The field of the disclosure relates generally to grade crossing gate mechanisms and, more particularly, to a quick-replacement gear for grade crossing gate mechanisms.
At least some known automatic grade crossing gate systems use a driven moon gear to raise and lower a gate arm. Traditionally, the driven moon gear is keyed and directly coupled to a gate arm shaft. The driven moon gear often requires maintenance and/or replacement, for example, due to wear, rust, broken gear teeth, etc. However, to remove the driven moon gear, a user is typically required to remove the gate arms, the cam lobe assembly, the control board, the gate arm shaft, etc., to unkey the moon gear. Often, replacement of the driven moon gear would take two (2) users a full day of work. Thus, replacement of a failed moon gear is expensive and inefficient. In addition, the automatic grade crossing gate system is rendered inoperable during gear replacement, thereby increasing danger to crossing traffic.
This summary is provided to introduce a selection of concepts in a simplified form that are further described in the detailed description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other aspects and advantages of the present disclosure will be apparent from the following detailed description of the embodiments and the accompanying drawing figures.
In one aspect, a crossing gate mechanism is provided. The crossing gate mechanism includes a gate mechanism enclosure defining an interior space. The crossing gate mechanism includes an axially extending gate arm shaft extending into the gate mechanism enclosure and being rotatable relative thereto. Furthermore, the crossing gate mechanism includes a quick-replacement moon gear assembly coupled to the gate arm shaft for rotation therewith and being positioned within the interior space. The quick-replacement moon gear assembly includes a gear hub fixed to the gate arm shaft for rotational movement therewith. In addition, the quick-replacement moon gear assembly includes a quick-replacement moon gear releasably coupled to the gear hub. The quick-replacement moon gear is removeable from the interior space while the gear hub remains fixed to the gate arm shaft.
Advantages of these and other embodiments will become more apparent to those skilled in the art from the following description of the exemplary embodiments which have been shown and described by way of illustration. As will be realized, the present embodiments described herein may be capable of other and different embodiments, and their details are capable of modification in various respects. Accordingly, the drawings and description are to be regarded as illustrative in nature and not as restrictive.
The Figures described below depict various aspects of systems and methods disclosed therein. It should be understood that each figure depicts an embodiment of a particular aspect of the disclosed systems and methods, and that each of the figures is intended to accord with a possible embodiment thereof. Further, wherever possible, the following description refers to the reference numerals included in the following figures, in which features depicted in multiple figures are designated with consistent reference numerals.
Unless otherwise indicated, the drawings provided herein are meant to illustrate features of embodiments of this disclosure. These features are believed to be applicable in a wide variety of systems comprising one or more embodiments of this disclosure. As such, the drawings are not meant to include all conventional features known by those of ordinary skill in the art to be required for the practice of the embodiments disclosed herein. While the drawings do not necessarily provide exact dimensions or tolerances for the illustrated components or structures, the drawings are to scale with respect to the relationships between the components of the structures illustrated in the drawings.
The following detailed description of embodiments of the disclosure references the accompanying figures. The embodiments are intended to describe aspects of the disclosure in sufficient detail to enable those with ordinary skill in the art to practice the disclosure. The embodiments of the disclosure are illustrated by way of example and not by way of limitation. Other embodiments may be utilized, and changes may be made without departing from the scope of the claims. The following description is, therefore, not limiting. The scope of the present disclosure is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
In this description, references to “one embodiment,” “an embodiment,” or “embodiments” mean that the feature or features referred to are included in at least one embodiment of the disclosure. Separate references to “one embodiment,” “an embodiment,” or “embodiments” in this description do not necessarily refer to the same embodiment and are not mutually exclusive unless so stated. Specifically, a feature, component, action, step, etc. described in one embodiment may also be included in other embodiments but is not necessarily included. Thus, particular implementations of the present disclosure can include a variety of combinations and/or integrations of the embodiments described herein.
In the following specification and the claims, reference will be made to several terms, which shall be defined to have the following meanings. The singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. “Optional” or “optionally” means that the subsequently described feature, event, or circumstance may or may not be required or occur, and that the description includes instances with or without such element.
Approximating language, as used herein throughout the specification and the claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” “approximately,” and “substantially” are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged. Such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
As used herein, directional references, such as, “top,” “bottom,” “front,” “back,” “side,” and similar terms are used herein solely for convenience and should be understood only in relation to each other. For example, a component might in practice be oriented such that faces referred to herein as “top” and “bottom” are in practice sideways, angled, inverted, etc. relative to the chosen frame of reference.
The crossing gate system 10 includes a control shelter 34 located remote relative to the crossing gate mechanism 100. The control shelter 34 houses a crossing control logic unit 36 that is programmed with crossing control logic 38. The crossing control logic unit 36 is electrically coupled to the power and control wires 22 of the crossing gate mechanism 100 via a signal cable 40. The crossing control logic 38 generates commands that are transmitted by the crossing control logic unit 36 as command signals to the electrical and mechanical components of the crossing gate mechanism 100. The command signals command the electrical and mechanical components of the crossing gate mechanism 100 to move the gate arm 20 between the vertical or horizontal positions to clear or block traffic. In addition, the crossing control logic 38 receives status information from the gate mechanism 100.
The motor 108 is coupled to the gear train 110. The gear train 110 includes the gate arm shaft 112 coupled to a gate arm, such as the gate arm 20, to raise or lower the gate arm. The motor 108 generates torque to rotate the gate arm shaft 112 when electrical power is supplied to the motor 108. The gear train 110 operates to multiply the torque of the motor 108, thereby reducing the power requirements and physical size of the motor 108.
The grade crossing gate mechanism 100 also includes an electronic sensor assembly 114 (broadly, a gate arm position sensing assembly). The sensor assembly 114 includes a driving element 116 and an electronic transducer 120 having a driven element 118 coupled thereto. In the exemplary embodiment, the electronic transducer 120 is an encoder, the driving element 116 is an encoder drive gear, and the driven element 118 is an encoder gear. While the electronic sensor assembly 114 is shown as employing an intermeshed gear drive assembly for driving the encoder 120, other aspects of the present invention contemplate alternative positive drive systems including, without limitation, chain drives, toothed belt drives, positive clutch drives, or other positive drive systems that enable the electronic sensor assembly 114 to function as described herein.
In the exemplary embodiment, the encoder drive gear 116 is mechanically coupled to the gate arm shaft 112, as will be described further herein. The encoder drive gear 116 is drivingly coupled to the encoder gear 118. The encoder gear 118 rotates the encoder 120 upon rotation of the gate arm shaft 112. The angular position of the gate arm shaft 112 is sensed (e.g., detected) by the encoder 120 and a position signal corresponding thereto is transmitted to the controller 102 by the encoder 120. The controller 102 transmits the corresponding position signal as status information to the crossing control logic 38 of the crossing control logic unit 36. It is contemplated that, with respect to other aspects of the present invention, the gate arm position sensing assembly may include any mechanism operatively coupled to the gate arm shaft and capable of sensing the gate arm position, such as a traditional mechanical cam/lobe assembly.
In the exemplary embodiment, the terminal board 124 and the controller 102 are positioned above the motor 108 within the gate mechanism enclosure 122, as illustrated in
It is noted that the hinges 128 enable the terminal board 124 to be swung or rotated relative to the gate mechanism enclosure 122 between the operative configuration (see
Referring to
In the illustrated opened configuration, the lid 172 is generally positioned, at least in part, away from the base 170 to provide access to the interior space 126 for servicing or maintenance of the crossing gate mechanism 100 such as, without limitation, inspecting the components contained therein (e.g., the motor 108, the gear train 110, the quick-replacement moon gear assembly 302, etc.), servicing (or replacing) the quick-replacement moon gear assembly 302, adjusting the sensor assembly 114, and accessing the controller 102. The base 170 and lid 172 may be suitably fabricated from any number of materials, including for example, and without limitation, metal, plastic, fiber-reinforced polymers, or other suitable weather resistant material. For example, the base 170 and lid 172 may be formed in a molding process used for producing parts from thermoplastic or thermosetting plastic materials. However, in alternative aspects of the present invention, the base 170 and lid 172 may be constructed from other suitable materials. The base 170 and the lid 172 may also be alternatively constructed of different materials from each other, without departing from the scope of the invention.
The lid 172 is suitably hinged to the base 170, such as by a plurality of hinges 174, including for example, mechanical hinges or other suitable hinge configurations for enabling hinged movement of the lid 172 (and therefore correspondingly shifting of the gate mechanism enclosure 122 between the opened and closed configurations), while maintaining connection of the lid 172 to the base 170 to inhibit loss of the lid during servicing of the crossing gate mechanism 100. It is understood that in alternative aspects of the present invention, the lid 172 may be attached to the base 170 other than by a hinge and remain within the scope of this invention. Furthermore, alternative aspects of the present invention contemplate that the lid 172 may be entirely separable from the base 170 without departing from the scope of this invention.
In the closed configuration of the gate mechanism enclosure 122, the lid 172 and base 170 are releasably held together (i.e., secured or interlocked) by a suitable locking mechanism 176 to inhibit unauthorized or unintended opening of the gate mechanism enclosure 122. Additionally, more than one locking mechanism may be employed to releasably hold together the lid 172 and base 170 in the closed configuration of the gate crossing mechanism 100. The locking mechanism 176 includes a rotatable handle 178 that is exterior to the interior space 126. A latching member 180, which is on the interior side of the lid 172, is coupled to the handle 178 and is configured to engage or catch a lock member 182 coupled to the base 170. In alternative embodiments of the present invention, the handle 178 and latching member 180 may be coupled to the base 170, and the lock member 182 may be coupled to the lid 172 in a manner that enables the locking mechanism 176 to function as described herein. To unlock the locking mechanism 176, the handle 178 is rotated about ninety degrees (90°) in an upward direction. The latching member 180 subsequently rotates about ninety degrees (90°) and disengages the lock member 182. The lid 172 may then be rotated to the opened configuration (
The illustrated base 170 comprises a back panel 184, laterally opposite sidewalls 186 that broadly define opposite sides of the gate mechanism enclosure 122, a top wall 188, and a bottom wall 190. In the illustrated embodiment the back panel 184, sidewalls 186, top wall 188, and bottom wall 190 of the base 170 together define an open, generally rectangular shape. It is understood, however, that the base 170 may be shaped other than as illustrated without departing from the scope of this invention, and that in alternative aspects of the present invention, the lid 172 may instead, or additionally define one or more of the sides of the housing and/or the top or bottom walls of the housing. The back panel 184, sidewalls 186, top wall 188, and bottom wall 190 of the base are formed integrally in the illustrated embodiment, such as by being molded as a single piece. However, in other aspects of the present invention, one or more of these walls may be formed separate from the others and connected thereto such as by welding, fastening, adhering, or other suitable connection technique.
In the exemplary embodiment, the base 170 also has at least one interior, upstanding wall 192 (otherwise referred to herein as an upstanding sidewall or interior wall) extending outward relative to the back panel 184. Such an arrangement enables the gear train 110, and in particular, the quick-replacement moon gear assembly 302, to be easily serviced when the lid 172 is opened for servicing, e.g., without having to remove and/or open a separate gear train housing.
The upstanding wall 192 comprises a pair of outer edge portions 198 defining support surfaces and having a plurality of securing structures 200 thereon. The outer edge portions 198 are generally parallel to the back panel 184. The back panel 184 and upstanding wall 192 are preferably formed integrally, such as by molding them as a single piece, although these components may be formed separate and connected by any suitable connection technique. As described above with reference to
As depicted in
In the depicted embodiment, the gear hub 304 is fixed to the gate arm shaft 112. In particular, the gear hub 304 includes one or more securing structures 310 for receiving respective fasteners (e.g., fastener components 324 shown in
The moon gear 306 is coupled to the gear hub 304 via a plurality of fastener components 308, such that a circular pitch of the moon gear 306 is substantially concentric with the gate arm shaft 112, and more particularly, a rotation axis 252 of the gate arm shaft 112. In the exemplary embodiment, the moon gear 306 includes four (4) fastener components 308 securing the moon gear 306 to the gear hub 304. In the example embodiment, the fastener components 308 are most preferably externally threaded screws. It is noted that fewer or more fastener components are contemplated in alternative embodiments of the quick-replacement moon gear assembly 302. As described further herein, the moon gear 306 fits into an axial notch 316 (shown in
To facilitate releasably coupling the gear hub 304 to the gate arm shaft 112, the gear hub 304 includes a keyway 322 extending axially through the central opening 320. The keyway 322 is sized and shaped to receive the shaft key 312 (shown in
The gear hub 304 includes a plurality of securing structures 318 defined in the axial edge portion 326 of the gear hub 304. In the example, the securing structures 318 are most preferably internally threaded through-holes. Each securing structure 318 is configured to receive a fastener component 308 therein. As described above, the fastener components 308 are most preferably externally threaded screws. The moon gear 306 includes a plurality of holes 314 defined therethrough, each axially aligned with a respective securing structure 318. A respective fastener component 308 is inserted through a respective hole 314 and threadably tightened to a securing structure 318 to secure the moon gear 306 to the gear hub 304.
As shown in
As shown in
In the exemplary embodiment, the moon gear 306 has a semicircular cutout 206 having an inner radius R1, which is sized to correspond to the inner circumferential surface 330 of the notch 316 (shown in
In operation, when the moon gear 306 is coupled to the gear hub 304, the semicircular cutout 206 is placed adjacent the inner circumferential surface 330, such that the two surfaces are in at least substantially face-to-face contact. Furthermore, the first portions 202a and 204a of the radial walls 202 and 204 are positioned adjacent the pair of radial wall portions 328 of gear hub 304, respectively. Further, each wall first portion 202a and 204b is in at least substantially face-to-face contact with a respective radial wall portion 328. Referring back to
Referring back to
As described above, the gate arm 20 is generally rotated between a substantially horizontal position to a generally vertical position, providing an angular range of gate arm motion of about ninety degrees (90°). It should be noted however, that the gate arm 20 may rotate more than ninety degrees (90°), for example, during setup and/or calibration procedures or instances of gate failure. The gear ratio between the moon gear 306 and the motor 108 is determined based on actual travel limits of the gate arm 20 and the desire to limit the moon gear 306 from turning more than about one hundred and twenty degrees (120°) between the gate arm travel limits.
The arcuate notch 316 is defined in the body portion 274 and, as described above, defines the axial edge portion 326, the pair of radial wall portions 328, and the inner circumferential surface 330. The radial wall portions 328 are oriented at an angle α4, which is about fifteen degrees (15°) from a horizontal axis 276. As such, the pair of radial wall portions 328 are arcuately spaced about one hundred and fifty degrees (150°) from each other, which corresponds to the preferred arcuate angle of the moon gear 306.
In the exemplary embodiment, the plurality of securing structures 318 are defined through the body portion 274, and more particularly, in the axial edge portion 326, of the gear hub 304. The securing structures 318 are equi-spaced arcuately about the central axis 272, positioned to align with the plurality of holes 314 of the moon gear 306. In the example embodiment, the securing structures 318 are threaded holes, although other securing methods are contemplated in other aspects of the present invention.
As shown in
As shown in
Both the moon gear 306 and the gear hub 304 may be suitably fabricated from any number of suitable materials, including for example, and without limitation, metal, fiber-reinforced polymers, engineering plastics, or other suitable materials. However, in alternative aspects of the present invention, the moon gear 306 and the gear hub 304 may be constructed of different materials from each other, without departing from the scope of the invention. In some aspects of the present invention, the gear hub 304 may alternatively be integrally formed with the gate arm shaft 112 or secured to the gate arm shaft 112 in manners other than shown.
In operation, when the moon gear 306 requires servicing and or maintenance, an operator may remove the moon gear 306 without removing the gate arm shaft 112, which is traditionally required in prior art automatic grade crossing gate systems. More particularly, the operator may open the enclosure 122, for example, by rotating the rotatable handle 178 (shown in
The operator may remove the plurality of fastener components 308 from the quick-replacement moon gear assembly 302. As discussed above, the fastener components 308 secure the moon gear 306 to the gear hub 304. After each of the fastener components 308 is removed, for example, by unthreading the fastener component 308, the moon gear may be removed from the enclosure 122 for servicing and/or replacement. The gear hub 304 remains fixed to the gate arm shaft 112. It is also particularly noted that the moon gear 306 is displaceable in a generally radial direction relative to the gear hub 304 and the gate arm shaft 112, while the gear hub 304 and the gate arm shaft 112 remain axially in place.
Installing or reinstalling the moon gear 306 is facilitated by the arcuate notch 316. For example, the moon gear is sized and shaped to securely fit into the notch 316 of the gear hub 304. The operator may hold the moon gear 306 in place in the notch 316 and insert each of the fastener components 308. After each of the fastener components 308 is tightened to the gear hub 304, the moon gear to rotatably and axially secured to the gate arm shaft 112 without the need to remove or otherwise adjust the position of the gate arm shaft 112. This facilitates ease of maintenance of the grade crossing gate system 10.
Advantageously, embodiments of the present disclosure provide an easily replaceable gear train, and more particularly, a moon gear of a gear train for a crossing gate mechanism. The moon gear assembly, including the gear hub and removeable moon gear, enables a user to rapidly service or replace a broken moon gear at the gate mechanism. The moon gear assembly enables the gate mechanism to maintain calibration by not requiring the gate arm shaft to be removed or otherwise moved (e.g., axially shifted) during maintenance (including replacement) of the moon gear. As such, a position of a gate arm of the crossing gate mechanism is maintained or known by the crossing gate logic. Moreover, in certain crossing gates mechanisms, the typical cam lobe assembly that requires course field adjustments does not need to be adjusted. This facilitates reducing the time for troubleshooting and maintaining the crossing gate mechanism, as well as increasing the accuracy and safety of the crossing gate mechanism.
Although the above description presents features of preferred embodiments of the present invention, other preferred embodiments may also be created in keeping with the principles of the invention. Such other preferred embodiments may, for instance, be provided with features drawn from one or more of the embodiments described above. Yet further, such other preferred embodiments may include features from multiple embodiments described above, particularly where such features are compatible for use together despite having been presented independently as part of separate embodiments in the above description.
Those of ordinary skill in the art will appreciate that any suitable combination of the previously described embodiments may be made without departing from the spirit of the present invention.
The preferred forms of the invention described above are to be used as illustration only and should not be utilized in a limiting sense in interpreting the scope of the present invention. Obvious modifications to the exemplary embodiments, as hereinabove set forth, could be readily made by those skilled in the art without departing from the spirit of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
2295419 | Miskelly | Sep 1942 | A |
2488313 | Miskelly | Nov 1949 | A |
3038991 | Swanton | Jun 1962 | A |
3872738 | Price et al. | Mar 1975 | A |
3964704 | Karr | Jun 1976 | A |
4057208 | Andrews | Nov 1977 | A |
4090685 | Pappas | May 1978 | A |
5543596 | Jones | Aug 1996 | A |
5852350 | LeVoir | Dec 1998 | A |
6158696 | Brodskiy | Dec 2000 | A |
6218797 | Williamson | Apr 2001 | B1 |
7195211 | Kande | Mar 2007 | B2 |
7699271 | Ward | Apr 2010 | B2 |
8054197 | Martin et al. | Nov 2011 | B1 |
8418969 | Schena | Apr 2013 | B2 |
9272721 | Bohme | Mar 2016 | B2 |
11273854 | Ibarra | Mar 2022 | B2 |
20030106757 | Johnson et al. | Jun 2003 | A1 |
20070130834 | Kande et al. | Jun 2007 | A1 |
20090209375 | Takamoto | Aug 2009 | A1 |
20190351920 | Ibarra et al. | Nov 2019 | A1 |
20190351926 | Ibarra | Nov 2019 | A1 |
20200391776 | Spencer | Dec 2020 | A1 |
20210001908 | Bohme | Jan 2021 | A1 |
Number | Date | Country |
---|---|---|
1755548 | May 1968 | DE |
2986483 | Mar 2017 | EP |
2001204251 | Jul 2001 | JP |
5812762 | Nov 2015 | JP |
20120008483 | Dec 2012 | KR |
Entry |
---|
PCT International Search Report and Written Opinion from PCT Application No. PCT/US2019/033347 entitled Grade Crossing Gate Mechanism (dated Oct. 11, 2019). |
European Search Report from European Patent Application No. 22197457.9 entitled Quick-Replacement Gear for Grade Crossing Gate Mechanism (dated Mar. 9, 2023). |
Number | Date | Country | |
---|---|---|---|
20230109820 A1 | Apr 2023 | US |