The present invention relates to volume adjustable manual pipettes and, more particularly, to a manually-operated pipette equipped with a quickly settable volume adjustment mechanism and a plunger having damped axial movement.
U.S. Pat. No. 3,827,305 (“the '305 patent”) describes one of the earliest commercially available digitally adjustable air displacement pipettes. To provide for volume adjustment, the pipette includes a threaded shaft extending through a fixed nut. Manual turning of the shaft produces axial movement of a stop member for limiting axial movement of a plunger to define a volume setting for the pipette. The volume setting is displayed on a mechanical micrometer display comprising a series of indicator rings each encircling the threaded shaft.
U.S. Pat. No. 4,909,991 describes a later commercially available single channel manual pipette manufactured by Nichiryo Co. Ltd., Tokyo, Japan. The Nichiryo pipette includes an elongated hand-holdable housing for an upwardly spring biased plunger. An upper end of the plunger extends above a top of the housing and carries a control knob for thumb and finger engagement in manually turning the plunger and for axially moving the plunger in the pipette housing between an upper stop and a lower stop at which all liquid within a tip secured to a lower end of the housing is expelled by the downward movement of the plunger. The upper stop is axially adjustable within the housing in response to a turning of a hollow volume adjustment screw or shaft keyed to the plunger. The axial adjustment of the upper stop adjusts the volume of liquid that the pipette is capable of drawing into the tip in response to upward movement of the plunger to the upper stop. The pipette also includes a lock mechanism including a lock knob for locking the plunger against rotation to thereby set the upper stop in a fixed position and hence set the volume adjustment for the pipette.
For a more complete understanding of the current state of the art relative to the volume adjustability of manual pipettes, each of the above-identified patents is incorporated by reference into this application.
In each of the foregoing prior manual pipettes, volume setting requires the repeated turning of either the threaded volume setting shaft or the turning of the displacement plunger of the pipette while viewing the volume display of the pipette. Where successive volume setting for a pipette are of values of considerable difference, appreciable time and physical effort are required to accomplish the volume settings.
Thus, one of the shortcomings of prior manual pipettes is the time, physical effort and care required to accurately manually set the volume of such pipettes. In an attempt to reduce the time required to change the volume settings of a manual pipette, the Socorex Micropipette Calibra 822 includes a volume setting mechanism including two cylindrical cams. A larger one of the cams shows numbers on a left side of a window of a mechanical volume display for the pipette while a smaller one of the cams shows numbers on a right side of the window. After locking of a plunger-button of the pipette, a turning of a setting wheel turns the larger cam to change the numbers displayed thereby. Then a pulling out of the setting wheel followed by a turning thereof produces a turning of the smaller cam and numbers displayed thereby. Such turning of the cams sets mechanical stops within the pipette to control the volume of liquid, which the pipette will aspirate and dispense. While the volume setting structure of the Calibra pipette may reduce the time required to set the volume of a manual pipette, the volume setting structure is relatively complex and costly when compared to conventional manual pipette volume setting mechanisms as described above. Also, the volume setting provided by the Calibra pipette is not as fine a setting as is provided by conventional volume setting mechanisms.
U.S. Pat. No. 6,428,750 issued Aug. 6, 2002 to the assignee of the present invention (“the '750 patent”), and U.S. Pat. No. 7,175,813 issued Feb. 13, 2007 also to the assignee of the present invention (“the '813 patent”), describe an improved volume adjustable manual pipette having a quick set volume adjustment mechanism and a plunger position sensor. The volume setting of the pipette is monitored by the sensing and control circuitry to provide a real time display of the volume setting of the pipette on the electronic digital display.
In particular, the '813 patent describes a manual handheld pipette capable of being adjusted with both coarse and fine volume setting capabilities, capable of being adjusted by sequentially turning a single volume adjustment member. This pipette has been found to be particularly easy and intuitive to use, as no tools are necessary to make coarse or fine volume adjustments, and only a single control need be handled, as in traditionally adjustable pipettes.
The quick set feature in the '750 and '813 patents referenced above represents a considerable advance in the art of manual pipettes. However, it has been found that when volume settings are advantageously adjusted with small and relatively easy movements, the stability of the volume setting becomes less resistant to drift and more susceptible to bumps and accidental movements.
There is a continuing need for a volume adjustable manually operated pipette including a quickly and easily adjustable volume setting mechanism that remains stable when perturbed. A pipette with a reliable mechanism capable of changing the volume setting relatively rapidly and without unnecessary manipulation would enable enhanced functionality over traditional manually operated pipettes.
Accordingly, a manually operated pipette according to the invention addresses the shortcomings of presently commercially available handheld pipettes, and adds additional functionality not practicable using traditional manual pipettes.
Manual pipettes have continued to be popular systems of choice due to their lower cost and ultimate control that the user has in choosing how to manually push the plunger down. Traditional manual pipettes, however, can be tedious to adjust, requiring up to twenty turns (and typically eighteen turns) of the wrist from minimum to maximum volume, or vice versa. The pipette according to the invention requires as little as two and one half turns in one embodiment to adjust the volume setting the same amount, and such a pipette can be set just as accurately and precisely as traditional manual pipettes.
The volume adjustable pipette of the present invention comprises a plunger mounted for movement in a housing to and from a stop to aspirate a fluid into and dispense the fluid from a tip extending from the housing. An axially moveable volume setting member in the housing defines the stop and a volume setting for the pipette and is axially moveable by a user turnable volume adjusting member. Turning of the volume adjusting member also controls a coarse volume setting means and a fine volume setting means. The coarse volume setting means is responsive to a relatively small turning of the volume adjusting member for moving the volume setting member a relatively large axial distance while the fine volume setting means is responsive to a relatively large turning of the volume adjusting member for moving the volume setting member a relatively small axial distance. Thus, the present invention provides a rapid setting of the volume of a pipette simply by sequential turning of a volume adjusting member.
In a pipette according to the present invention, the movement of the plunger is damped to reduce the occurrence of sudden, abrupt changes in the piston position driven primarily by the spring-biased piston being accidentally released by the user, for example when the user's thumb is quickly removed from the plunger button while the plunger button is depressed. The plunger mechanism may then impact the volume setting mechanism, overcoming a user-actuated frictional lock intended to keep the volume setting in place. The damped plunger reduces the tendency of the volume setting mechanism to drift under such adverse (but occasionally expected) circumstances.
One embodiment of a pipette according to the present invention is provided with a real-time electronic sensor, a low-power microcontroller, and a simple yet flexible user interface. The electronic sensor permits the position of a piston to be sensed and communicated to the user in real time via a user interface, and for the volume setting of the pipette to be read reliably without any dependence on a mechanical link between the interface and the coarse and fine volume setting means.
In an embodiment of the invention, a processor integral with the pipette not only allows the volume setting and the real-time piston position to be communicated to the user via a display, it further allows various calculations to be performed on the piston position, including the advantageous use, communication, and manipulation of liquid volume measurements, pipetting technique analysis, use observation and auditing consistent with preferred laboratory practices, performance optimization, calibration offsets, multi-point non-linear calibration, and cycle counting, as set forth in U.S. patent application Ser. No. 11/906,180, filed on Sep. 27, 2007 and published on Jan. 1, 2009 as Publication No. 2009/0000351, which is hereby incorporated by reference as though set forth in full herein.
As described herein, the invention is particularly applicable to air-displacement pipettes, though it should be noted that the structures and functions described herein are also applicable to positive-displacement pipettes.
These and other objects, features, and advantages of the invention will become apparent from the detailed description below and the accompanying drawings, in which:
The invention is described below, with reference to detailed illustrative embodiments. It will be apparent that a system according to the invention may be embodied in a wide variety of forms. Consequently, the specific structural and functional details disclosed herein are representative and do not limit the scope of the invention.
Referring initially to
As in traditional air displacement pipettes, the plunger button 114 operates a piston configured to displace air within the liquid end 118; movement of air causes a corresponding movement of a liquid, provided an air-tight seal is present between the tip 116 and the liquid being handled, between the tip 116 and the liquid end 118, and between the piston and a seal (as illustrated in
The quick-set pipette 110 further includes a tip ejector 120 mounted for longitudinal movement over the liquid end 118 and coupled to a tip ejector button 122. After the tip 116 is mounted to the pipette 110 and used, it can be ejected and disposed of by depressing the ejector button 122; this functionality is again comparable to the functionality of traditional pipettes.
Where the disclosed embodiment of the quick-set pipette 110 begins to differ from traditional handheld pipettes, however, is in the presence of a user interface 124 including an electronic display 126 and button panel 128. In the pipette 110 according to the invention, the display 126 and button panel 128 add very little weight to the pipette, are easily operated, and enable improved performance and added functionality to the pipette 110 that are not generally practical with traditional pipettes. These differences will be discussed in further detail below. It should be noted, however, that an alternative embodiment of a quick-set pipette according to the invention may be made as described herein without any electronic features whatsoever, and accordingly no electronic display 126 and no button panel 128. The utility of such an alternative embodiment may well be limited, however, as there would be no electronic display to indicate the volume setting for the pipette, and a mechanical volume counter (such as found in traditional handheld pipettes) would be difficult to implement.
As shown in
The user interface further includes a piston plunger shaft 240 upon which the plunger button 114 is mounted, which also serves as a volume-setting knob when rotated as indicated by the arrows 242 and a volume set lock lever 244. The volume set lock lever is movable from a left-most unlocked position 246 and a right-most locked position as indicated by an arrow 248. In the left-most unlocked position 246, the plunger button is free to rotate and change the volume of the pipette 110, as in traditional pipettes, while in the right-most locked position (arrow 248) the plunger button is restricted from rotational motion (hence fixing the volume) but still permitted to be pushed by the user's thumb to control the intake and discharge of liquids as desired by the user. The design and operation of the locking apparatus is set forth in U.S. Pat. No. 5,849,248, owned by the assignee of the present invention, which is hereby incorporated by reference as though set forth in full. Mechanisms of this sort are commonly known.
As is visible in the simplified drawing of
The linkage 410, as illustrated functionally in
The coaxial linkage 410 and connection between the plunger button 114 and the piston 412 enables a position sensing transducer 414 to be connected thereto, allowing the precise and specific position of the plunger button 114 (and hence the tightly coupled piston 412) to be determined at all times. The position sensing transducer 414 is small in size and requires very little battery power to operate. Accordingly, a handheld quick-set pipette 110 according to the invention has a comparable feel to traditional manual pipettes, and any battery used to power the position sensing transducer 414 and the display 126 can be quite small. In the disclosed embodiment, a protruding portion 415 of the pipette body 112 (
As illustrated, the position sensing transducer 414 includes two components: a sliding component 416 affixed to and moving with the piston plunger shaft 240, and a fixed component 418 affixed to the pipette body 112. Accordingly, then, the position sensing transducer 414 is able to detect and calculate the longitudinal displacement between the sliding component 416 and the fixed component 418. It will be recognized that there are numerous configurations of sensing components that can accomplish this function, including but not limited to a variable resistor (potentiometer), an optical sensor, a capacitive sensor, an inductive sensor, or a magnetic field sensor; these options are discussed in detail in U.S. patent application Ser. No. 11/906,180, incorporated by reference above. There are advantages to keeping the sliding component 416 passive and not directly energized, thereby eliminating the need to provide any electrical connection to the moving part, which might tend to bend, break, or otherwise fail over the course of time.
As in traditional manual pipettes, the plunger button 114 (
At the fixed home position 610 illustrated in
Accordingly, at the home position 610, the user feels a tactile transition between the two spring forces, and by exerting a force between the first level and the higher second level, the user can easily keep the plunger button at the home position. As will be discussed in further detail below, the ability of the user to identify and maintain the piston 412 at the home position 610 is a requirement for certain desirable pipetting operations.
Initially, and as shown in
In certain operating modes, while the volume set lock lever 244 is in its unlocked position 246, the display 126 displays a flashing “UNLOCKED” indication 810 and the currently set volume of the pipette 812, which in the illustration is 123.6 microleters. By turning the plunger button 114, sequentially actuating coarse volume adjustment and fine volume adjustment mechanisms as described below (with reference to
When the user locks the volume setting by sliding the volume set lock lever 244 to the locked position 248, a lock state switch actuates, causing the “UNLOCKED” indication to disappear from the display 126 and as illustrated in
When the volume set lock lever is actuated, an accurate and precise measurement is taken of the position of the piston 412 and calibrated by the processing unit as set forth in greater detail below. Because of the tight coupling among the plunger button 114, the sliding component 416 of the position sensing transducer 414, and the air displacement piston 412, and further because of the capability of the position sensing transducer 414 to accurately and precisely read the position of the piston, and of the processing unit to adjust that observed position and apply both linear and non-linear compensation, calibration, and adjustment functions as necessary, this volume reading is considered more precise and more accurate than is generally possible using a manual pipette with a mechanical rotary position readout. In particular, the electronic display is not subject to slack or backlash; further advantages will be detailed below.
In a tracking mode, with the volume set lock lever 244 is in its unlocked position 246 (
Many other operating modes and display features are possible in a quick-set pipette according to the invention, and are described in detail in U.S. Pat. No. 7,175,813, which is hereby incorporated by reference as though set forth in full herein.
The volume adjustment mechanism is described below, with particular reference to
Basically, the quick set volume adjustment mechanism comprises a volume setting upper stop, internal to the quick-set pipette 110, for limiting upward axial movement of a plunger unit (comprising the plunger shaft 240 and the piston 412) in a housing 1110 to define the volume setting for the pipette 110. In the present invention, the volume setting upper stop preferably is supported for axial movement in the housing 1110 only in response to a user turning of a volume adjustment knob, which in the disclosed embodiment is the plunger button 114. In this regard, a turning of the volume adjustment knob activates operation of either a coarse volume setting means or a fine volume setting means, each of which is described in further detail below.
The coarse volume settings means is supported in the housing 1110 such that when activated, a relatively small turning of the volume adjustment knob produces a relatively large axial movement (i.e. coarse adjustment) of the volume setting upper stop. Similarly, the fine volume setting means is supported within the housing 1110 such that when activated, a relatively large turning of the volume adjustment knob produces a relatively small axial movement (i.e. fine adjustment) of the volume setting upper stop. Thus, by sequentially activating the coarse and fine volume setting means through a sequential turning of the volume adjustment knob, a user of the pipette of the present invention is able to quickly and accurately set and reset the volume of the pipette simply by turning the plunger button 114. In these regards, a sequential turning of the volume adjustment knob is defined as a turning of the volume adjustment knob which will sequentially activate the coarse and fine volume setting means described herein.
The volume adjustment mechanism 1112 comprises, in the disclosed embodiment, a nested arrangement of finely and coarsely threaded sleeves. Turning the volume adjustment knob (the plunger button 114 in the disclosed embodiment) preferentially turns a finely threaded inner sleeve 1114. The inner sleeve 1114 bears relatively fine external threads engaging with corresponding internal threads on an intermediate sleeve 1116. Accordingly, then, for fine volume adjustments, the inner sleeve 1114 is caused to rotate by turns of the volume adjustment knob, and the fine external threads of the inner sleeve translate rotation of the plunger shaft 240 to relatively small axial movements of the inner sleeve 1114, which is coupled to and axially moves the volume setting upper stop for the pipette 110. This rotation of the inner sleeve 1114 within the intermediate sleeve 1116 is only permitted over a short range of angular motion, as will be described in further structural detail below. In the embodiment described herein, the inner sleeve 1114 is free to rotate within the intermediate sleeve 1116 over a range of approximately only 180 degrees.
When the plunger shaft 240 is rotated further, the inner sleeve 1114 stops rotating within the intermediate sleeve 1116, and the inner and intermediate sleeves 1114 and 1116 rotate together within a fixed outer sleeve 1118. The fine external threads of the inner sleeve 1114 and the corresponding internal threads of the intermediate sleeve 1116 remain in a fixed relationship, and a set of relatively coarse external threads on the intermediate sleeve 1116 traverse corresponding coarse internal threads on the fixed outer sleeve 1118. Accordingly, with the inner sleeve 1114 and the intermediate sleeve 1116 locked together, the relatively coarse external threads of the intermediate sleeve will translate the turns of the volume adjustment knob into relatively large axial movements of both the intermediate sleeve 1116 and the inner sleeve 1114, and hence the volume setting upper stop.
The inner sleeve 1114 and the intermediate sleeve 1116 are illustrated in greater detail in
The intermediate sleeve 1116, shown in
The inner sleeve 1114, shown in
The fixed outer sleeve 1118 (
The inner sleeve 1114 and the intermediate sleeve 1116 are assembled as shown in
The initial rotational position of the inner sleeve 1114 relative to the intermediate sleeve 1116 will determine which of the coarse or fine volume setting means is initially operational. It will be seen in
In contrast, rotating the shaft, and hence the inner sleeve 1114, counterclockwise from the position shown in
This condition will persist for approximately 180 degrees of counterclockwise rotation of the volume adjustment knob, at which time the limiter pin 1310 will contact a second end 1418 of the projection 1210 of the intermediate sleeve 116, thereafter coupling the inner sleeve 1114 and the intermediate sleeve 1116 together for further rotation, which will result (again) in approximately ⅛ inch of axial movement per rotation of the knob.
It will be apparent, then, that rotating the volume adjustment knob over a range of approximately 180 degrees will preferentially engage the fine volume setting means, while rotating it further (in either direction) will engage the coarse volume setting means. It is stated above that the fine volume setting means (i.e., the inner sleeve 1114) is preferentially moved within that 180-degree interval. This is accomplished by maintaining a relatively low coefficient of friction in the thread interface between the inner sleeve 1114 and the intermediate sleeve 1116, and a relatively higher coefficient of friction between the intermediate sleeve 1116 and the fixed outer sleeve 1118. This may be facilitated through precise part dimension tolerances and material choices, as will be apparent to an engineer having ordinary skill.
It will be recognized that the inner sleeve 1114 either acts as or cooperates with an axially movable structure that serves as the upper stop, described above, for plunger movement in a pipette according to the invention. Accordingly, a volume setting for the pipette 110 may be performed by repeated turning of the plunger button 114, which engages both the inner sleeve 1114 and the intermediate sleeve 1116 to accomplish a coarse volume setting. The plunger button 114 may then be backed off, reversing the direction of initial rotation, which disengages the intermediate sleeve 1116 and accomplishes a fine volume setting over a 180 degree interval. If more than 180 degree rotation is made at this stage, the coarse volume setting means is re-engaged.
As discussed above in connection with FIGS. 4 and 8-10, a position sensor is advantageously coupled to the plunger button 114, the plunger shaft 240, or the piston 412 (or some other component coupled thereto), allowing the pipette 110 to read the position of the piston 412 as desired. When the plunger button 114 is not depressed, the position of the piston 412 corresponds to the volume setting for the pipette 110. In an alternative embodiment of the invention, the position sensor may be coupled to the upper volume-setting stop, which may comprise a portion of the inner sleeve 1114 or a component coupled to the inner sleeve 1114.
A conventional volume lock mechanism (the operation of which is described with reference to
It has been found, however, that at least in part as a result of the particularly steep thread angles in the coarse volume setting means, strong impacts to the plunger button 114 and other portions of the plunger mechanism of the pipette 110, even when the lock lever 244 is positioned to engage the lock apparatus, may result in undesired movements of the volume adjustment mechanism 1112.
A quick-set pipette 110 according to the invention therefore incorporates structures and features to minimize the possibility and consequences of such undesired movements of the volume adjustment mechanism 1112. In particular, it has been found that damping the axial movement of the plunger shaft 240 by applying a frictional or viscous damping influence to that structure will tend to avoid such abrupt movements by limiting the velocity of the plunger within the pipette 110. This has the effect of reducing the incidence of strong impacts of the plunger mechanism against the volume setting upper stop. Such strong impacts tend to dislodge the lock apparatus, and accordingly reducing the strength and incidence of impacts by the structures and methods set forth herein will also reduce unintended movements of the volume adjustment mechanism 1112.
Such damping influence may be applied by a structure (such as a friction pad) mechanically interfering with the axial movement of the plunger shaft 240, or by fluid damping. An air dashpot mechanism for damping plunger movement is disclosed in U.S. Pat. No. 5,364,596, which is hereby incorporated by reference as though set forth in full. Such a dashpot mechanism may be advantageously employed in a pipette according to the invention. However, in the disclosed embodiment, damping is accomplished in a simple and economical manner by applying a viscous fluid between a component that is axially fixable relative to the housing 1110 and a component coupled to the axially moving plunger shaft 240.
In the disclosed embodiment, a fluoroether or silicone grease, such as KRYTOX® grease (DuPont), is applied between the plunger shaft 240 and the hexagonal shaft receiving channel 1316 of the inner sleeve 1114. When the locking apparatus is in the locked configuration, the axial position of the inner sleeve 1114 is fixed relative to the housing 1110. Alternatively, such a grease may be applied to a narrow gap between the sliding component 416 and the fixed component 418 of the position sensing transducer 414. Other locations within the pipette 110 may also be suitable.
The grease is selected to be sufficiently viscous in all operating temperatures and conditions to avoid substantial migration out of the desired location, for the duration of the operating life of the pipette. The grease should not be overly viscous, however, to avoid adversely impacting the operation and “feel” of the pipette when relatively quick piston movements are desired. Greases meeting these criteria are well known. In alternative embodiments of the inventive pipette 110, the grease may be applied between the sliding component 416 and the fixed component 418 of the position sensing transducer 414, or at any other suitable location where there exists relative axial motion between the components.
In practice, the damped action of the plunger shaft 240 reduces the effect of accidental and otherwise undesired impacts upon the volume adjustment mechanism 1112, without substantially compromising the operation of the pipette in other ways. With such damping in place, the volume lock mechanism has been found to be secure and reliable, comparable in practice to traditional pipettes without the quick-set volume adjustment capability described herein.
It should be observed that while the foregoing detailed description of various embodiments of the present invention is set forth in some detail, the invention is not limited to those details and a pipette made according to the invention can differ from the disclosed embodiments in numerous ways. In particular, it will be appreciated that embodiments of the present invention may be employed in many different fluid-handling applications. It should be noted that functional distinctions are made above for purposes of explanation and clarity; structural distinctions in a system or method according to the invention may not be drawn along the same boundaries. Hence, the appropriate scope hereof is deemed to be in accordance with the claims as set forth below.
Number | Name | Date | Kind |
---|---|---|---|
3665980 | Croslin et al. | May 1972 | A |
4929428 | Tezuka | May 1990 | A |
5364596 | Magnussen et al. | Nov 1994 | A |
6428750 | Rainin et al. | Aug 2002 | B1 |
7175813 | Petrek et al. | Feb 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20110036185 A1 | Feb 2011 | US |