1. Field of Invention
This invention relates to building construction, specifically an integrated structural ferrous frame, which holds in place exterior wall panels, which can be installed with or without fasteners.
2. Description of Prior Art
Typical building construction of an exterior building wall composed of layers: exterior skin, insulation, and interior skin, which are hung on structural studs, involves the cutting and joining together of discrete units with various fasteners, like screws or nails, in individual well defined stages: e.g. upon the foundation an exterior frame wall is built: vertical, parallel members which are wood or metal studs are cut to length, secured with fasteners at regular 16″ to 24″ intervals between what will become top and bottom horizontal members of the wall. This exterior stud frame wall can be assembled horizontally or vertically, on its intended location, or imported from a factory. When the wall is braced in its intended position, usually vertical, an exterior sheathing, or “skin” is attached to the outer plane described by the physical dimensions of the framed wall. The sheathing may be of one of many thicknesses: from 7/16″ to well over 1″, depending upon design criteria, and of many types of material, e.g. typically wood or gypsum or foam or cement board, processed in many different ways.
The width and height are typically from 2′×8′ to 4′×8′. The roof system installation typically follows and is supported on the frame wall. Once the roof is weather tight, interior work can begin, electric, plumbing, etc. The interior cavity between the studs, and next to the interior side of the exterior sheathing is filled with insulation material, after which an interior sheet is fastened to the plane described by the height and length of the wall. The interior sheet may be of just about any sheet of material used for the exterior sheathing, although generally the interior sheet is smoothed and painted or covered with some type of decorative surface.
Advances in the field commonly practiced are to assemble some portion of the wall or building in a factory, ship it to its intended location, and complete the construction on site. These sections need to be carefully positioned, braced and fastened to each other, or to special vertical support standards or posts. Some prefabricated walls have windows, and perhaps insulation and doors. At the extreme entire rooms with flooring and utilities are imported and set on the foundation. Attempts to streamline wall construction on location via some pre-assembly have mostly proved expensive, complicated, or ineffective, except in the extreme cases: sections of stud frame & sheathing only, or pre-manufactured modules about 95% complete.
Some proposed wall panels-for example, U.S. Pat. No. 4,660,339 (1987) to F. Paz is unsuitable for exterior wall use, and can be used only as interior decorative partitions. U.S. Pat. No. 5,749,197 (1997) to Jolly, is wrapped in sheet metal, very fire resistant, but very expensive. U.S. Pat. No. 6,427,408 (2002) to Krieger is a wall panel assembly method, but it is difficult to assemble, and requires expensive, custom made fasteners and support members. The same is true of U.S. Pat. No. 5,325,649 (1992) to Katiwara: the materials are more expensive, and more complicated to assemble than conventional building techniques. U.S. Pat. No. 4,068,434 (1977) and U.S. Pat. No. 4,147,004 (1979), both to Day & Hutcheson, are close to my invention, but have electrical and structural elements inside the wall which adds great difficulty and cost in the initial manufacture of the wall panels, slows assembly of the panels on the foundation, as the must all be in proper order, and the securing of tabs and channels and fasteners during the assembly on the foundation is time consuming, complicated, and requires an experienced crew. U.S. Pat. No. 6,408,694 (2002) to Porter is similarly complicated, with structural elements inside the wall, and equally sophisticated fasteners. These systems may have limited special applications, but are too expensive for widespread use.
The object of my invention is a to quickly erect a secure, weather tight building shell ready for shingles, after which exterior finish of brick, stucco, siding or whatever the owner or architect desires can be applied. Accordingly, my invention is composed of readily available components, and only requires skilled labor to erect the conventional structural steel frame. Once the structural frame is erected, the wall panels slide into the natural u-shaped channel of the steel member. The steel structural frame is off the shelf
I-shaped cross-section structural steel, therefore very inexpensive The wall panels are composed of readily available commodity gypsum or cement or wood sheathing, with a core of insulating foam, or some other rigid or semi-rigid material. Using commodity raw materials keeps the cost at or below conventional construction methods, and the actual placing of the wall panels requires no special skill, no tools, no fasteners and no need to measure and cut material. The speed of assembly reduces the final finishing and building costs. Although structural steel is commonly used in commercial and industrial construction, and occasionally in residential construction, no one has seen the advantage of utilizing the shape of the structural frame to hold composite wall panels in place.
a and 1b shows the structural steel frame members.
a and 2b shows the wall panel front and overhead views.
a and 3b shows integrated structural frame with panels and overhead view of wall panel interlocked with steel frame.
Typical embodiment of the present invention is illustrated in
The manner of erecting my invention begins with conventional structural steel frame (10) erection, with the steel positioned at regular intervals, which match the width of the wall panels (12). The structural member (10) must be fabricated and positioned such that the flanges (10a) are parallel with the planes of the panel's inner and outer “skin” layers (11) and (13). Once the structural members are in place, the wall panels are slid into position, with the first resting on top of the foundation, the next panel slid in to rest atop the first, and so on. Each panel (12) will nestle snuggly between the structural members. To provide extra stability, if desired or directed by the building designer or architect, the panel edges can be secured at any designated overlap with fasteners such as nails or screws. Sections which will become special areas, such as bathrooms, can receive panels layered with an appropriate material, such as moisture resistant gypsum or cement board.
The reader can easily see the advantage of combining the traditional 3 or 4 steps in one. The individual steps of wall framing, exterior sheathing, insulating, and interior sheathing are now replaced by simply sliding into place a wall panel combining exterior skin, insulation, interior skin, and perhaps a stud, with no need to measure, cut, trim or fasten. Openings for doors or windows can be cut in at leisure in one operation, as opposed to measuring and cutting for each separate conventional step. Some commercial construction uses a structural steel framing method, as does my invention, so it is no great departure in terms of actual material usage and cost.
Further Advantages:
Although the benefits listed above contain many descriptions, it should not be construed as limiting the scope of the invention by merely providing illustrations of some of the preferred embodiments of this invention. For example, wall panels don't have to be rectangular, but can be cut or processed into triangular or other shapes, and the core may be produced to include other features, such as security wiring, central vacuum pipe, etc. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.
Number | Date | Country | |
---|---|---|---|
Parent | 10307616 | Dec 2002 | US |
Child | 11243709 | Oct 2005 | US |