This invention relates generally to cutting flat stock and, more particularly, to cutting quilted fabric goods.
Quilting is a sewing process by which layers of textile material and other fabric are joined to produce compressible panels that are both decorative and functional. Stitch patterns are used to decorate the panels with sewn designs while the stitches themselves join the various layers of material that make up the quilts. Large scale quilting processes usually use high-speed multi-needle quilting machines to form a series of panels along webs of the multiple-layered materials. These large scale quilting processes typically use chain-stitch sewing heads which produce resilient stitch chains that can be supplied by large spools of thread.
After the pattern has been stitched in a panel, the panel must be cut to length and trimmed to a width such that the stitched pattern is centered on the cut panel. If a panel is automatically cut from a quilted material web without locating the quilted pattern, the quilted pattern may be shifted to one side of the panel or, in some circumstances, may be partially cut off when the panel was cut from the web. Thus, the panel must be cut from the web using manual or semiautomatic processes in which an operator is used to align cutting devices so that the quilted pattern is approximately centered in the panel. Further, proper centering of the pattern on the panel facilitates a more automated and less labor intensive panel assembly or sewing process. Therefore, there is a need to provide a panel cutter of a relatively simple design that accurately and quickly automatically centers the pattern on the panel in the cutting process.
The present invention provides a panel cutter and process that quickly positions cutters with respect to a quilted pattern in a panel. Further, the panel cutter and process of the present invention automatically cuts the panel to the proper length and width with the quilted pattern centered in the panel. In addition, the panel cutter of the present invention uses known, commercially available components and cutting devices and provides a relatively low cost solution to a difficult problem in the quilting industry. Thus, the panel cutter of the present invention is especially useful in cutting panels with quilted patterns from a quilted material web.
In accordance with the principles of the present invention and in accordance with the described embodiments, the present invention provides an apparatus for cutting a quilted material web having a quilted patterns thereon into panels having a desired length and width with respective quilted patterns centered therein. A first detector detects a center of a quilted pattern on the quilted material web; and in response thereto, a cutting apparatus cuts the quilted material web to form edges of a panel equidistant from the center of the quilted pattern.
In one aspect of the invention, the cutting apparatus is a trimming apparatus movable to a position displaced from the center of the quilted pattern a first distance in a transverse direction substantially perpendicular to a length of the quilted material web. The first distance being substantially equal to one-half the width of the panel, and the trimming apparatus being operable to cut the quilted material web to form a first side edge of the panel in a longitudinal direction in response to the first detector detecting the center of the quilted pattern.
In another aspect of the invention, the cutting apparatus is a pair of trim blades, wherein each of the trim blades is movable on an opposite side of the center of the quilted pattern. The pair of trim blades is operable to cut the quilted material web to form opposite side edges of the panel extending in the longitudinal direction equidistant from the center of the quilted pattern.
In a further aspect of the invention, the cutting apparatus includes a cross cutting apparatus movable in the transverse direction for cutting the quilted web material to form end edges of the panel extending in the transverse direction. A second detector is movable to a position displaced from the cross cutting apparatus by a second distance in the longitudinal direction, wherein the second distance is equal to the length of the panel. The second detector detects an end edge of the quilted material web, and the cross cutting apparatus is operable to cut the quilted material web and form end edges of the panel equidistant from the center of the quilted pattern.
These and other objects and advantages of the present invention will become more readily apparent during the following detailed description taken in conjunction with the drawings herein.
Referring to
As will be appreciated, due to the nature of the quilting process, the positions of successive quilted patterns 32, 34 often vary slightly, which substantially complicates the panel cutting process. For example, if the panels 24, 26 are cut to length after moving the quilted material web through an incremental feed equal to a panel length, the quilted patterns in some panels will not be centered. Panels with noncentered quilted patterns are more difficult to properly assemble and/or sew together with other panels; and if the quilted pattern is so far off-center that it can't be used, the panel has to be scrapped.
Thus, to facilitate an automatic, fast and efficient cutting of the panels 24, 26, a center or reference mark 48 is used and accurately centered with respect to the quilting patterns 32, 34 in the respective panels 24, 26. The center mark 48 can be automatically applied to the web 20 as part of the quilting process using a variety of mediums and processes, for example, a stick-on element, painting, detectable stitching, etc. Further, the center mark 48 can be of any useful shape, for example, a circle, a dot, crosshairs, etc. Alternatively, the center mark 48 can be printed on the web 20 using apparatus and methods shown and described in U.S. Pat. Nos. 6,435,117; 6,263,816; 6,158,366; 6,012,403 and 5,873,315, all of which are hereby incorporated in their entireties by reference herein. The center mark is often located on a backside of the panel, that is, the side opposite a side presenting the quilted pattern to a user.
Referring to
The cutting portion 104 (
A clamp bar 144 extends transversely over substantially a full width of the panel cutter 100 and is supported at its ends by cylinders 146. Motion of the clamp bar 144 in the vertical direction is guided by wheels 147 riding on opposite sides of linear guides 148. The actuators 146 move the clamp bar 144 toward a plate 149 to secure the quilted material web therebetween.
The trimming apparatus 122 includes left and right slitter and feed mechanisms 150, 152, respectively, that are located on opposite sides of the panel cutter 100 adjacent the ends of the pinch rollers 114. The slitter and feed mechanisms 150, 152 are described in detail in U.S. Pat. No. 6,736,078, the entirety of which is hereby incorporated by reference herein. Each of the slitter and feed mechanisms 150, 152 is operated by a motor 154 that rotates upper and lower slitting wheels 156, 158, respectively, as well as upper and lower conveyors 160, 162, respectively. Each of the slitter and feed mechanisms 152, 154 has a carriage 164 that supports the motor 154, slitting wheels 156, 158 and conveyors 160, 162 and is mounted via wheels 166 onto a guide rail 168. Each of the carriages 164 is mounted on a nut (not shown) that is threaded onto a screw 170 rotated by an actuator 172. Thus, the slitter and feed mechanisms 150, 152 are movable to desired positions on the rail 168 by operating respective actuators 172.
An upstream, center mark detector 180 has a sensor 182 mounted on a carriage 184 that is supported by linear guide rods 186 beneath the upstream table 112. The center mark detector 180 can be any device that is able to provide output signals representing a detected position of the center mark 48 on the quilted material web 20, for example, a vision camera. The vision camera has a charge coupled device (CCD) providing an output that is converted to digital form and processed to determine the location a center mark on the quilted material web 20. The carriage 184 is also connected to a drive belt 188 extending around an idler pulley 190 and a drive pulley 192 that is rotated by a motor 194. Thus, operation of the motor 194 is effective to move the sensor 182 in the longitudinal direction 118.
A downstream portion 106 has a downstream conveyor 174 operated by a drive pulley 176 that is rotated by a motor 178. A downstream length detector 196 has a sensor 198 mounted to a carriage 200 that is supported by linear guide rods 201. The sensor 198 can be any device capable of providing an output signal in response to detecting an edge of the quilted material web 20, for example, a photoeye. The carriage 200 is connected to a drive belt 202 looped over an idler pulley 204 and a drive pulley 206. A motor 208 rotates the drive pulley 206 to provide linear motion of the detector 198 in the longitudinal direction 118.
As shown in
Assuming the first panel to be cut is 60 inches long and 80 inches wide, the controller 210 first commands the detector positioning motor 194, at 252, to move the detector carriage 184 and center mark detector 182 to a location that is 30 inches upstream of the cross cut blade 123. Thus, as the web is moved downstream, the center mark detector 182 is now in a position to locate the next center mark on the quilted material web 20 with respect to the cross cut blade 123. In addition, the controller 210 commands the length sensor positioning motor 209 to move the length sensor carriage 200 and length sensor 198 to a position that is 60 inches downstream of the cross cut blade 123. In this position, the length sensor 198 is able to control the length of the panel to be cut from the quilted material web 20.
Thereafter, the controller 210, at 256, initiates a feed of the quilted material web 104. The web feed is initiated by the controller 210 commanding the pinch roller motor 117 to rotate the pinch rollers 114 in directions causing the web 20 to move downstream. The quilted material web 20 has a quilted pattern 32 on a top side facing upward above the upstream table 112 and a center mark 48 on an opposite, bottom side facing downward beneath the upstream table 112. Being below the upstream table 112, the center mark detector 182 is viewing the bottom side of the web 20. When the center mark crosses a transverse centerline 66 (
Thereafter, at 262, the controller 210 commands the clamp actuators 146 to lower the clamp bar 144, thereby clamping the quilted material web 20 between the clamp bar 144 and stationary plate 149. Next, the controller 210 provides command signals to the cross cut blade motor 124 to initiate rotation of the cross cut blade 123. In addition, the controller 210 commands the cross cut blade positioning motor 142 to move the carriage 126 supporting the rotating cross cut blade 123 transversely across the panel cutter 100 along cut line 36 (
The controller 210 then, at 266, commands the clamp actuators 146 to lift the clamp bar 144 from the plate 149, thereby unclamping the quilted material web. The controller 210 then turns On the side trim motors 154 of the left and right slitter and feed mechanisms 150, 152. Operating the side trim motors 154 initiates rotation of the upper and lower slitting wheels 156, 158, respectively, and the upper and lower conveyors 160, 162 of the slitter and feed mechanisms 150, 152. Thus, as the quilted material web 20 is pushed downstream by the pinch rollers 144, it is captured between the upper and lower conveyors 160, 162 on both sides of the panel cutter 100. The two sets of upper and lower conveyors 160, 162 are operative to pull the quilted material web 20 past respective sets of upper and lower slitting wheels 156, 158. The controller 210 also commands the operation of the down feed conveyor motor 178 to allow the down feed conveyor 174 to facilitate the conveyance of the quilted material web 20 along the panel cutter 100. Thus, the left and right sets of slitting wheels 156, 158 move along respective cut lines 40, 42 to form side edges of the panel 24 that are equidistant from the detected center mark.
That operation continues until, at 268, the length sensor 198 detects the leading edge 36 (
Thus, the panel cutter 100 has the advantage of cutting panels from a quilted material web in which quilted patterns are consistently and accurately centered on the panel. Further, with the panel cutter 100, successive quilted patterns can be of different sizes, and the panels can be accurately and quickly cut to different lengths and widths with the quilted panels centered thereon.
While the invention has been illustrated by the description of one embodiment and while the embodiment has been described in considerable detail, there is no intention to restrict nor in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those who are skilled in the art. As will be appreciated, there are many variations relating to the structure and operation of the detectors 182, 198, the cross cutting apparatus 120 and the trimming apparatus 150, 152. For, example,
Therefore, the invention in its broadest aspects is not limited to the specific details shown and described. Consequently, departures may be made from the details described herein without departing from the spirit and scope of the claims that follow.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/555,460, filed on Mar. 23, 2004, which is hereby expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60555460 | Mar 2004 | US |