The present disclosure generally relates to receiving a call on a television, and more particularly to quick switching to receive a call on a tv.
The subject disclosure provides for systems and methods for receiving a call on a television. One aspect of the present disclosure relates to a method for receiving a call on a television. The method may include receiving, at a communication device coupled to the television, a call. The method may include generating a message including details of the call. The method may include sending, via a wireless link, the message to the television. The method may include causing for display, via the television, the details of the call. The method may include receiving instructions to accept or reject the call. The method may include initiating the call through the television when the call is accepted.
Another aspect of the present disclosure relates to a system configured for receiving a call on a television. The system may include one or more hardware processors configured by machine-readable instructions. The processor(s) may be configured to receive, at a communication device coupled to the television, a call. The processor(s) may be configured to generate a message including details of the call. The processor(s) may be configured to send, via a wireless link, the message to the television. The processor(s) may be configured to cause for display, via the television, the details of the call. The processor(s) may be configured to receive instructions to accept or reject the call. The processor(s) may be configured to initiate the call through the television when the call is accepted.
Yet another aspect of the present disclosure relates to a non-transient computer-readable storage medium having instructions embodied thereon, the instructions being executable by one or more processors to perform a method for receiving a call on a television. The method may include receiving, at a communication device coupled to the television, a call. The method may include generating a message including details of the call. The method may include sending, via a wireless link, the message to the television. The method may include causing for display, via the television, the details of the call. The method may include receiving instructions to accept or reject the call. The method may include initiating the call through the television when the call is accepted.
Still another aspect of the present disclosure relates to a system configured for receiving a call on a television. The system may include means for receiving, at a communication device coupled to the television, a call. The system may include means for generating a message including details of the call. The system may include means for sending, via a wireless link, the message to the television. The system may include means for causing for display, via the television, the details of the call. The system may include means for receiving instructions to accept or reject the call. The system may include means for initiating the call through the television when the call is accepted.
To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the figure number in which that element is first introduced.
In one or more implementations, not all of the depicted components in each figure may be required, and one or more implementations may include additional components not shown in a figure. Variations in the arrangement and type of the components may be made without departing from the scope of the subject disclosure. Additional components, different components, or fewer components may be utilized within the scope of the subject disclosure.
In the following detailed description, numerous specific details are set forth to provide a full understanding of the present disclosure. It will be apparent, however, to one ordinarily skilled in the art that the embodiments of the present disclosure may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail so as not to obscure the disclosure.
Conventionally, portal-TV (PTV) suffers from a “call accept/reject” problem when the TV is off, or the TV is tuned to a different source than the HDMI-Input connected to PTV. In this scenario, when a call comes, the user does not know whether to accept or reject the call. They can hit OK on the PTV remote and it will accept the call but there is no guarantee the TV will switch to the right HDMI input for the user to see who the caller is or see their video. Conventional PTV uses in-band HDMI-CEC commands to request the TV to turn on and switch inputs, but these CEC commands are not implemented uniformly across various brands/models of TVs, so user experience is far from desirable.
According to some aspects, using out-of-band signaling via WIFI or BT connection may address or alleviate some or all of these problems. Portal-TVs generally have onboard WIFI and BT hardware/software capabilities and most Smart TVs built in the last 10 years also have the same capability of communicating over WIFI and BT.
In exemplary implementations, when a PTV receives a call, the PTV may send a message (e.g., WakeOnPortalCall) using a packet (e.g., “WakeonWiFi,” standard part of WIFI protocol). The message may have a payload providing details of the caller to the PTV over the WIFI link. Even if the PTV is off, a WIFI chip of the PTV may be listening for packets (e.g., WakeonWiFi) and when it sees the payload (e.g., WakeonPortalCall) and the meta-data the PTV not only wakes up the rest of the TV but also may use the metadata contained in the payload to provide caller information that can then be rendered via a graphical message on the PTV screen with an option to accept or reject the call. If the user rejects the call, then the PTV can go back to “off” state else it would quickly tune to the HDMI input connected to PTV for the call to proceed.
The same or similar scheme may be deployed using BT unicast or broadcast messages, which may include finding the appropriate BT messages from the baseline profile for this purpose with custom payload carrying the metadata of the call.
In some implementations, WakeonWiFi and/or BT broadcast messages may be part of the baseline specification and may not require any advanced versions or profiles to be supported on the TV side so this scheme can work across a majority of the deployed TVs globally. In order to present the message to the user with caller details, a simple app may be deployed to the Smart TVs through their respective app stores.
In some implementations, during an initial setup/OOBE phase, the PTV device may be automatically query MAC (and/or other address bits) for the WIFI and BT devices of the TV to address the specific TV connected to PTV. This query may be done via an app deployed on the TV or automatically via GetSystemInfo type CEC commands for TVs that support such a command.
In some implementations, an “immediate call notification message” capability may be included in WIFI/BT standards implementation for a “sink” device. For example, a sink device like a TV may wake-up and pop-up a message may be received from a “source” device like PTV without requiring a source device specific app to be installed on the sink device. This “immediate call notification message” may help in other scenarios where another device in the LAN (e.g., a Smart Home Speaker) sends information for a user to see on a TV/monitor screen.
According to aspects, the disclosed PTV device may be implemented as a set top box, a dongle, or the like. Software of the PTV may also be implemented into a television (or other monitor/output device, etc.) so that the television may perform the described PTV functionality.
The disclosed system(s) address a problem in traditional techniques for receiving a call on a television tied to computer technology, namely, the technical problem of “call accept/reject” when the PTV is off or the PTV is tuned to a different source than the HDMI-Input connected to PTV. In this scenario, when a call comes, the user does not know whether to accept or reject the call. The disclosed system solves this technical problem by providing a solution also rooted in computer technology, namely, by providing for receiving a call on a television. The disclosed subject technology further provides improvements to the functioning of the computer itself because it improves processing and efficiency in receiving a call on a television.
Computing platform(s) 102 may be configured by machine-readable instructions 106. Machine-readable instructions 106 may include one or more instruction modules. The instruction modules may include computer program modules. The instruction modules may include one or more of call receiving module 108, message generating module 110, message sending module 112, display causing module 114, instruction receiving module 116, call initiation module 118, input port tuning module 120, call ending module 122, and/or other instruction modules.
Call receiving module 108 may be configured to receive, at a communication device coupled to the television, a call. By way of non-limiting example, the communication device may include a webcam, smart speaker, and/or other communication devices. The television may turn off when the call is rejected.
Message generating module 110 may be configured to generate a message including details of the call. The details may include metadata regarding the call. The television may turn on upon receiving the message. The message may be displayed as a pop-up message on the television.
Message sending module 112 may be configured to send, via a wireless link, the message to the television. The wireless link may include at least one of WIFI and/or Bluetooth. By way of non-limiting example, during a setup phase, the communication device automatically may query MAC addresses, IP addresses, and/or other addresses for connecting to the television via the wireless link. The setup phase may be completed through customer electronics control commands.
Display causing module 114 may be configured to cause for display, via the television, the details of the call.
Instruction receiving module 116 may be configured to receive instructions to accept or reject the call.
Call initiation module 118 may be configured to initiate the call through the television when the call is accepted.
Input port tuning module 120 may be configured to tun an input port of the television to the communication device when the call is accepted. By way of non-limiting example, the input port may include at least one of an HDMI port, AV port, and/or other ports.
Call ending module 122 may be configured to end the call through call controls generated through the communication device.
In some implementations, by way of non-limiting example, the television may be LAN, WIFI, and/or Bluetooth enabled. In some implementations, the television may listen for messages even if is turned off. In some implementations, the television may do not include a separate application to utilize communication device functions.
In some implementations, computing platform(s) 102, remote platform(s) 104, and/or external resources 124 may be operatively linked via one or more electronic communication links. For example, such electronic communication links may be established, at least in part, via a network such as the Internet and/or other networks. It will be appreciated that this is not intended to be limiting, and that the scope of this disclosure includes implementations in which computing platform(s) 102, remote platform(s) 104, and/or external resources 124 may be operatively linked via some other communication media.
A given remote platform 104 may include one or more processors configured to execute computer program modules. The computer program modules may be configured to enable an expert or user associated with the given remote platform 104 to interface with system 100 and/or external resources 124, and/or provide other functionality attributed herein to remote platform(s) 104. By way of non-limiting example, a given remote platform 104 and/or a given computing platform 102 may include one or more of a server, a desktop computer, a laptop computer, a handheld computer, a tablet computing platform, a NetBook, a Smartphone, a gaming console, and/or other computing platforms.
External resources 124 may include sources of information outside of system 100, external entities participating with system 100, and/or other resources. In some implementations, some or all of the functionality attributed herein to external resources 124 may be provided by resources included in system 100.
Computing platform(s) 102 may include electronic storage 126, one or more processors 128, and/or other components. Computing platform(s) 102 may include communication lines, or ports to enable the exchange of information with a network and/or other computing platforms. Illustration of computing platform(s) 102 in
Electronic storage 126 may comprise non-transitory storage media that electronically stores information. The electronic storage media of electronic storage 126 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with computing platform(s) 102 and/or removable storage that is removably connectable to computing platform(s) 102 via, for example, a port (e.g., a USB port, a firewire port, etc.) or a drive (e.g., a disk drive, etc.). Electronic storage 126 may include one or more of optically readable storage media (e.g., optical disks, etc.), magnetically readable storage media (e.g., magnetic tape, magnetic hard drive, floppy drive, etc.), electrical charge-based storage media (e.g., EEPROM, RAM, etc.), solid-state storage media (e.g., flash drive, etc.), and/or other electronically readable storage media. Electronic storage 126 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources). Electronic storage 126 may store software algorithms, information determined by processor(s) 128, information received from computing platform(s) 102, information received from remote platform(s) 104, and/or other information that enables computing platform(s) 102 to function as described herein.
Processor(s) 128 may be configured to provide information processing capabilities in computing platform(s) 102. As such, processor(s) 128 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information. Although processor(s) 128 is shown in
It should be appreciated that although modules 108, 110, 112, 114, 116, 118, 120, and/or 122 are illustrated in
The techniques described herein may be implemented as method(s) that are performed by physical computing device(s); as one or more non-transitory computer-readable storage media storing instructions which, when executed by computing device(s), cause performance of the method(s); or, as physical computing device(s) that are specially configured with a combination of hardware and software that causes performance of the method(s).
At step 202, the process 200 may include receiving, at a communication device coupled to the television, a call. At step 204, the process 200 may include generating a message including details of the call. At step 206, the process 200 may include sending, via a wireless link, the message to the television. At step 208, the process 200 may include causing for display, via the television, the details of the call. At step 210, the process 200 may include receiving instructions to accept or reject the call. At step 212, the process 200 may include initiating the call through the television when the call is accepted.
For example, as described above in relation to
According to an aspect, the wireless link comprises at least one of WIFI and/or Bluetooth. It is understood that these are exemplary only, and other wireless schemes may be utilized without departing from the scope of the disclosure. For example, any wireless scheme, including ultra-wide band (UWB), Zigbee, and the like, may be utilized.
According to an aspect, the communication device comprises a webcam, smart speaker, and/or other communication devices.
According to an aspect, the television is LAN, WIFI, Bluetooth, ultra-wide band (UWB), and/or Zigbee enabled. It is understood that these are exemplary only, and other wireless schemes may be utilized without departing from the scope of the disclosure.
According to an aspect, the television listens for messages even if is turned off.
According to an aspect, the details comprise metadata regarding the call.
According to an aspect, the television turns on upon receiving the message.
According to an aspect, the television turns off when the call is rejected.
According to an aspect, the process 200 further comprises tuning an input port of the television to the communication device when the call is accepted.
According to an aspect, wherein the input port comprises at least one of an HDMI port, AV port, and/or other ports.
According to an aspect, during a setup phase, the communication device automatically queries MAC addresses, IP addresses, and/or other addresses for connecting to the television via the wireless link.
According to an aspect, the setup phase may be completed through customer electronics control (CEC) commands.
According to an aspect, the message is displayed as a pop-up message on the television.
According to an aspect, the television does not include a separate application to utilize communication device functions.
According to an aspect, the process 200 further comprises ending the call through call controls generated through the communication device.
Computer system 300 (e.g., server and/or client) includes a bus 308 or other communication mechanism for communicating information, and a processor 302 coupled with bus 308 for processing information. By way of example, the computer system 300 may be implemented with one or more processors 302. Processor 302 may be a general-purpose microprocessor, a microcontroller, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), a Programmable Logic Device (PLD), a controller, a state machine, gated logic, discrete hardware components, or any other suitable entity that can perform calculations or other manipulations of information.
Computer system 300 can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them stored in an included memory 304, such as a Random Access Memory (RAM), a flash memory, a Read Only Memory (ROM), a Programmable Read-Only Memory (PROM), an Erasable PROM (EPROM), registers, a hard disk, a removable disk, a CD-ROM, a DVD, or any other suitable storage device, coupled to bus 308 for storing information and instructions to be executed by processor 302. The processor 302 and the memory 304 can be supplemented by, or incorporated in, special purpose logic circuitry.
The instructions may be stored in the memory 304 and implemented in one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, the computer system 300, and according to any method well-known to those of skill in the art, including, but not limited to, computer languages such as data-oriented languages (e.g., SQL, dBase), system languages (e.g., C, Objective-C, C++, Assembly), architectural languages (e.g., Java, .NET), and application languages (e.g., PHP, Ruby, Perl, Python). Instructions may also be implemented in computer languages such as array languages, aspect-oriented languages, assembly languages, authoring languages, command line interface languages, compiled languages, concurrent languages, curly-bracket languages, dataflow languages, data-structured languages, declarative languages, esoteric languages, extension languages, fourth-generation languages, functional languages, interactive mode languages, interpreted languages, iterative languages, list-based languages, little languages, logic-based languages, machine languages, macro languages, metaprogramming languages, multiparadigm languages, numerical analysis, non-English-based languages, object-oriented class-based languages, object-oriented prototype-based languages, off-side rule languages, procedural languages, reflective languages, rule-based languages, scripting languages, stack-based languages, synchronous languages, syntax handling languages, visual languages, wirth languages, and xml-based languages. Memory 304 may also be used for storing temporary variable or other intermediate information during execution of instructions to be executed by processor 302.
A computer program as discussed herein does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, subprograms, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network. The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
Computer system 300 further includes a data storage device 306 such as a magnetic disk or optical disk, coupled to bus 308 for storing information and instructions. Computer system 300 may be coupled via input/output module 310 to various devices. The input/output module 310 can be any input/output module. Exemplary input/output modules 310 include data ports such as USB ports. The input/output module 310 is configured to connect to a communications module 312. Exemplary communications modules 312 include networking interface cards, such as Ethernet cards and modems. In certain aspects, the input/output module 310 is configured to connect to a plurality of devices, such as an input device 314 and/or an output device 316. Exemplary input devices 314 include a keyboard and a pointing device, e.g., a mouse or a trackball, by which a user can provide input to the computer system 300. Other kinds of input devices 314 can be used to provide for interaction with a user as well, such as a tactile input device, visual input device, audio input device, or brain-computer interface device. For example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback, and input from the user can be received in any form, including acoustic, speech, tactile, or brain wave input. Exemplary output devices 316 include display devices such as an LCD (liquid crystal display) monitor, for displaying information to the user.
According to one aspect of the present disclosure, the above-described gaming systems can be implemented using a computer system 300 in response to processor 302 executing one or more sequences of one or more instructions contained in memory 304. Such instructions may be read into memory 304 from another machine-readable medium, such as data storage device 306. Execution of the sequences of instructions contained in the main memory 304 causes processor 302 to perform the process steps described herein. One or more processors in a multi-processing arrangement may also be employed to execute the sequences of instructions contained in memory 304. In alternative aspects, hard-wired circuitry may be used in place of or in combination with software instructions to implement various aspects of the present disclosure. Thus, aspects of the present disclosure are not limited to any specific combination of hardware circuitry and software.
Various aspects of the subject matter described in this specification can be implemented in a computing system that includes a back end component, e.g., such as a data server, or that includes a middleware component, e.g., an application server, or that includes a front end component, e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described in this specification, or any combination of one or more such back end, middleware, or front end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. The communication network can include, for example, any one or more of a LAN, a WAN, the Internet, and the like. Further, the communication network can include, but is not limited to, for example, any one or more of the following network topologies, including a bus network, a star network, a ring network, a mesh network, a star-bus network, tree or hierarchical network, or the like. The communications modules can be, for example, modems or Ethernet cards.
Computer system 300 can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other. Computer system 300 can be, for example, and without limitation, a desktop computer, laptop computer, or tablet computer. Computer system 300 can also be embedded in another device, for example, and without limitation, a mobile telephone, a PDA, a mobile audio player, a Global Positioning System (GPS) receiver, a video game console, and/or a television set top box.
The term “machine-readable storage medium” or “computer readable medium” as used herein refers to any medium or media that participates in providing instructions to processor 302 for execution. Such a medium may take many forms, including, but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical or magnetic disks, such as data storage device 306. Volatile media include dynamic memory, such as memory 304. Transmission media include coaxial cables, copper wire, and fiber optics, including the wires that comprise bus 308. Common forms of machine-readable media include, for example, floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH EPROM, any other memory chip or cartridge, or any other medium from which a computer can read. The machine-readable storage medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more of them.
As the user computing system 300 reads game data and provides a game, information may be read from the game data and stored in a memory device, such as the memory 304. Additionally, data from the memory 304 servers accessed via a network the bus 308, or the data storage 306 may be read and loaded into the memory 304. Although data is described as being found in the memory 304, it will be understood that data does not have to be stored in the memory 304 and may be stored in other memory accessible to the processor 302 or distributed among several media, such as the data storage 306.
As used herein, the phrase “at least one of” preceding a series of items, with the terms “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” does not require selection of at least one item; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
To the extent that the terms “include”, “have”, or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration”. Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
A reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more”. All structural and functional equivalents to the elements of the various configurations described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and intended to be encompassed by the subject technology. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the above description.
While this specification contains many specifics, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of particular implementations of the subject matter. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
The subject matter of this specification has been described in terms of particular aspects, but other aspects can be implemented and are within the scope of the following claims. For example, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed to achieve desirable results. The actions recited in the claims can be performed in a different order and still achieve desirable results. As one example, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the aspects described above should not be understood as requiring such separation in all aspects, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Other variations are within the scope of the following claims.
This present application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 63/188,263, filed May 13, 2021, the disclosure of which is hereby incorporated by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
63188263 | May 2021 | US |