1. Field of the Invention
The present invention relates generally to a computer. More particularly, the present invention relates to improved features for mounting structures to a computer.
2. Description of the Related Art
There are many design challenges associated with designing a computer. One design challenge is in techniques for providing access to structures contained within the housing of the computer. One technique includes disassembling the entire housing or portions thereof. Another technique includes removing a door built into the housing. Unfortunately, there are many problems associated with these techniques. For example, disassembly and removal is often difficult for users who lack the time, tools and skills to perform such tasks. As should be appreciated, doors and housings are fastened using screws, bolts, snaps, locks, which can be difficult to maneuver. In addition, these techniques typically complicate the housing design and create aesthetic difficulties because of undesirable cracks and fasteners located along the surfaces of the housing (e.g., as for example at the mating surfaces).
To elaborate, if a user wants to gain access to an internal component of the computer, such as memory, the user has to spend a certain amount of time removing the fasteners to open the door. Furthermore, the removal of fasteners requires the user to have special tools and often some general technical skill in order to remove the trap door. Conventional doors also often need to be pried out from the housing in order to be removed. Typically, the trap doors do not provide surfaces for grasping with a finger or hand. In some applications this makes the door difficult to remove. In effect, a prying tool may be needed to remove the door from the housing.
Another design challenge is in techniques for mounting structures within the computer. Conventionally, the structures have been attached to the frame of the computer housing with fasteners such as screws, bolts, grommets or snaps. In order to remove the structures from the computer, it is often necessary to unfasten and remove each of the fasteners securing the structures to the frame or housing. Unfortunately, this is time consuming and cumbersome process. Furthermore, it requires tools and more than one hand. Thus, those users without tools or those users with physical limitations may not be able to remove the structures from the computer.
To cite an example, most structures include a mounting portion having multiple mounting holes. In order to install the structure into the computer, screws are typically placed through the mounting holes and threaded into brackets attached to a frame or a portion of the housing. In order to remove the structure from the computer, such as for example repair, replacement or to gain access to other components in the computer, each of the screws must be unfastened from the bracket. Unfastening the screws permits the structure to be disengaged from the bracket thereby releasing the structure from the computer. Both procedures are time consuming and cumbersome, especially in confined areas of the computer. Furthermore, both procedures require a screwdriver or other tool to tighten or untighten the screw.
Thus, there is a need for improvements in the manner in which structures are mounted to computers. One area not specifically addressed by the prior art is the ability to quickly and effectively provide both the easy and quick connection and disconnection of structures to and from the computer.
The invention relates, in another embodiment, to a computer. The computer includes a housing having an interior portion. The computer also includes a removable fan module that slides in and out of the interior portion of the housing. The fan module is configured to make tool-less electrical and mechanical connections with the computer when the fan module is slid into the housing. The fan module is additionally configured to make tool-less electrical and mechanical disconnections with the computer when the fan module is slid out of the housing.
The invention relates, in another embodiment, to a cooling device for a computer that includes a housing having an interior portion. The cooling device includes a quick release removable fan module that slides in and out of the interior portion of the housing, the fan module making tool-less electrical and mechanical connections with the computer when the fan module is slid into the housing, the fan module making tool-less electrical and mechanical disconnections with the computer when the fan module is slid out of the housing.
The invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
FIGS. 15A-C are side elevation views of the disk drive mounting system of
FIGS. 16A-C illustrate a sequence of movements as the disk drive is latched and unlatched, in accordance with one embodiment of the present invention.
The invention pertains to computer designs that improve user satisfaction. The designs are configured to incorporate one or more quick release couplings for releasably coupling components of a computer to the computer, i.e., a temporary connection means for connecting and disconnecting components to a computer. The quick release coupling mechanisms are generally configured to allow tool-less placement of the components relative to the computer. That is, the quick release coupling mechanisms are configured to perform their couplings without using conventional fasteners such as screws, bolts, etc. By eliminating the use of fasteners, the components may be inserted and removed from the computer without using tools (e.g., tool-less). Furthermore, the quick release couplings are easy to maneuver thereby enabling quick and straightforward assembly and disassembly of the components to and from the computer (e.g., quick release). For example, the components may be inserted and removed by a simple pushing or pulling motion, and/or by a simple flick of a latch or handle.
One aspect of the invention pertains to a door mount assembly that allows tool-less placement of an access door to the computer. Another aspect of the invention pertains to a fan mount assembly that allows tool-less placement of one or more fans inside the computer. Another aspect of the invention pertains to a drive mount assembly that allows tool-less placement of a disk drive inside the computer. Another aspect of the invention pertains to drive door assembly that includes a sliding door and that allows tool-less placement of a sliding door relative to the computer.
Embodiments of the invention are discussed below with reference to
In general, the housing 12 serves various functions including but not limited to surrounding the internal components at a peripheral region thereof so as to cover and protect them from adverse conditions; structurally supporting the internal components in their assembled position within the housing 12; and defining the shape or form of the computer 10. The housing 12 may be further configured to contain electronic emissions therein, i.e., integrated circuit chips and other circuitry may generate unwanted electrical emissions (EMI).
As shown through the opening 16, the computer 10 includes various other structural components including an access frame 18 and one or more shelves 20. The access frame 18 is configured to support the housing 12 in the area of the access opening 16. By way of example, it may act as a beam/post that connects and rigidly supports the housing 12 in its assembled condition. The shelves 20, on the other hand, are configured to support various internal components that provide operations for the computer 10. They are also configured to separate the internal housing into several usable spaces or stations capable or receiving the internal components of the computer. By way of example, the shelves may define a drive area, a PC card area, a processing area, a power management area, and/or the like. The spaces may also separate the housing into one or more different thermal zones.
In the illustrated embodiment, the access frame 18 is attached to the upper portion of the housing 12 at a first end and a lower portion of the housing 12 at a second end. It may also be attached to the front and rear portion of the housing 12. This is generally accomplished with fasteners such as screws, bolts, etc. The access door 14 is configured to mate with the access frame 18 when the access door 14 is mounted to the housing 12. In most cases, the access door 14 is placed within a cut out section 22 in the housing 12. In some cases, it may be desirable to provide an inner door between the access door 14 and the opening 16 in the housing 12 to further protect the internal components and possibly add more functionality to the computer. For example, the inner door may include contours that help distribute air throughout the internal portions of the housing, and more particularly different thermal zones within the housing.
The manner in which the access door 14 is removed generally varies according to the specific design of each computer 10. For example, it may be designed to slide off of the housing 12 or it may be rotated off the housing 12. Further, although the door 14 is shown removed, it should be noted that this is not a limitation and that the access door 14 may be movably coupled to the housing 12. For example, it may pivot or slide relative to the housing 12 without being removed
As further shown through the opening 16, the housing 12 encloses various internal components that provide operations to the computer 10. For example, the housing 12 may enclose a disk drive 24 and one or more hard drives 26, each of which may be mounted to a first shelf 20A in order to secure them within the housing 12. The housing may include an opening or a door system 27 for allowing access to the disk drive 26. The housing 12 may also enclose various heat transfer mechanisms as for example, fans 28, heat sinks 30 and the like. The fans 28, which are typically mounted to various shelves 20, may for example be configured to pull air from the front of the housing 12 via a plurality of perforations in the housing 12 and to distribute the air over the computer components enclosed within the housing 12. Once the air has collected heat from the computer components, it is generally directed out of the housing 12 through one or more vents (or perforations) in the back of the housing 12.
The housing 12 may also enclose a mother board 32, which in this embodiment is located behind the various other components opposite the access door 14. The motherboard 32 provides a place where a majority of the computer components can meet. It also provides a foundation for various computer components. For example, the mother board may include a plurality of slots 34 for receiving such things as a PC cards, videocards, memory (e.g., SIMMs or DIMMs), and the like. It also includes thereon, one or more main processors 36 that control the computer 10. As shown, the heat sinks 30 are typically positioned over the main processors 36 so as to collect heat therefrom.
As the power and sophistication of computers have increased, so has the level of electromagnetic interference generated by devices enclosed therein. As is generally well known, integrated circuit devices unintentionally emit electromagnetic radiation during operation that may cause interference with communication devices, such as telephones, radios, and televisions. In order to prevent interference, the housing 12 as well as the access door 14 may be configured to shield or block the emission of electromagnetic radiation, which is emanating from the integrated circuit devices. This is generally accomplished with an electrically conductive material that forms part of the housing/door or that is attached to housing/door. In plastic housings, some methods for shielding the housing include: lining the housing with a metallic foil such as aluminum, lining the housing with sheet metal such as steel, or coating the inner surfaces of the housing with a metallic material such as nickel or copper. Alternatively, the housing may be formed from an electrically conductive material itself as for example steel or aluminum. Furthermore, the door or its corresponding mating surface on the housing may include an EMI gasket for shielding interference at the interface between the housing 12 and the access door 14. By way of example, the EMI gasket may be a silicone based electrically conductive EMI gasket.
In accordance with one aspect of the present invention, a quick release door system is provided that is quick and easy to maneuver. The quick release door system generally includes a removable access door 14 that covers an opening 16 in the housing 12 and acts as another wall of the housing 12 when closed (
The configuration of the access door 14 may be widely varied. For example, it may be located on a single wall (as shown) or multiple walls of the housing 12. The access door 14 may further make up an entire wall of the housing 12 or smaller portions thereof (as shown). In addition, the shape of the access door 14 may coincide with the overall contour of the housing 12 or it might provide further contours whether internal or external. In the illustrated embodiment, the access door 14 is located on a single wall. It is further dimensioned to be somewhat smaller than the entire wall, i.e., the housing 12 as well as the access door 14 form the entire wall. Moreover, the access door 14 is substantially planar (flat) in order to coincide with the planar contour of the housing 12. It is generally believed that the embodiment shown is desirable to a user of the computer for both aesthetics and ease of use. For example, it provides a clean continuous appearance and it is easy to maneuver compared to other designs.
The quick release door system also generally includes a quick release latching mechanism for securing the access door 14 to the housing 12 when closed and for releasing the access door 14 from the housing 12 when it is desired to be opened. The quick release latch mechanism consists of two parts, a housing side locking mechanism and a door side locking mechanism. These two mechanisms are cooperatively positioned so that when the access door 14 is closed, the locking mechanisms are capable of lockably engaging with one another thus securing the access door 14 to the housing 12. The quick release latching mechanism also includes a quick release latch that enables a user to easily and quickly lock and unlock the door side locking mechanism relative to the housing side locking mechanism (or vice versa) thereby securing or releasing the access door 14 from the housing 12 in a simple and easy manner.
Referring to
As shown, the retention hooks 50 are positioned within the opening 16 in the housing 12, and the hook receivers 52 are positioned on an inner surface 53 of the access door 14. The retention hooks 50 are generally movable between an engagement position, coupling the retention hooks 50 with the hook receivers 52, and a disengagement position, decoupling the retention hooks 50 from the hook receivers 52. When engaged, the access door 14 is secured to the housing 12. When disengaged, the access door 14 can be removed from the housing 12. The latching mechanism 42 may further include a quick release handle 54 for moving the retention hooks 50 between the engagement and disengagement positions. The quick release handle 54 is generally located in an inconspicuous place as for example at the rear of the computer 10. The quick release handle 54 is also designed for ease of use and one handed operation.
Although the retention hooks 50 may be moved in a variety of ways in order to engage the hook receivers 52 (e.g., rotate, translate, pivot, etc.), in the illustrated embodiment, the retention hooks 50 are configured to slide relative to the housing 12. In particular, the retention hooks 50 are attached to a slider bar 56 that is slidably retained to a frame component 58 contained in the housing 14. By way of example, the frame component may generally correspond to a portion of the access frame 18 shown in
When the access door 14 is positioned within the recessed portion 22 of the housing 12, the retention hooks 50 are positioned adjacent the hook receivers 52 (e.g., disengagement position). In order to secure the access door 14 to the housing 12, the user forces the handle 54 to pivot. The pivoting action causes the retention hooks 50 to slide thereby capturing the hook receivers 52 (e.g., engagement position). When captured, the access door 14 is held relative to the housing 12. In some cases, it may be necessary to provide a means for forcing the access door 14 tight against the housing 12 in order to seal the interface there between. In cases such as this, the retention hooks 50 and/or the hook receivers 52 may include a tapered portion or ramp that causes the access door 14 to move towards the housing 12 as the retention hooks 50 slide relative to the hook receivers 52. The tapered portion in essence causes the access door 14 to be sucked into the recessed portion 22 of the housing 12. A spring action may be used to control the feel of the sucking action (e.g., tune the feel). For example, the retention hooks 50 and/or the hook receivers 52 may include a spring means that produces a smooth and constant friction force when the retention hooks 50 are slid into the hook receivers 52. As should be appreciated, it is generally believed that users think more positively about products that provide smooth actions rather than ones that produce coarse actions.
The door system may further include a door recess 58 located within the housing 12 and a retention lip 60 located on the access door 14. The door recess 58 receives the retention lip 60 so as to help secure the access door 14 to the housing 12 as well as to coarsely position the access door 14 relative to the housing 12. As should be appreciated, the retention hooks 50 and hook receivers 52 need to be aligned in order for them to properly engage one another. In some cases, the door interface needs finer positioning than what is provided by the recess/lip interface 58/60. In cases such as these, the door system may further include one or more alignment pins 62 located on the access door 14 and one or more locator holes 64 located on the housing 12 (or vice versa). When the alignment pins 62 are inserted into the locator holes 64, the access door 14 is placed in its proper position relative to the housing 12, i.e., prevents planar translation as well as rotation within the plane. Although the door recess 58 can be placed at any location, it is typically located somewhat internally of the outer surface of the housing 12 in order to allow the outer surface of the access door 14 to be flush with the outer surface of the housing 12.
The operation of the door system will now be discussed in conjunction with the illustrated embodiment. In order to remove the access door 14 from the housing 12, a user simply rotates the handle 54. By rotating the handle 54, the retention hooks 50 slide from the engagement position to the disengagement position. When in the disengagement position, the retention hooks 50 are decoupled from the hook receivers 52 and therefore the access door 14 is no longer secured to the housing 12 via the quick release latching mechanism 42. Thereafter, the user rotates the access door 14 away from the housing 12 about the retention lip/door recess interface 58/60 thereby removing the flange like retention hooks 50 from the slotted hook receivers 52. This rotation also releases the alignment pin 62 from the locator hole 64. Once the access door 14 is free from the retention hooks 50 and locator hole 64, the user may simple lift up on the access door 14 to release the retention lip 60 from the door recess 58. Once released, the access door 14 is fully removed form the housing 12.
In order to connect the access door 14 to the housing 12, a user places the retention lip 60 within the door recess 58 and rotates the access door 14 about this interface. At the end of the rotation, the user guides the alignment pin 62 into the locator hole 64 thereby placing the access door 14 in the desired relationship with the housing 12. By placing the access door 14 in the proper position, the retention hooks 50 are placed in the proper position relative to the hook receivers 52. Thereafter, the user rotates the handle 54 thereby causing the retention hooks 50 to slide from the disengagement position to the engagement position. When in the engagement position, the retention hooks 50 are coupled to the hook receivers 52 and therefore the access door 14 is secured to the housing 12 via the quick release latching mechanism 42.
Referring to
The access frame 76 includes a main body 80 and a support bar 82. The main body 80 provides support to the casing 74 and the support bar 82 provides support to a quick release latching mechanism 72. It may also provide support for a shelf disposed inside the housing 70. The main body 80 also defines the access opening 78 and generally includes a mating surface 84 for receiving the inner surface of the access door 71 (
Although not shown, the main body 80 may also be configured to receive an inner door that is position between the access door 71 and the access frame 76. The inner door may provide air flow contours for ducting air flow to various locations within the housing 70. The inner door may include one or more retention lips that fit into corresponding slots in the access frame 76, and a locking detent that interacts with the support arm 82. The inner wall may be formed from a clear plastic material. By way of example, an inner door that may be used is disclosed in co-pending Pat application Ser. No.: 10/075,964, entitled “Active Enclosure for Computing Device”, filed on Feb. 13, 2002, and which is herein incorporated by reference.
The quick release latching mechanism 72 is used to removably couple the access door 71 to the housing 70. The quick release latching mechanism 72 includes a slider assembly 92 and a handle assembly 94. Referring first to the slider assembly 92, the slider assembly 92 includes a slider bar 98 that is slidably retained to the support bar 82. This is generally accomplished with shoulder bolts 100 that are mounted to the support bar 82. The shoulder bolts 100 pass through corresponding slots 102 in the slider bar 98 thereby slidably retaining the slider bar 98 to the support bar 82. This may also be accomplished with a channel like structure formed into the support bar 82. The slider assembly 92 also includes a plurality of retention hooks 104 that are slidably restrained to the slider bar 98. The retention hooks 104 may for example include fins that slide within a groove in the slider bar 98. The retention hooks 104 are held within the groove via a corresponding leaf spring 106 that attaches to both the slider bar 98 and the retention hooks 104. The leaf spring 106 allows the retention hooks 104 to move inward and outward under a spring bias. The retention hooks 104 also include a flange 108 that is used to capture a portion of the access door, and more particularly hook receivers built into the access door (
Referring to the handle assembly 94, the handle assembly 94 includes a handle 110 that is pivot coupled to the housing 70, and more particularly casing 74. The handle 110 is seated inside a pocket 112 in the casing 74. In this manner, the outer surface of the handle 110 can sit substantially flush with the outer surface of the casing 74. In general, the size of the handle 110 is dimension for receipt inside the pocket 112 except for a small portion that provides a space for grasping the end of the handle 110. The pocket 112 may be integrally formed with the casing 74 or it may be a separate component that is attached to the casing 74 (e.g., weld). The handle 110 is connected to the casing 74 through a pivot pin 114 that is captured by a through hole in both the pocket 112 and the handle 110. A retaining ring may be used to hold the pivot pin 114 in place.
The handle assembly 94 also includes a pivot arm 116 that is attached to the backside of the handle 110. The pivot arm 116 includes a pair of arms 118, each of which includes a through hole for receiving a pivot pin 120. The pivot pin 120 may be held in its assembled position via a retaining ring. The pair of arms 118 are inserted through a pair of corresponding slots in the rear of the pocket 112. The pivot arm 116 may be attached to the handle 110 using any conventional means including but not limited to screws, bolts, adhesives and the like. Alternatively, the pivot arm 116 may be integrally formed with the handle 110.
The pivot arm 116 is both slidably and pivotally coupled to the slider bar 98 via the pivot pin 120, which is seated within the through holes of the pivot arms 118 and a groove 122 formed at the end of the slider bar 98. The slider bar 98 includes a protruding member 124 at the end closest to the handle 110. The protruding member 124 includes the groove 122 that receives the pivot pin 120 therein. The profile of the groove 122 is configured to cooperate with the handle 110 to transform the rotary motion of the handle 110 to the sliding motion of the slider bar 98. The groove 122 may include tuned humps 126 at its ends. The tuned humps 126 cause the handle 110 to retain its actuated and unactuated positions. They may also cause the handle 110 to produce a snap at the end of its rotation. For example, when the use pulls the handle 110 up, the tuned hump 126 causes the handle 110 to lock into its upwards position (and vice versa). The handle 110 may be spring biased as for example using a torsion spring or leaf spring
The handle assembly 94 may further include a lock receiver 130 that cooperates with the handle 110. The lock receiver 130 is configured to receive a lock such as a padlock so as to prevent a user from using the handle 110. When prevented from using the handle 110, the access door cannot be removed and thus access through the access opening is prevented. The lock receiver 130 is disposed between the handle 110 and the pocket 112. The lock receiver 130 includes a first extension 132 and a second extension 134, each of which can be inserted through an opening 136 in the handle 110. The lock receiver 130 is configured to pivot within pocket 112 between a first position (as shown in
The first extension 132 is smaller than the second extension 134 such that its end is substantially flush with the outer surface of the handle 110 when it is positioned in the opening 136 in the handle 110. The second extension 134, on the other hand, is longer so that its end extends past the outer surface of the handle 110. The second extension 134 includes a through hole 138 so that when the second extension 134 is positioned in the opening 136 of the handle 110, a pad lock may be placed through the through hole 138 thereby preventing a user from using the handle 110. In order to enhance user feel of the lock receiver 130, a back portion of the lock receiver 130 may include a nub that produces a cam action relative to the casing 74. The cam action may be spring biased to further enhance the user feel. By way of example, a leaf spring located on the internal back side of the pocket 112 may be used to bias the cam action.
As shown in
The door stiffener 154, which helps prevent torsion and flexing of the access door 152, is attached to the inner surface of the access door 152. The door stiffener 154 may be attached using any conventional means as for example, screws or bolts. The stiffener 154 is generally configured to protrude away from the inner surface from the access door 152. The contour of the stiffener 154 generally coincides with a corresponding recess in the housing. That is, the protruding portion of the stiffener 154 may be inserted into a recess in the housing when the door is placed in its closed position (see for example 86 in
The protruding portion of the stiffener 154 generally defines a space for the hook receivers 158 and the internal EMI gaskets 156, i.e., these elements are trapped between the stiffener 154 and the access door 152 when assembled. The hook receivers 158 are located proximate a corresponding number of passages 166 in the stiffener 154, and maybe fitted into the passage 166. The hook receivers 158 generally form a slot that allows a retention hook to be placed therein (see for example 104 in
The operation of the door system 68 will now be discussed in conjunction with
In order to remove the access door 71 from the housing 70, a user simply rotates the handle 110 upwards. The rotating handle 110 pulls the slider bar 98 towards the handle 110. This is accomplished through the motion transform assembly (e.g., arms 118, pin 120, groove 122, protruding member 124). When pulled, the slider bar 98 slides relative to the support bar 82 via the shoulder bolts 100 and slots 102 disposed in the slider bar 98. The sliding slider bar 98 causes the retention hooks 104 to slide from the engagement position to the disengagement position. When slid from the engagement position to the disengagement position, the flange 108 moves along a tapered portion 170 of the hook receivers 158 thereby causing the retention hooks 104 to translate relative to the slider bar 98 under the force of the leaf spring 106. When in the disengagement position, the flanges 108 are decoupled from the hook receivers 158 and therefore the access door 14 may be pulled away from the housing, i.e., the flanges pass through opening in the hook receivers when pulled away.
In order to connect the access door 71 to the housing 70, the user rotates the handle 110 downwards. The rotating handle pushes the slider bar 98 away from the handle 110. This is accomplished through the motion transform assembly (e.g., arms 118, pin 120, groove 122, protruding member 124). When pushed, the slider bar 98 slides relative to the support bar 82 via the shoulder bolts 100 and slots 102 disposed in the slider bar 98. The sliding slider bar 98 causes the retention hooks 104 to slide from the disengagement position to the engagement position. When slid from the disengagement position to the engagement position, the flange 108 moves along a the tapered portion 170 of the hook receivers 158 thereby causing the retention hooks 104 to translate relative to the slider bar 98 against the force of the leaf spring 106 (e.g., the spring force pulls the door tight against the housing). When in the engagement position, the flanges 108 are coupled to the hook receivers 158 and therefore the access door 71 is secured to the housing 70.
In summary, the door system disclosed herein provides a structure for accomplishing a quick and efficient installation and removal of an access door to and from the computer. For example, it requires no tools and at least one hand to manipulate removal and installation. As discussed in the background, conventional doors have been attached to the housing of the computer with fasteners and often need to be pried out from the housing in order to be removed. This is time consuming and cumbersome process. Furthermore, it requires tools and more than one hand. Thus, those users without tools or those users with physical limitations may not be able to remove the door from the computer. The door system of the present invention overcomes these disadvantages.
In accordance with another aspect of the present invention, and referring back to
The fan assembly 170 may be part of an overall heat transfer system configured to remove heat from heat producing elements housed within the computer 10. The heat producing elements may for example include IC chips. As is generally well known, IC chips such as those used for the main processors 36 generate heat and are therefore susceptible to overheating. Overheating may lead to errors in the functionality of the chip. The problem is compounded by the ever increasing speed of IC chips.
In the illustrated embodiment, the fan assembly 170 is a component of the heat transfer system that works to transfer heat away from the main processors 36 of the computer 10. The fan assembly 170 is configured to force air through one or more heat sinks 30. The heat sinks 30, which generally consist of a plurality of spatially separated fins, are thermally coupled to the main processors 36. In operation, the heat sinks 30 carry heat away from the main processors 36, and the air from the fan assembly 170 carries the heat away from the heat sinks 30. The fan assembly 170 essentially pulls air from the front side of the housing 12, and forces air to the back of the computer 10. As the air is forced through the computer 10, it passes over or through the fins of the heat sinks 30. The heat collected by the fins of the heat sinks 30 is then collected by the air and moved out of the computer 10 through air vents in the back of the housing 12. The heat transfer system may additionally include a corresponding fan assembly 172 at the rear of the housing to help move air out of the housing 12.
As shown in
The fan assembly 170 is generally configured for sliding receipt in the interior portion of the housing 12 between a mounting position and a removal position. In the mounting position (as shown), the fan assembly 170 is mounted to the housing 12 or some internal structural component thereof (e.g., shelves 20B and 20C) and electrically coupled to the electrical circuitry (e.g., motherboard 32) of the computer 10. In the removal condition, the fan assembly 170 is removed from the housing 12 or some structural component and electrically decoupled from the electrical circuitry of the computer 10.
In order to facilitate this arrangement, the fan assembly 170 generally includes a mating feature 178 that slidably engages a mating portion 180 of the housing 12 or some element thereof in order to support and properly position the fan assembly 170 inside the computer 10. By way of example, the mating feature 178 may slidably engage one or more of the shelves 20 disposed inside the housing 12. The mating feature 178 and mating portion 180 may be widely varied, and may for example include catches, hooks, flanges, slots, guides, and the like. The fan assembly 170 also includes an electrical connector (not shown in
Referring to
As shown, the fan assembly 170 includes a fan carrier 186 and one or more fans 188 attached thereto. The fan carrier 186 generally provides a structure for moving the fans 188 in and out of the computer 10, supporting and properly positioning the fans 188 within the computer 10 and for helping distribute the air from the fans 188 to the internal components of the computer 10. The number of fans may be widely varied. For example, single or multiple fans may be used. In most cases, there is a fan 188 for each heat sink 30 just like there is a heat sink for each processor 36. In the illustrated embodiment, the computer 10 includes a pair of heat sinks 30 and thus the fan assembly 170 includes a pair of fans 188 (one for each heat sink). Each of the fans 188 is configured to pull air from the front side of the housing 12 and to force air to the back of the computer 10 through its corresponding heat sink 30. In order to help distribute the air to the appropriate areas of the computer 10, the fan carrier 186 may include one or more dividers 190 that break the main air channel 174 into a plurality of sub air channels. The number of sub air channels generally depends on the number of fans 188 and heat sinks 30. In the illustrated embodiment, there are two sub air channels, one for each fan/heat sink grouping. The first channel helps direct air over the first heat sink 30 and the second channel helps force air over the second heat sink 30.
In order to facilitate the sliding action and the proper placement of the fans 188 within the channel 174, the fan carrier 186 generally provides a means by which the fan carrier 186 can be received by the housing 12 or some other element thereof (e.g., shelves 20). The means, for example, can be one or more mating features that are received by corresponding mating portion within the housing 12. When received, the mating features also cooperate to align the fan carrier 186 relative to the heat sinks 30, i.e., they place the fans 188 in the proper position adjacent the heat sinks 30.
In the illustrated embodiment, the fan carrier 186 includes a T-flange 192 that mates with a corresponding slot 194 within the shelf 20B of the channel 174. The T-flange/slot interface allows the fan carrier 186 to be slidably received by the computer 10. The T-flange 192 generally includes a central member 196 and a top member 198. The central member 196 is dimensioned for sliding receipt within the slot 194, and the top member 198 is dimensioned to rest on the upper surface of the shelf 20B. This particular arrangement allows for sliding receipt of the fan carrier 186 as well as to position the fan carrier 186 in its proper position within the housing 12. For example, the top member/upper plate interface sets the z axis position while the central member/slot interface sets the x and y positions as well as rotation about the z axis.
In order to further hold the fan carrier 186 in place within the housing 12, the fan carrier 186 may include a tongue 200 that mates with a corresponding groove 202 located on the bottom plate (e.g., shelf 20B) of the channel 174. The tongue 200 is generally dimension for insertion within the groove 202. When inserted, the tongue/slot interface helps guide the fan carrier 186 into its proper position within the housing 12. For example, it may help set the fan carrier 186 along the x, y and z axis as well as to prevent rotation about x, y and z axis. In essence, the fan carrier 186 is retained within the housing 12 when the T-flange 192 and tongue 200 are placed within the slot 194 and groove 202.
The fan carrier 186 also includes a carrier connector 204 configured to both structurally and electrically engage or mate with a corresponding connector 206 located within the channel 174 when the carrier 186 is slid into the channel 174. The carrier connector 204 may for example be a plug while the corresponding connector 206 may for example be a socket (or vice versa). The carrier connector 204 generally provides electrical connection to both fans 188 while the corresponding connector 206 provides electrical connection to the motherboard 32 and/or the power supply located within a lower section 208 of the computer 10. This is generally accomplished through one or more wires.
As shown in
In one embodiment, one or both of the connectors 204 and 206 are configured to gimbal relative to structure to which they are mounted in order to correct any misalignment between connectors 204 and 206. By gimbal it is generally meant that the connectors are able to float in space relative to their respective structures while still being constrained thereto. The gimbal permits the connector to shift freely so that connectors can mate even when it would otherwise be misaligned, as for example, when the fan carrier 186 is improperly positioned in the channel 174. When a single connector gimbals, the position of the gimbaling connector conforms and adjusts to the position of the other connector. When both connectors gimbal, the position of both connectors conforms and adjusts relative to each other. The gimbal may allow single or multiple degrees of freedom. For example, movements in the x,y,and z directions and/or rotations about the x, y and z axis.
The gimbal may be provided in a variety of ways, including but not limited to one or more pivot joints, translating joints, flexure joints, rotational joints, ball and socket joints and the like. In one particular implementation, each of the connectors 204 and 206 is configured to gimbal. The gimbal of the carrier connector 204 is provided by play that exists between the housing of the carrier connector 204 and a carrier bracket 212 positioned on the fan carrier 186. The gimbal of the corresponding connector 206 is provided by play that exits between the housing of the corresponding connector 206 and a bracket 214 positioned on the upper plate (e.g., shelf 20A). Each of these implementations is discussed in greater detail below in
The fan carrier 186 may be held in place by a friction coupling. The friction coupling may be provided between the mating features/portions or the mating connectors. Additionally or alternatively, the friction coupling may be provided by additional mating structures of the fan carrier 186 and computer 10. One advantage of frictional couplings is that the fan carrier 186 is not locked or snapped in thus it may be easily pulled out and pushed into the computer 10, i.e., the fan carrier 186 simply slides in and slides out. In the illustrated embodiment, the fan carrier 186 is held in place by a friction coupling found between the surfaces of the mating connectors 204 and 206. In this embodiment, the plug connector fits snuggly into the socket connector so that a friction force holds the two connectors 204 and 206 together, i.e., resists sliding motion. In order to decouple the connectors 204 and 206, and thus the fan carrier 186 from the upper and lower plates, the friction between the mating surface of the connectors 204 and 206 needs to be overcome. Alternatively or additionally, the friction coupling may be found between the surfaces of the mating features 192 and 194.
The fan carrier 186 may be further held in place by the access door 14 or an inner door located between the access door 14 and the housing 12, as for example, in the case of a shock and vibration situation. Either of these doors can be configured to provide pressure against the fan carrier 186 when the door 14 is in the closed position. The pressure may be heavy to none as it may only need to keep the fan carrier 186 from sliding out of the computer 10. Although friction couplings are generally preferred for the ease of use, it should be noted that it is not a limitation and that locks, latches, snaps, flexures, detents, magnets and the like may also be used to help secure the fan carrier within the channel.
Referring to
Although not previously discussed, the fan carrier 186 also includes a front member 220, which provides a mounting surface for the fans 188. As shown, the fans 188 are positioned in front of their own opening 222 in the front member 220. Each opening 222 is located in a different sub channel. The openings 222 provide a passage for the air to travel from the fans 188 to the heat sinks 30. The fans 188 may be mounted to the front member 220 using any suitable means. The fans 188 may for example be mounted to the front member 220 via rubber grommets located at each corner of the fans 188. The rubber grommets are typically retained in through holes located in both the fan housing and the front member 220.
The fan carrier 186 also includes a top member 224 and a bottom member 226, which provide further structure to the fan carrier 188 and which provide a mounting surface for the mating features, particularly T-flange 192. The top and bottom members 224 and 226 may also further help duct the air through the computer 10. For example, they may help guide air to the heat sinks 30. The fan carrier 186 additionally includes a handle 228 for pulling the fan can assembly out of the computer and for pushing the fan assembly into the computer. The handle 228 is generally placed at a location that can be easily grasped by the user. For example, the handle 228 may be located on the side of the fan carrier 186 closest to the removable access door 14 when the access 14 is closed. The user, after removing the door, can therefore grasp the handle 228 and pull the fan assembly 170 out of the computer 10. In the embodiment shown, the handle 228 is connected to the divider 190.
The fan carrier 186 and its components may be assembled in a variety of ways. For example, each of the members may be attached to one another using conventional techniques such as fasteners, adhesives and the like and/or they may be integrally formed as a single unit. Furthermore, the fan carrier may be formed from a variety of materials including but not limited to plastic and metal. In the illustrated embodiment, the fan carrier is formed from a single piece of plastic (molded).
Furthermore, the corresponding connector 206 generally includes a body 250 that is positioned within a pair of arms 252 formed by the corresponding bracket 234. The body 250 is retained within the arms 252 by a flange portion 254 and flexible catches 256 on both sides of the body 250. The flexible catches 256 are configured to flex so as to allow placement of the body 250 within the arms 252. Once placed, the flexible catches 256 spring back thereby trapping the arms 252 between themselves and the flange portion 254. By way of example, the arms 252 may be formed by a piece of sheet metal that is bent down from the shelf 20B. Like the carrier connector 204, the body 250 of the corresponding connector 206 is dimensioned to provide clearance all the way around thereby giving it some play within the arms 252 of the bracket 234. The space between the flexible catch 256 and the flange portion 254 may also provide a clearance for allowing movement of the body 250. As above, the clearance allows the connector 206 to float in the bracket 234.
In one embodiment, because the connectors 204 and 206 are blind mate connectors, the body 250 of the corresponding connector 206 includes a lead in chamfer or taper 258 around its opening 260 to help guide the plug 240 of the carrier connector 204 therein. Once in place, the terminal of the connectors 204 and 206 are engaged and the fans are electrically coupled to the computer.
In summary, the fan assembly disclosed herein provides a structure for accomplishing a quick and efficient installation and removal of the fans to and from the computer. For example, it requires no tools and only one hand to manipulate removal and installation. As discussed in the background, conventional fans have been attached to the frame or chassis of the computer with screws, bolts or grommets. In order to remove the fans from the computer, it has been necessary to unfasten and remove each of the screws or grommets securing the fan to the frame or chassis. This is time consuming and cumbersome process. Furthermore, it requires tools and more than one hand. Thus, those users without tools or those users with physical limitations may not be able to remove the fan from the computer. The fan assembly of the present invention overcomes these disadvantages.
In accordance with another aspect of the present invention, and referring back to
The disk drive 24 may be widely varied. By way of example, the disk drive may be an optical disc drive, floppy disk drive, zip drive, hard drive or the like. In the illustrated embodiment, the disk drive 24 corresponds to an optical drive and more particularly a CD/DVD drive capable of receiving compact disks (CD) and digital video disks (DVD). The CD/DVD drive generally includes drive components for reading CD's and/or a DVD's and transport components for inserting and removing the CD and DVD discs to and from the drive components. By way of example, the drive components may include a laser, light sensing diode, and a spindle motor, and the transport components may include a movable tray. The CD/DVD drive also generally includes an enclosure for housing the drive and transport components. The enclosure is typically arranged to structurally support the components, to shield electronic and laser emissions therein, and to prevent dust particles from reaching the drive components.
As shown in
Referring to 12, the disk drive 24 is generally configured for sliding receipt in the interior portion 270 of the housing 12 between a mounting position and a removal position. In the mounting position (
The quick release latching mechanism 272 also includes one or more latches 278 that urge the drive-side mating feature into engagement and disengagement with the computer-side mating feature. When fully engaged, the mating features support and properly position the disk drive 24 inside the computer 10. For example, the mating features may place the disk drive 24 in its proper position relative to a disk door 280 on the housing 12. When fully disengaged, the disk drive 24 is placed in a position for removal. The latches 278 may also be configured lock the mating features in their engaged position thus securing the disk drive 24 to the housing 12 in a simple and easy manner. In one particular embodiment, the latches 278 are configured to trap the disk-side mating feature within the computer-side mating feature, i.e., the post 274 is trapped within the post receiver 276.
Furthermore, in order to electrically connect and disconnect the disk drive 24 to and from the computer 10, the disk drive 24 may include an electrical connector (not shown) that is configured to electrically engage a corresponding electrical connector (not shown) disposed within the interior portion of the housing 12. The corresponding electrically connector may for example be connected to the motherboard. When electrically connected, the disk drive 24 can be controlled and powered by the computer 10. When electrically disconnected, the disk drive 24 is no longer powered or controlled by the computer 10. In some cases, the disk drive 24 may be coupled to the computer 10 through blind mate connectors in a manner similar to the fan assembly 170, and in other cases, the disk drive 24 may be coupled to the computer 10 through a cable and conventional connectors. In the illustrated embodiment, a cable 282 allows the disk drive 24 to be removed and moved a substantial distance away from the computer 10. In other words, the disk drive 24 can be completely removed from the computer 10. If desired, the disk drive 24 can be completely decoupled from the computer 10 by disconnecting the cable 282 from the computer 10. The disconnection may for example occur by decoupling a connector at the end of the cable 282.
The disk drive plate 292 includes a plurality of standoffs 296, each of which is capable of mating with a corresponding receiving bracket 298 on the mounting plate 294. The stand offs 296 are typically connected at standard mounting points. By way of example, the stand offs 296 may be secured to the disk drive plate 292 using screws or bolts that can be integrally connected with the stand off or separate components. In addition, the brackets 298 may be separate components that are attached to the mounting plate 294 as for example using some sort of fastener or they may be an integral part of the mounting plate 294 (e.g., molded part of the plate). In order to connect the stand offs 296 with the brackets 298, the standoffs 296 generally include a flange portion 300 that mates with a slot 302 on the bracket 298. The flange portion 300 may be slid into the slot 302 thus retaining it to the bracket 298. The slot 302 is generally designed to guide the disk drive via the standoff/slot interface into its appropriate position within the housing. The slots 302 may include an entry point and a final set point. The position of the brackets 298 generally depends on the position of the standoffs 296. In most cases, the mounting plate 294 includes a pair of front brackets 298A and a pair of rear brackets 298B. The front brackets 298A are position closer to the access door 14 in the computer 10 than the rear brackets 298B.
The disk drive mounting system 290 also includes a quick release latch system for positioning the standoffs 296 within the brackets 298 and lockably engaging the standoffs 296 relative to the brackets 298. By locking the standoffs 296 relative to the brackets 298, the disk drive 24 may be held in place inside the computer 10. The quick release latch system generally includes one or more rotatable latches 304 that cooperate with the brackets 298A to secure the standoffs 296 relative to the brackets 298A. By way of example, the latches 304 may be rotatably coupled to the brackets 298A via a shoulder bolt system that includes a shoulder bolt 305, which extends through a hole in the latch 304 and which is attached to the bracket 298A via a screw 306 (see
Referring back to
FIGS. 15A-C are side elevation views of the disk drive mounting system 290 of
The brackets 298 form a pocket 314 for receiving the latch 304 therein. The pocket 314 is configured to hide a substantial portion of the latch 304, as for example, a cam portion 316 of the latch 304. A lever arm 318 of the latch 304 is typically left exposed so that a user may easily actuate the latch 304. The latch 304 is rotatably coupled to a bracket 298 about an axis between a receiving position (
FIGS. 16A-C illustrate a sequence of movements as a disk drive is latched and unlatched, in accordance with one embodiment of the present invention. In each of these Figures, a latch 304 is used to install or release a disk drive from a shelf of a computer. When installed, the disk drive is at least positioned adjacent an opening or disk door in the housing so as to facilitate the placement and removal of a disk from the disk drive. When released, the disk drive is presented to a user so that the user can remove the disk drive from the computer.
Initially, the lower flange 308 of the stand-off 296 is placed in the receiving/presenting portion 324 of the groove 320 (
Because the bracket 298 is rigid, the standoff 296 and thus the disk drive are forced to follow a path defined by the slot 302. The path may be widely varied, but is generally configured to direct or guide the disk drive to its proper position within the computer. As shown, the slot 302 is angled and thus it includes multiple directional components. The first direction component guides the disk drive via the standoff 296 internal to the computer. The second directional component guides the disk drive via the standoff 296 towards the front of the computer. This particular path encourages proper placement of the disk drive relative to a disk opening or disk door in the front of the housing. For example, the end of the slot 302 may set the x and y position of the disk drive so that it is properly positioned next to the opening or disk door, i.e., the disk drive can be forced against the inner surface of the housing.
In summary, the removable disk drive system disclosed herein provides a structure for accomplishing a quick and efficient installation and removal of the disk drive to and from the computer. For example, it requires no tools and at least one hand to manipulate removal and installation. As discussed in the background, conventional disk drives have been attached to the frame or chassis of the computer with screws, bolts or grommets. In order to remove the disk drive from the computer, it has been necessary to unfasten and remove each of the screws securing the disk drive to the frame or chassis. This is time consuming and cumbersome process. Furthermore, it requires tools and more than one hand. Thus, those users without tools or those users with physical limitations may not be able to remove the disk drive from the computer. The disk drive assembly of the present invention overcomes these disadvantages.
In accordance with another aspect of the present invention, and referring to
The sliding door 330 may be slidably coupled to the housing 12 using one or more tracks, channels, and the like. The sliding action of the door 330 may be initiated via an actuator configured to drive the sliding door 330 linearly up and/or down between its open and closed positions. The actuator, which is located within the housing 12, typically includes a drive mechanism such as a motor. The drive mechanism may drive the door 330 directly or indirectly as for example through a drive transfer mechanism such as a push arm. The actuator may be controlled by the computer 10, i.e., the computer 10 informs the actuator when to drive the door 330 up and when to drive the door 330 down. In some cases, the door 330 may be spring biased in the closed position, and thus the actuator works against the spring bias in order to place the door 330 in the opened position.
In the illustrated embodiment, the actuator corresponds to the disk tray 334 of the disk drive. The disk tray 334, which is moved by a linear motor, pushes on the inner portion of the door 330 thereby causing the door 330 to slide down as the tray 334 extends outside the housing 12, i.e., the force from the sliding tray 334 as it exits the housing 12 forces the sliding door 330 to its opened position. Because the linear motions of the tray 334 and door 330 are perpendicular to one another, a means for transforming the linear motion of the tray 334 to the linear motion of the door 330 may be needed. The means may, for example, include an assemblage of motion mechanisms (e.g., linkages, cams, gears, chains, belts and the like), interconnected in such a way as to provide a controlled linear output motion in response to the supplied linear input motion. In one particular implementation, the linear motion of the tray 334 is transformed to rotary motion, and the rotary motion is transformed to the linear motion of the door 330. This particular implementation is described in greater detail below.
The sliding door 330 may be part of a door system that is mounted to the housing 12 or structural component thereof adjacent an opening 332 in the housing 12. The door system generally includes a door housing, which slidably supports the sliding door 330. The door housing may be attached to the computer housing 12 using any conventional means, i.e., fasteners, adhesives, snaps, etc. In one implementation, the computer housing includes a bracket for receiving the door housing. The bracket may include one or more slots, which accept flexure tabs located on the door housing. By forcing the tabs into the slots, the door housing may be snapped into its proper position within the bracket. In this manner, fasteners are not needed thereby enabling quick and easy assembly and disassembly.
The housing 354 is configured to enclose the disk drive 352 and drive door assembly 356. The housing 354 may for example correspond to a computer housing such as computer housing 12 shown in the previous Figures. Alternatively, the housing 354 may be a drive housing, rather than a computer housing. In either case, the housing 354 includes an opening 362 for allowing the carrier tray 358 to extend out of the housing 354. The housing 354 is also configured to support these components in their assembled position within the housing 354. By way of example, the disk drive may be supported by a shelf inside the housing. Furthermore, the disk drive 352 may be attached to the housing 354 or some component thereof using fasteners or a quick release latching mechanism.
The drive door assembly 356 is positioned between the housing 354 and the disk drive 352. The drive door includes a frame 364, a sliding door 366, and a motion transformer 368. The frame 364 is configured to support the sliding door 366 relative to the motion transformer 368. The frame 364 may be attached to the housing 354 or the disk drive 352. In either case, the drive assembly 356 is generally positioned at a precise location relative to each in order to align the opening 362, sliding door 366 and carrier tray 358. The sliding door 366 is positioned as close as possible to the interior surface of the housing 354 so as to reduce gaps at the door/housing interface when the door 366 is closed while still allowing enough space for allowing movement of the door 366. The sliding door 366 is configured to slide relative to the frame 364. Although not shown, the sliding door 366 may include hooks that engage rails on the frame 364 thereby allowing the door 366 to slide relative to the frame 364. The sliding action allows the door 366 to move between a closed position where the door 366 is placed in front of the opening 362 to prevent access therethrough (
The motion transformer 368 is configured to transfer the linear motion of the carrier tray 358 to linear motion of the sliding door 366. The motion transformer 368 may be widely varied. In the illustrated embodiment, the motion transformer 368 includes a cam 370 that rotates relative to the frame 364 about an axis. The cam 370 may be pivotally coupled to the frame 364 via a pivot pin or other similar method. The cam 370 is configured to rotate between a first position and a second position. During operation, the linear motion of the carrier tray 358 is transformed into rotary motion at the cam 370 and the rotary motion of the cam 370 is transformed to linear motion at the sliding door 366. The cam 370 generally includes a ramp portion 372 for interfacing with the disk tray 358 and a gear portion 374 for interfacing with a corresponding gear portion 376 on the sliding door 366 (e.g., rack and pinion). Each of the gear portions 374 and 376 includes one or more teeth. The ramp 372 is configured to receive the carrier tray 358 in order to rotate the cam 370. The gear portion 374 is configured to mate the corresponding gear portion 376 on the sliding door 366 in order to move the sliding door 366 linearly downwards.
When a user desires the disk drive 352 to be open, the carrier tray 358 is caused to extend outside the housing 354 in a first linear direction 380. During its linear motion, the disk tray 358 pushes on the ramp 372 of the cam 370 thereby causing the cam 370 to rotate about it axis. During rotation, the contacting point between the ramp 372 and the carrier tray 358 may change from the front of the carrier tray 358 to the bottom of the carrier tray 358. In essence, the carrier tray 358 causes the cam 370 to roll around its axis. When the cam 370 rotates, the teeth located thereon engage the corresponding teeth located on the sliding door 366. As the cam 370 further rotates, each tooth engages another tooth thereby driving the sliding door 366 in a second linear direction 382, which is perpendicular to the first linear direction 380. In some cases, the cam 370 is spring biased in the first position so as to place the door 366 in its closed position when the carrier tray 358 is positioned within the disk drive 352, i.e., the spring forces the cam into the first position, and the cam via the gear portions forces the door in its closed position.
As shown in
The structural shutter door 402B is slidably received by the shutter housing 404. This is accomplished through rails 410 positioned at the ends of the structural door 402B and a pair of tracks 412 positioned on the shutter housing 404. The rails 410 are configured to hook onto the tracks 412 so that they are slidably retained thereon. By way of example, the rails 410 may be inserted at the bottom of the tracks 412.
The shutter housing 404 also rotatably receives the pivot gear 406. This is accomplished through a pair of mounting posts 414 located on the shutter housing 404 and a pair of corresponding mounting posts 416 located on the pivot gear 406 that are rotatably connected via a pair of pivot pins 418. The pivot pins 418 may for example be placed through holes located in the mounting posts 416 and 418 and additionally in the side walls of the shutter housing 404. The pivot gear 406 includes a pair of ramps 420 for receiving a carrier tray of a CD/DVD drive. When engaged, the carrier tray pushes on the ramps 420 thus causing the pivot gear 406 to rotate via the mounting post interface.
The pivot gear 406 also includes a pair of gears 422 also located at each end of the pivot gear 406. The gears 422 are configured to mate with corresponding gears 424 located on the interior surface of the structural door 402B (e.g. rack and pinion). When mated, the teeth of the gears 422 and 424 engage thus causing the structural door 402B to slide along the shutter housing 404 via the rail/track interface. The pivot gear 406 may be spring biased by a pair of torsion springs 426, i.e., one at each mounting post interface. The torsion springs 426 generally bias the pivot gear 406 in a position that places the door 402 in a closed position. During an opening operation, the carrier tray works against the spring force when rotating the pivot gear 406. During a closing operation, the spring force causes the door 402 to move to the closed position when the tray is moved back into the disk drive.
The EMI can 408 is positioned over the shutter housing 404 in order to shield electronic emissions emanating in regions around the disk drive. The EMI can 408 is retained on the shutter housing 404 via a pair of tabs 428 located on the shutter housing 404 and a pair of slots 430 located on the EMI can 408. The EMI can 408 snaps onto the shutter housing 404 when the slots 430 are placed over the tabs 428. The EMI can 408 also includes a plurality of tabs 432 for engaging slots (not shown) located on the interior surface of the front housing. When engaged, the drive door assembly 400 is retained to the housing in its proper position. In order to allow some tolerance, the EMI can 408 may gimbal relative to the shutter housing 404. This may be accomplished by allowing some play at the tab/slot interface and a wireform 434 disposed between the shutter housing 404 and the EMI can 408. The wireform 434 provides some spring bias between the shutter housing 404 and the EMI can 408. The shutter housing 404 may include one or more nubs 436 for properly placing the drive door assembly 400 relative to the housing in which it is assembled.
In accordance with another aspect of the present invention, and referring back to
As shown in
In order to facilitate the mounting and removal of the hard drive 26 to and from the computer 10, the computer/hard drive interface generally includes a quick release retention mechanism. The quick release retention mechanism 445 includes a drive-side mating feature that engages a computer-side mating feature inside the housing 12. The mating features may be widely varied, and may for example include nubs, grooves, channels, catches, hooks, flanges, slots, guides, and the like. In order to secure the mating features and thus the hard drive to the computer, the mating features may be configured as friction couplings. The quick release retention mechanism may also include a locking mechanism capable of locking the mating features in their engaged position. The locking mechanism may be widely varied and may for example include snaps, flexures, latches and the like. The quick release retention mechanism may also include one or more latches capable of urging the drive-side mating feature into engagement and disengagement with the computer-side mating feature.
Furthermore, in order to electrically connect and disconnect the hard drive 26 to and from the computer 10, the hard drive 26 may include an electrical connector (not shown) that is configured to electrically engage a corresponding electrical connector (not shown) disposed within the interior portion of the housing 12. The corresponding electrically connector may for example be connected to the motherboard. When electrically connected, the hard drive 26 can be controlled and powered by the computer 10. When electrically disconnected, the hard drive 26 is no longer powered or controlled by the computer 10. In some cases, the hard drive 26 may be coupled to the computer 10 through blind mate connectors in a manner similar to the fan assembly 170, and in other cases, the hard drive 26 may be coupled to the computer 10 through a cable and conventional connectors.
The connection between the hard drives 452 and rack system 454 is preferably arranged to allow insertion and removal of the hard drives 452 with minimal effort and without tools, i.e., quick release coupling. The connection may be widely varied. In the illustrated embodiment, the hard drives 452 are slidably received by the rack system 454. The hard drives 452 are therefore capable of sliding in and out of the rack system 454. As shown, the hard drive 452 includes mounts 458 that slide into mating channels 460 in the rack system 454. The mounts 458 are generally positioned on opposing sides of the drive 452 and the mating channels 460 are generally located on opposing sides of the rack system 454 thereby allowing the hard drive 452 to be easily pushed in and pulled out of the rack system 454. The mounts 458 may for example be placed at standard mounting locations on the enclosure of the hard drive 452. Any number of mounts 458 may be used, although it has been found that four mounts work well (two on each side). The mounts 458 generally include a nub 459 dimensioned for sliding receipt within the groove 461 of the channel 460 (e.g., hemisphere, and inverse hemisphere). The nub 459 is typically connected to the enclosure of the hard drive 452 via a screw or bolt although other attachment means may be used. Furthermore, the nub 459 may be formed from a compliant material that is capable compensating for undesirable forces that may be inflicted on the hard drive 452 when it is mounted in the rack system 454.
The channels 460 generally guide the hard drive 452 to its proper position within the rack system 454. The channels 460 generally include an entry point 462 and a final point 464. The entry point 462 represents the area of the channel 460 that initially receives the mounts 458. In order to facilitate the easy placement of the mounts 458 in the channels 460, the entry point 462 may be flared outwards. The final point 464, on the other hand represents the area of the channel 460 that prevents further sliding movement. The final point 464 may for example set the final mount position of the hard drive 452 within the rack system 454. The final point 464 may for example correspond to an abutment stop. In the illustrated embodiment, a first set of channels is configured to guide a hard drive 452 to the lower bay 456B and a second set of channels is configured to guide a hard drive 452 to the upper bay 456A. As shown, the first set of channels includes a pair of continuous and parallel channels 460A, which receive both the front mounts 458A and rear mounts 458B of the hard drive 452. The second set of channels, on the other hand, includes a pair of first channels 460B and a pair of second channels 460C. The first channels 460B are configured to receive the rear mounts 458B and the second channels 460C are configured to receive the front mounts 458A. The first channels 460B include a front portion 466, a slope portion 468 and a rear portion 470. The front portion 466 is located underneath the second channels 460C and is generally configured for initially receiving the rear mounts 458B. The sloped portion 468 is configured to guide the rear mounts 458B to the rear portion 470, which is level with the second channels 460C.
In order to prevent the hard drives 452 from sliding out of the drive bays 456, the hard drive mounting system 450 may include one or more quick release mechanisms. For example, the hard drive mounting system 450 may include a friction coupling between surfaces of the mounts 458 and the channels 460, and more particularly, between the nub 459 and the groove 461. Alternatively or additionally, the hard drive mounting system 450 may include a holding detent for holding the mounts 458 in their desired position within the channel 460. The holding detent may for example be located near the entry point of the channel 460. The holding detent is typically designed to provide limited holding power. For example, enough holding power to maintain the proper placement of the mounts 458 within the channels 460 while still allowing a user to overcome it when pulling or pushing the hard drive 452 into and out of the drive bays 456 (e.g., one handed operation). Alternatively or additionally, the hard drive mounting system 450 may include quick acting clamps or latches that impede the sliding actions altogether.
The embodiment shown in
As the drive 452 is pushed into the drive bay 456, the mounts 458 engage the channels 460 and thus the locking flexures 472. Because the locking flexures 472 flex, they allow the mounts 458 to pass when pushed in by a user. Once the mounts 458 have passed over them, the locking flexures 472 resume their natural position thereby trapping the mounts 458 in the channel 460 between the locking tab 476 and the abutment stop at the end of the channel 460. Using this arrangement, the hard drive 452 is prevented from sliding out of the bay 456 on its own. In order to remove the drive 452, a user simply pulls on the hard drive 452. During the pulling action, the mounts 458 slide within the channel 460 until they engage the lock flexures 472. When a significant pulling force has been provided, the locking flexures 472 flex thereby releasing the mounts 458 from the channel 460. Using this arrangement, the user simply has to overcome the spring bias at the locking flexure 472 when sliding the hard drive 452 in and out of the drive bay 456.
In order to further hold the drives 452 in place within the drive bays 456, the rack system 454 may include one or more user actuated latches 480. In general, there is latch 480 for each drive bay 456. The user actuated latches 480 are preferably placed towards the front of the rack system 454 so that they are easily accessible when the rack system 454 is mounted within a computer, i.e., the latches 480 are placed at a location that can be easily grasped by the user. The latches 480 are rotatable between a receiving position (vertical) and a locking position (horizontal). In the receiving position, the hard drive 452 can be placed within the drive bay 456, i.e., the mounts 458 are capable of engaging the channels 460 so that the hard drive 452 can be pushed into place. In the locking position, the drives 452 are captured within the drive bay 456 by the latch 480. The latch 480 serves as an abutment stop to the hard drive 452 in order to keep it from sliding out of the drive bay 456.
In addition to the above, the rack system 454 generally includes a mounting pedestal 484, which serves as a support structure for the rack system 454. The mounting pedestal 484 may be attached to a shelf inside the computer using any suitable means as for example screws or bolts. The mounting pedestal 484 may include one or more recesses 486 for receiving one or more cable as for example a cable from the motherboard located behind the rack system 454. The cables may for example include connectors at their end that engage corresponding connectors 488 on the front face of the hard drive 452 when the hard drive 452 is placed within the drive bay 456.
It is contemplated that the different embodiments of the present invention may be adapted for any of a number of suitable and known personal computers that process, send, retrieve and/or store data. For example, the personal computers may correspond to an IBM compatible computer or an Apple compatible computer. Further, the personal computer may generally relate to desktop computers, whether segmented or all-in-one machines, which sit on desks, floors or other surfaces. By way of example, the Apple compatible computer may correspond to different models including but not limited to iMac, eMac, Cube, G3, G4, G5 models, which are manufactured by Apple Computer, Inc. of Cupertino, Calif.
While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
This patent application is a divisional of U.S. patent application Ser. No. 10/791,997 entitled “QUICK RELEASE STRUCTURES FOR A COMPUTER” filed Mar. 2, 2004, which takes priority under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/535,279 entitled “QUICK RELEASE STRUCTURES FOR A COMPUTER” filed Jan. 8, 2004, each of which are incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60535279 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10791997 | Mar 2004 | US |
Child | 11747825 | May 2007 | US |