening portions to fasten said reinforcing block within the track of a preferred window assembly, said reinforcing block having disposed proximate the top thereof at least one cutout, notch or pocket extending towards the bottom and for receipt of a corresponding nose portion of the latch assembly in order to pass loads such as wind loads or the like to the frame section to which the reinforcing block is attached, preferably the reinforcing block includes an extra large notch, pocket, cutout or the like in order to engage with the corresponding nose portion of the tilt latch which is able to hyperextend much past the normal extension of such a nose portion into the block to further enhance the reinforcing and load carrying capability of the window assembly. The ability to hyperextend the nose portion of the block is a result of the construction of the tilt latch. For example when the tilt latch is the preferred camlock/tilt latch then the various positions of the handle of the lock will correspond to various positions of the nose of the tilt latch from a fully released position, a subsequent unlocked yet latched position whereat the nose extends partially into the block, to a fully locked position whereat the nose portion hyper-extends into the block.
When the window assembly is a single hung or a double hung window, the reinforcing block may further comprise a counter balance spring mounting block for engagement with the counter balance spring of the single or double hung window assembly, said reinforcing block further comprising a means for engaging the counter balance spring when present and fastening thereto wherein said housing for the counter balance spring and/or said spring is mounted on or fastened to the reinforcing block fastened to sash track allowing motion of the spring while the block is fixed into position relative to said track. Preferably, said reinforcing block for the counter balance spring may be adapted to include at least one reed switch element for a security system, pre-wired thereto and within the sash, so as to enable the security system to be installed in the window assembly as it is manufactured. Preferably the corresponding magnet may be installed with the nose portion of a tilt latch.
When the reinforcing block is installed within a tilt and slide window assembly it may further comprise a body mounted within said track having at least one cut-out, notch, or pocket for receipt of the nose portion of a tilt latch, said body having disposed therein means to enable a security system to be armed, (for example a reed switch or magnet) whether the latch nose is in the locked or in the latched position.
The block therefore provides with the preferred cam-lock/tilt latch combination superior performance of a latching system and it's ability to shed wind pressure loading by having a higher capacity to do so, and further the ability to provide a preinstalled transmitter/receiver components for a security system therefore eliminating unsightly wiring.
In another aspect of the invention a simple tilt latch for an outside sash is provided comprising a one piece member which includes a flexible finger which flexes when the latch is released from a track, or a preferred block disposed in a track, by pulling the sash inwardly away from the frame, a flexible zone disposed with said finger providing the flexing function of the finger in order to release said latch from the track or preferred block. Preferably said finger is a narrow extension extending from the body of the simple tilt latch which flexes away from and toward the track or preferred block as provided by the flexible zone when the latch is released or engaged and which returns by memory to its track engaging position. The simple latch includes mounting openings provided therewith for mounting to the framing portion of the outside sash. In this manner the simple latch is easily released without the need for a separate operator.
According to a primary aspect of the invention there is provided a clamping pivot shoe which unlike Mr. Goldenberg's prior interconnected structure identified in the background of the invention, will clamp quickly and preferably within one degree of rotation as the window pivots in relation to the frame. In this way the need to interconnect the pivot shoe with a separate gliding shoe in the track is eliminated, and problems such as sagging or deforming the seal are obviated.
According to yet another aspect of the invention there is provided a substantially zero clearance clamping pivot shoe, said pivot shoe comprising a top and a bottom and having disposed proximate the top and bottom thereof, camming members having camming elements or surfaces having leading edges and said members preferably being formed from metal, said camming members having disposed there-between a first and a second track clamping element preferably having braking means provided therewith and preferably at least one supplementary preferably pebbled preferably metal braking part engageable with a clamping element and a track portion for a window assembly disposed and riding between said clamping elements in use, said clamping members each having compatible camming elements or surfaces engagable with respect to the top and bottom camming member elements or surfaces, said top and bottom clamping elements including track engaging parts and track supporting glide posts respectively integrally formed therewith to enable the track to glide unclamped yet supported between the clamping elements when the window is not pivoted, the top of the posts extending above the top of said braking means until the window is pivoted, wherein when the window is pivoted the leading edge of the camming elements/surfaces of the top and bottom members override the camming elements/surfaces of the clamping elements to cause the clamping portions and preferred braking means to move towards one another preferably a distance substantially equal to the sum of the dimensions of the top and bottom camming elements thereby causing the clamping elements to immediately move toward one another and to clamp down on the laterally extending track portion of the window assembly and prevent movement of the sash within the track prior to the window being pivoted more than substantially 1 degree or substantially beyond the angle whereat the free end of the window would no longer be disposed in the track. This action is important to prevent the sash from sagging which might occur if the pivot shoe did not quickly and substantially immediately lock and clamp against the track elements. Preferably the top and bottom camming members and clamping portions include camming elements that are substantially triangular shaped land and groove portions.
The performance for our pivot shoe therefore is substantially equivalent to Mr. Goldenberg's prior clamping structure in function while tremendously simplifying such a structure and reducing the costs.
Preferably the upper clamping member includes a substantially v-shaped camming surface which normally engages a substantially v-shaped camming pocket within the upper clamping member, and preferably the lower camming member includes smaller trapezoidal-shaped camming surfaces which engage with compatibly shaped camming recesses in the lower clamping member to provide the clamping action.
In the preferred embodiment the upper camming member engages with a metal bracket proximate the top thereof and includes a pivot extension portion which extends through the upper and lower clamping member, the lower camming member being secured proximate the bottom thereof preferably via a substantially c-shaped clip engaging a groove provided with said pivot extension portion. Preferably, the metal bracket engaging the upper camming member includes a slot and an outwardly extending leg for engaging with the sash and a corresponding bracket having a generally hat shaped profile fastened to the side of a window sash adjacent the pivoting ends thereof, wherein the hat profile may be slid into the substantially c-shaped profile of the first bracket to fasten the window sash to the pivot shoe assembly and the outwardly extending leg.
The reader is referred to U.S. Pat. No. 5,946,857 the teaching of which are hereby incorporated by reference in relation to reinforcing block utilized for accepting a nose portion of a tilt latch. Further the prior patent of Mr. Shaul Goldenberg U.S. Pat. No. 5,927,014 is herewith incorporated by reference with respect to clamping feature of a pivot shoe which respect to the laterally extending or vertically extending flanges of a track said flange extending between the clamping shoe at all times; the feature of clamping and the operation thereof being hereby incorporated by reference into this application.
The present installation and embodiments incorporate various inventions which have a synergy in that they work together to improve the overall stability and integrity of the window system within which they are installed. Any window may be utilized and incorporate some or all of the various aspects of the invention including single hung, double hung, sliding, tilt and slide, casement window systems and alike.
As best seen in
As best seen in
Referring now to
With reference
When the handle 31 is in the position of
Referring now to
Referring to
The supplementary clamping portion 53 including glide portions 53c which support the laterally extending flanges of the track (not shown) when the pivot shoe assembly 50 is free to move in the track. It is important that an absolute minimum clearance be provided between the track flanges and the land 52d and the glides 53c to ensure quick clamping of the pivot shoe when the sash is pivoted. Braking elements 53d engage with retaining portion 53b with the L shaped parts 53b fitting within the channel on the underside of braking elements 53d as shown in
The reader is referred to 11A and 11B for assembly of the pivot shoe with the sash. The bracket 59 is attached to the sash and the pivot assembly 50 is attached to the track and includes mounting bracket 58. The outwardly extending extension 58b of the bracket 58 captures the corner of the sash and may be affixed thereto via a convenient fastener (not shown).
The laterally extending track portion of the track of a window frame (not shown) therefore is carried in use between element 52d and glides 53c. The tolerance of this installation requires that there be an absolute minimum clearance between elements 52d, 53c, and the track portion. The camming part 51e of element 51, best seen in
Referring to
Referring now to
As many changes can be made to the preferred embodiments of the invention without departing from the scope thereof; it is intended that all matter contained herein be considered illustrative of the invention and not in a limiting sense.
Number | Date | Country | Kind |
---|---|---|---|
2343503 | Apr 2001 | CA | national |
This application is a divisional of U.S. application Ser. No. 10/114,936, filed Apr. 4, 2002, which is now U.S. Pat. No. 6,871,885.
Number | Name | Date | Kind |
---|---|---|---|
3896404 | Peterson | Jul 1975 | A |
4683675 | Guelck | Aug 1987 | A |
4961286 | Bezubic | Oct 1990 | A |
5007199 | Dunagan et al. | Apr 1991 | A |
5119591 | Sterner et al. | Jun 1992 | A |
5139291 | Schultz | Aug 1992 | A |
5164705 | Dunagan et al. | Nov 1992 | A |
5356667 | Hench et al. | Oct 1994 | A |
5452495 | Briggs | Sep 1995 | A |
5715631 | Kailian et al. | Feb 1998 | A |
5927014 | Goldenberg | Jul 1999 | A |
5946857 | Davies et al. | Sep 1999 | A |
5992907 | Sheldon et al. | Nov 1999 | A |
6076304 | Carrier | Jun 2000 | A |
6135510 | Diginosa | Oct 2000 | A |
Number | Date | Country | |
---|---|---|---|
20040036299 A1 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10114936 | Apr 2002 | US |
Child | 10650698 | US |