This invention relates to an ice cube-making machine that is quiet at the location where ice is dispensed.
Ice cube-making machines generally comprise an evaporator, a water supply and a refrigerant/warm gas circuit that includes a condenser and a compressor. The evaporator is connected to the water supply and to a circuit that includes the condenser and the compressor. Valves and other controls control the evaporator to operate cyclically in a freeze mode and a harvest mode. During the freeze mode, the water supply provides water to the evaporator and the circuit supplies refrigerant to the evaporator to cool the water and form ice cubes. During the harvest mode, the circuit converts the refrigerant to warm gas that is supplied to the evaporator, thereby warming the evaporator and causing the ice cubes to loosen and fall from the evaporator into an ice bin or hopper.
When installed in a location, such as a restaurant, where a small footprint is needed, ice making machines have been separated into two separate packages or assemblies. One of the packages contains the evaporator and the ice bin and is located within the restaurant. The other package contains the compressor and condenser, which are rather noisy. This package is located remotely from the evaporator, for example, outside the restaurant on the roof. The evaporator package is relatively quiet as the condenser and compressor are remotely located.
This two package ice cube-making machine has some drawbacks. It is limited to a maximum height distance of about 35 feet between the two packages because of refrigerant circuit routing constraints. Additionally, the compressor/condenser package weighs in excess of about 250 pounds and requires a crane for installation. Furthermore, service calls require the mechanic to inspect and repair the compressor/condenser package in the open elements, since it is typically located on the roof of a building. Due to inclement weather, it would be highly desirable to be able to work on the compressor in doors, since it is only the condenser that requires venting to the atmosphere.
During harvest mode, the condenser is bypassed so that refrigerant is supplied from the compressor in vapor phase to the evaporator. When the compressor is located a distance from the evaporator, the refrigerant tends to partially change to liquid phase as it traverses the distance, thereby affecting the efficiency warming or defrosting the evaporator. One prior art solution to this problem uses a heater to heat the vapor supply line. Another prior art solution locates a receiver in the same package as the evaporator and uses the vapor ullage of the receiver to supply vapor to the evaporator. Both of these solutions increase the size of the package and, hence, its footprint in a commercial establishment.
Thus, there is a need for a quiet ice cube-making machine that has a larger height distance between the evaporator and the condenser and a lighter weight for installation without the need for a crane.
There is also a need for an efficient way of providing vapor to an evaporator during harvest mode.
The ice cube-making machine of the present invention satisfies the first need with a three package system. The condenser, compressor and evaporator are located in separate ones of the packages, thereby reducing the weight per package and eliminating the need for a crane during installation. The compressor package can be located up to 35 feet in height from the evaporator package. For example, the evaporator package can be located in a restaurant room where the ice cubes are dispensed and the compressor package can be located in a separate room on another floor of the building, such as a utility room. This allows for service thereof to be made indoors, rather than outdoors as required by prior two package systems. The condenser package can be located up to 35 feet in height from the compressor package. For example, the condenser package can be located on the roof of the multistory building.
The evaporator package has a support structure that supports the evaporator. The compressor package has a support structure that supports the compressor. The condenser package has a support structure that supports the condenser.
The present invention satisfies the need for providing vapor to the evaporator during harvest mode by increasing the pressure and temperature of the refrigerant in the evaporator. This is accomplished by connecting a pressure regulator in circuit with the return line between the evaporator and the compressor. The pressure regulator limits flow, which increases pressure and temperature of the refrigerant in the evaporator. To achieve a small footprint of the evaporator package, the pressure regulator can be located in the compressor package.
Other and further objects, advantages and features of the present invention will be understood by reference to the following specification in conjunction with the accompanying drawings, in which like reference characters denote like elements of structure and:
Referring to
Compressor package 50 includes a support structure 52 upon which is disposed a compressor 54, an accumulator 56 and a receiver 40. Condenser package 70 includes a support structure 72 upon which is disposed a condenser 74 and a fan 76. It will be appreciated by those skilled in the art that support structures 32, 52 and 72 are separate from one another and may take on different forms and shapes as dictated by particular design requirements. It will be further appreciated by those skilled in the art that evaporator package 30, compressor package 50 and condenser package 70 suitably include various valves and other components of an ice cube-making machine.
Interconnection structure 80 connects evaporator 36, compressor 54 and condenser 74 in a circuit for the circulation of refrigerant and warm gas. Interconnection structure 80 may suitably include pipes or tubing and appropriate joining junctions.
Referring to
Referring to
Referring to
It will be appreciated by those skilled in the art that evaporator package 30, compressor package 50 and condenser package 70 may include other valves and controls for the operation of ice cube-making machine 20. For example, ice-making machine 20 includes a controller 193 that controls the operations thereof including the activation of bypass solenoid valve 153 during the harvest cycle. Alternatively, a pressure switch 192 during harvest mode can activate solenoid valve 153.
According to a feature of the present invention output pressure valve 157 operates to raise pressure and temperature of the refrigerant in evaporator 36 during ice harvesting.
During a freeze cycle, cool vapor valve 142 and bypass valve 153 are closed and expansion valve 144 is open. Refrigerant flows from an output 184 of compressor 54 via a line 185, condenser 74, head pressure control valve 158, a line 186, receiver 40. Flow continues via heat exchanger loop 187, a supply line 188, filter 151, expansion valve 144, evaporator 36, a return line 189, accumulator 56, output pressure regulator 157 to an input 190 of compressor 54. Output pressure regulator 157 is wide open during the freeze cycle such that the refrigerant passes without any impact on flow.
During a harvest cycle, cool vapor valve 142 and bypass valve 153 are open and expansion valve 144 is closed. Refrigerant in vapor phase flows from the output of compressor 54 via either or both of bypass valve 153 or head pressure valve 158 through line 186 to receiver 40. Flow continues via a vapor line 191, cool vapor valve 142, evaporator 36, return line 189, accumulator 56, output pressure regulator 157 to input 190 of compressor 54.
Output pressure regulator 157 operates during harvest to slow the flow and decrease pressure at input 190 to compressor 54. This results in a higher pressure in evaporator 36 and higher temperature of the vapor in evaporator 36. The higher temperature refrigerant in evaporator 36 enhances the harvest cycle.
Output pressure regulator 157 may be any suitable pressure regulator that is capable of operation at the pressure required in ice-making systems. For example, output pressure regulator may be Model No. OPR 10 available from Alco.
Referring to
Ice cube-making machines 20 and 25 of the present invention provide the advantage of lightweight packages for ease of installation. In most cases, a crane will not be needed. In addition, the evaporator package is rather quiet in operation, as the compressor and the condenser are remotely located. Finally, the distance between evaporator package 30 and condenser package 70 is greatly enhanced to approximately 70 feet in height from the 35 feet height constraint of the prior art two package system.
Referring to
It will be appreciated by those skilled in the art that evaporator package 30, compressor package 50 and condenser package 70 may include other valves and controls for the operation of ice cube-making machine 20. For example, ice-making machine 20 includes a controller 393 that controls the operations thereof including the activation of bypass solenoid valve 353 during the harvest cycle. Alternatively, a pressure switch 392 during harvest mode can activate solenoid valve 353.
According to a feature of the present invention output pressure valve 357 operates to raise pressure and temperature of the refrigerant in evaporator 36 during ice harvesting.
During a freeze cycle, cool vapor valve 342 and bypass valve 353 are closed and expansion valve 144 is open. Refrigerant flows from an output 384 of compressor 54 via a line 385, condenser 74, head pressure control valve 358 and a line 386 to receiver 40. Flow continues via heat exchanger loop 387, a supply line 388, filter 351, expansion valve 344, evaporator 36, a return line 389, accumulator 56, output pressure regulator 357 to an input 390 of compressor 54. Output pressure regulator 357 is wide open during the freeze cycle such that the refrigerant passes without any impact on flow.
During a harvest cycle, cool vapor valve 342 and bypass valve 353 are open and expansion valve 344 is closed. Refrigerant in vapor phase flows from the output of compressor 54 to a vapor line 391 via either or both of a first path that includes bypass valve 353 or a second path that includes head pressure valve 358 line 386 and receiver 40. Flow continues via vapor line 391, cool vapor valve 342, evaporator 36, return line 389, accumulator 56, output pressure regulator 357 to input 390 of compressor 54.
Output pressure regulator 357 operates during harvest to slow the flow and decrease pressure at input 390 to compressor 54. This results in a higher pressure in evaporator 36 and higher temperature of the vapor in evaporator 36. The higher temperature refrigerant in evaporator 36 enhances the harvest cycle.
The present invention having been thus described with particular reference to the preferred forms thereof, it will be obvious that various changes and modifications may be made therein without departing from the spirit and scope of the present invention as defined in the appended claims.
This Application is a division of, and claims priority in, U.S. patent application Ser. No. 09/952,143, filed Sep. 14, 2001, now U.S. Pat. No. 6,637,227, which the benefit of U.S. Provisional Application No. 60/233,392, filed Sep. 15, 2000, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2624179 | Daisy | Jan 1953 | A |
3059444 | Bickel et al. | Oct 1962 | A |
3838582 | Redfern et al. | Oct 1974 | A |
3922875 | Morris, Jr. | Dec 1975 | A |
4013120 | Rheinheimer | Mar 1977 | A |
4089040 | Paulsen | May 1978 | A |
4171622 | Yamaguchi et al. | Oct 1979 | A |
4185467 | Garland | Jan 1980 | A |
4276751 | Saltzman et al. | Jul 1981 | A |
4324109 | Garland | Apr 1982 | A |
4373345 | Tyree, Jr. et al. | Feb 1983 | A |
4378680 | Garland | Apr 1983 | A |
4625524 | Kimura et al. | Dec 1986 | A |
4688392 | Fujimoto et al. | Aug 1987 | A |
4735059 | O'Neal | Apr 1988 | A |
4774815 | Schlosser | Oct 1988 | A |
4850197 | Taylor et al. | Jul 1989 | A |
4854130 | Naruse et al. | Aug 1989 | A |
4878361 | Kohl et al. | Nov 1989 | A |
4907422 | Kohl et al. | Mar 1990 | A |
4981023 | Krishnakumar et al. | Jan 1991 | A |
5056327 | Lammert | Oct 1991 | A |
5058395 | Ni et al. | Oct 1991 | A |
5131234 | Furukawa et al. | Jul 1992 | A |
5167130 | Morris, Jr. | Dec 1992 | A |
5174123 | Erickson | Dec 1992 | A |
5218830 | Martineau | Jun 1993 | A |
5363671 | Forsythe et al. | Nov 1994 | A |
5743098 | Behr | Apr 1998 | A |
5787723 | Mueller et al. | Aug 1998 | A |
5842352 | Gregory | Dec 1998 | A |
6009715 | Sakurai et al. | Jan 2000 | A |
6112534 | Taras et al. | Sep 2000 | A |
6145324 | Dolezal | Nov 2000 | A |
6196007 | Schlosser et al. | Mar 2001 | B1 |
6438974 | Pham et al. | Aug 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040069004 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
60233392 | Sep 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09952143 | Sep 2001 | US |
Child | 10407320 | US |