This disclosure relates to an improved exhaust system and muffler. More particularly, certain embodiments of this disclosure relate to an exhaust system including a muffler that is devoid of baffles, transfer tubes, and multiple expansion chambers.
Internal combustion engines are used to power a wide array of “off-road” applications, such as lawn mowers, chainsaws and leaf blowers. Exhaust systems are provided for these engines to guide waste gases away from the engine. These systems typically direct waste gases through one or more inlet tubes to a muffler, which silences the noise of the escaping exhaust gases before they are expelled from one or more outlets. Reduction of the noise generated by the escaping exhaust gases is important in these “off-road” devices because a user of the device is often positioned in close proximity to the engine during operation of the device.
Mufflers known in the art generally comprise a number of separately manufactured components including a housing that encloses multiple internal baffles, transfer tubes, and/or expansion chambers. These known exhaust systems are expensive to manufacture due to the complexity of the systems and particularly the complexity of the muffler. This expense is further increased since exhaust systems are typically tailored for individual off-road engine designs, which vary considerably between applications and manufacturers. Consequently, for many off-road applications the exhaust system may account for a large portion of the total manufacturing expense.
Additionally, while known exhaust systems are somewhat successful in muffling the noise of the escaping exhaust gases, there is always a need and desire to improve the sound attenuation capabilities of a muffler and exhaust system.
Thus, there is a need in the art for an improved exhaust system and muffler that alleviates one or more of the deficiencies of the prior art discussed above by providing reduced assembly complexity and/or improved sound attenuation. Providing a muffler that is suitable for more than one application or engine design is also desired.
The present invention is directed to reduced noise muffler for use with an exhaust system wherein the shape and configuration of the inlet tubes and the exhaust pipe create flow patterns of the exhaust gases within a hollow shell that improve sound attenuation, thereby lowering the noise of the muffler and improving sound quality. It has also been found that by removing the baffles, transfer tubes, and multiple expansion chambers, the size of the expansion chamber can be maximized for the given muffler size. A larger expansion chamber has been found to be more effective at reducing the higher frequency noise, lowering the tone, and improving the sound quality. It has also been found that by adding perforations and closing off the ends of the inlet tubes, the exhaust pressure pulse is reduced or diffused through the perforations, further reducing the noise. The disclosed muffler also reduces back pressure and improves engine performance. Notably, the claimed reduced noise muffler does not include transfer tubes, baffles, or multiple expansion chambers as are typical in known mufflers.
In one embodiment of the claimed invention, the reduced noise muffler comprises a hollow shell member having a first end, a second end, a first inlet opening, a second inlet opening and an outlet opening, the first end spaced apart from and opposing the second end along a longitudinal axis. In at least one embodiment where the hollow shell is made from two shell members, the first inlet opening and the second inlet opening are disposed within the same shell member. The muffler further includes a first inlet tube for receiving exhaust gases. The first inlet tube passes through the first inlet opening and has a first linear portion, a second linear portion and a radiused bend located between the first and second linear portions. In one embodiment, the first linear portion of the first inlet tube is disposed or otherwise positioned or located within the first inlet opening. The muffler further includes a second inlet tube for receiving exhaust gases. The second inlet tube passes through the second inlet opening and has a first linear portion, a second linear portion and a radiused bend located between the first and second linear portions. In one embodiment, the first linear portion of the second inlet tube is disposed or otherwise positioned or located within the second inlet opening. The muffler of the present invention further includes an exhaust pipe to permit the exhaust gasses to exit the hollow shell member, the exhaust pipe extending through the outlet opening. In one embodiment, the second linear portion of the first inlet tube and the second linear portion of the second inlet tube are positioned within the muffler substantially coaxially and are generally in parallel alignment to each other and the longitudinal axis of the hollow shell member.
In one embodiment of the claimed invention, the first inlet tube and the second inlet tube each include a first open end for connecting to an engine and a second open end for bringing exhaust gases into the hollow shell member, wherein the second open end of the first inlet tube and the second open end for the second inlet tube face each other. In another embodiment of the claimed invention, the second open end of the second linear portion of the first inlet tube and the second open end of the second linear portion of the second inlet tube are blocked. In this embodiment, the second linear portion of the first inlet tube and the second linear portion of the second inlet tube are perforated to permit exhaust gasses to enter the hollow shell member. In one embodiment, the first inlet tube and the second inlet tube may also have a flange that is adapted to connect an engine.
In one embodiment of the claimed invention, the exhaust pipe further comprises a first linear portion having an end opening to permit exhaust gases to enter the exhaust pipe, a second linear portion, and a radiused bend located between the first and second linear portions. In another embodiment, the end opening of the first linear portion of the exhaust pipe may be located about 0.5 inches from one of the ends, either the first end or the second end, of the hollow shell member.
In one embodiment of the claimed invention, the end opening of the first linear portion of the exhaust pipe is blocked and the first linear portion of exhaust pipe is perforated to permit exhaust gasses to enter the exhaust pipe. In another embodiment, blocked end opening of the second linear portion of the exhaust pipe may be located about 0.5 inches from the inner surface of either the first end or the second end of the hollow shell member.
In one embodiment of the claimed invention, the muffler is devoid of baffles, transfer tubes, and multiple expansion chambers to maximize the size of a single expansion chamber within the hollow shell member. In this and other embodiments, the shape and configuration of the first and second inlet tubes and the exhaust pipe may create flow patterns for the exhaust gases within the hollow shell that improve sound attenuation, thereby lowering the noise of the muffler and improving sound quality.
In another embodiment, the reduced noise muffler of the present invention may comprise: a hollow shell member having a first end, a second end, an inlet opening, and an outlet opening. The muffler further includes an inlet tube for receiving exhaust gasses, the inlet tube passing through the inlet opening and having a first linear portion, a second linear portion and a radiused bend located between the first and second linear portions. In at least one embodiment, the first linear portion of inlet tube is positioned within the inlet opening, meaning some of the first linear portion is disposed within the shell member and some of the first linear portion is disposed outside of the shell member, while the second linear portion and the radiused bend are positioned entirely within the hollow shell member. The muffler also includes an exhaust pipe to permit the exhaust gasses to exit the hollow shell member; wherein the muffler is devoid of baffles, transfer tubes, and multiple expansion chambers to maximize the size of a single expansion chamber within the hollow shell member.
The reduced noise muffler may also include an exhaust pipe having a first end portion including a first end opening being positioned within the hollow shell member and a second end portion including a second end opening extending out of the hollow shell member through the outlet opening. The first end opening of the first end portion of the exhaust pipe may also be blocked and the second end portion of the exhaust pipe perforated to permit exhaust gasses to enter the exhaust pipe. In one embodiment, the exhaust pipe may be substantially straight.
In another embodiment, the end opening of the second linear portion of the inlet tube may be blocked and the second linear portion of the inlet tube perforated to permit exhaust gasses to enter the hollow shell member. The inlet tube may also include a flange that is adapted to connect to an engine.
For a full understanding of the exhaust system and muffler of this disclosure reference should be made to the following detailed description and the accompanying drawings, wherein:
Referring now to
The first and second shell members 14 and 16 have opposing rims 14a and 16a, respectively, which are congruent or otherwise mate and engage to form a hollow shell 18 and defining a substantially hollow expansion 19 chamber within hollow shell 18. The hollow shell 18 has a first end 20 and a second end 22 spaced from one another. The hollow shell 18 shown in
The muffler 12 is formed by aligning and clamping the first and second concave shell members 14 and 16 and sealing the perimeter of the shell members at rims 14a and 16a. The sealing may be accomplished by any method or mechanism known to those skilled in the art, such as for example, crimping or seaming. This process sealably attaches or connects the first and second concave shell members 14a and 16a to one another.
The first concave shell member 14 of the muffler 12 has a first inlet hole 24 and a second inlet hole 26, each of which may be stamped out in an operation independent of the stamping of the first concave shell member 14 in one embodiment. In an alternative embodiment, the inlet holes 24 and 26 may be stamping out in the same stamping process during the manufacture of the first concave shell member 14. The location of inlet holes 24 and 26 are not limited to the locations shown in
Each of the inlet tubes 28 and 30 includes a first linear portion 32, 32a, a second linear portion 34, 34a, and a radiused bend portion 36, 36a (
The second concave shell member 16 includes at least one outlet hole 40. In one embodiment, the second concave shell member 16 has exactly one outlet hole 40. An exhaust pipe 42 is positioned within the outlet hole 40 and includes a first linear portion 44, a second linear portion 46, and a radiused bend portion 48, similar to inlet tubes 26 and 28 discussed above. Further, exhaust pipe 42 has an inner portion 50, located within muffler 12 and an outer portion 52 that is external to muffler 12, as well as an inner opening 57 and an outer opening 58. In one embodiment, the inner portion 56 of the exhaust pipe 42 may include a plurality of perforations 56 that allow for the flow of exhaust gases therethrough as the gases travel out of the muffler. Inner opening 57 of exhaust pipe 42 may also be closed off by means of a plug (not shown) welded in the opening or through a crimping process. The first and second linear portions 44 and 46 of exhaust pipe 42 may be oriented generally perpendicular to one another. When assembled, the first linear portion 44 and radiused bend portion 48 comprise inner portion 50 and are located within the muffler 12, with the first linear portion 44 oriented generally parallel to the longitudinal axis of the muffler 12, but not within the same axis as the inlet tubes 26 and 28. In one embodiment, exhaust pipe 42 may be oriented such that inner opening 57 is spaced 0.2 to 1.5 inches, and preferably 0.5 inches from the first end of the hollow shell 18.
The exhaust pipe 42 and the first and second inlet tubes 28 and 30 are secured within the outlet hole 40 and the inlet holes 24 and 26, respectively. In certain embodiments, the inlet tubes and the exhaust pipe may be welded to the muffler at the inlet and outlet holes by any of the welding techniques discussed above with respect to sealing the hollow shell 18 of the muffler 12.
It has been discovered that the shape and configuration of the inlet tubes 28 and 30 and the exhaust pipe 42 create flow patterns of the exhaust gases within the hollow shell 18 that tends to improve sound attenuation, thereby lowering the noise of the muffler and improving sound quality. It has also been found by removing the baffles, transfer tubes, and multiple expansion chambers the size of the expansion chamber can be maximized for the given muffler size. A larger expansion chamber 19 has been found to be more effective at reducing the higher frequency noise, lowering the tone, and improving the sound quality. It has also been found that by adding perforations 27 and closing off the ends 38, 38a of the inlet tubes 28, 30, the exhaust pressure pulse is reduced or diffused through the perforations 27, further reducing the noise. The disclosed muffler 12 also reduces back pressure and improves engine performance. Notably, the exhaust system 10 does not include transfer tubes, baffles, or multiple expansion chambers as are typical in known mufflers.
Referring now to
The first and second shell members 64 and 66 have opposing rims 64a and 66a, respectively, which mate and engage to form a hollow shell 68 and to define a substantially hollow expansion chamber 69 within hollow shell 68. The hollow shell 68 has a first end 70 and a second end 72 spaced from one another. The hollow shell 68 shown in
In one embodiment, the muffler 62 is formed by aligning and clamping the first and second concave shell members 64 and 66 and sealing the perimeter of the shell members at rims 64a and 66a. The sealing may be accomplished by any method or mechanism known to those skilled in the art, such as, for example, the crimping techniques discussed above with respect to muffler 12. This process sealably attaches the first and second concave shell members 64a and 66a to one another.
The first concave shell member 64 of the muffler 62 has an inlet hole 74 that may be stamped out in an operation independent of the stamping of the first concave shell member 64. The location of the inlet hole 74 is not limited to the location shown in
The inlet tube 78 further includes a first linear portion 82, a second linear portion 84, and a radiused bend portion 86 (
The second concave shell member 66 includes an outlet hole 90. An exhaust pipe 92 passes through and is positioned within the outlet hole 90, the exhaust pipe 92 being generally straight. The exhaust pipe is oriented generally perpendicular to the first linear portion 82 of the inlet tube 78 and the longitudinal axis of the muffler 62. The exhaust pipe 92 includes an inner portion 94 positioned having an inner opening 95 that are positioned within the muffler 62 and an outer portion 96 that extends from outlet hole 90 to the exterior of the muffler 62, protruding therefrom. The inner portion 94 of the muffler 62 may include a plurality of perforations 98 that allow for the flow of exhaust gases therethrough as the gases travel out of the muffler and, in one embodiment, may also be closed off at inner opening 95 by means of a plug welded into inner opening 95 or through a crimping process. The exhaust pipe 92, and the inlet tube 78 are secured within the outlet hole 90 and the inlet hole 74, respectively. In certain embodiments, the inlet tube and the exhaust pipe may be welded to the muffler 64 at the inlet and outlet holes 74, 90 by any of the welding techniques discussed above with respect to sealing the hollow shell 68 of the muffler 62.
It has been discovered that the shape and configuration of the inlet tube 78 and the exhaust pipe 92 create flow patterns of the exhaust gases within the hollow shell 68 that tends to improve sound attenuation, thereby lowering the noise of the muffler and improving sound quality. It has also been discovered that by adding perforations and closing off the end of the inlet tubes, the exhaust pressure pulse is reduced or diffused through the perforations, eliminating the need for additional transfer tubes, baffles, or multiple expansion chambers. By removing the said parts the size of the expansion chamber 69 can be maximized for the given muffler size. The larger expansion chamber is more effective at reducing the higher frequency noise, lowering the tone, improving the sound quality. It as further been found that by increasing the diameter of the exhaust pipe, the velocity of the exhaust gas is reduced, lowering the noise. Perforating and closing off the exhaust pipe also allows for a larger diameter outlet. The disclosed muffler also reduces back pressure and improves engine performance. Notably, the Exhaust system 60 does not include transfer tubes, baffles, or multiple expansion chambers as are typical in known mufflers.
In light of the foregoing, it should be appreciated that the present invention significantly advances the art by providing a reduced noise muffler is structurally and functionally improved in a number of ways. While particular embodiments of the invention have been disclosed in detail herein, it should be appreciated that the invention is not limited thereto or thereby inasmuch as variations on the invention herein will be readily appreciated by those of ordinary skill in the art. The scope of the invention shall be appreciated from the claims that follow.
This application claims the benefit of U.S. provisional patent application Ser. No. 61/577,826 entitled “Quiet Muffler,” filed Dec. 20, 2011, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2990028 | Powers | Jun 1961 | A |
3794139 | Hetherington et al. | Feb 1974 | A |
6457553 | Goplen et al. | Oct 2002 | B1 |
7878300 | Sammut et al. | Feb 2011 | B2 |
7895832 | Gruber | Mar 2011 | B2 |
20020066619 | Collmer et al. | Jun 2002 | A1 |
20030098198 | Wolf et al. | May 2003 | A1 |
20090020359 | Schorn et al. | Jan 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20130153329 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61577826 | Dec 2011 | US |