Quilted fabric panel cutter

Abstract
An apparatus for cutting a quilted material web having a quilted patterns thereon into panels having a desired length and width with respective quilted patterns centered therein. A first detector detects a center of a quilted pattern on the quilted material web; and in response thereto, a cutting apparatus cuts the quilted material web to form edges of a panel equidistant from the quilted pattern center. The cutting apparatus includes a pair of trim blades that cut opposite side edges of the panel equidistant from the quilted pattern center and a cross cutting apparatus that cuts end edges of the panel equidistant from the quilted pattern center.
Description
FIELD OF THE INVENTION

This invention relates generally to cutting flat stock and, more particularly, to cutting quilted fabric goods.


BACKGROUND OF THE INVENTION

Quilting is a sewing process by which layers of textile material and other fabric are joined to produce compressible panels that are both decorative and functional. Stitch patterns are used to decorate the panels with sewn designs while the stitches themselves join the various layers of material that make up the quilts. Large scale quilting processes usually use high-speed multi-needle quilting machines to form a series of panels along webs of the multiple-layered materials. These large scale quilting processes typically use chain-stitch sewing heads which produce resilient stitch chains that can be supplied by large spools of thread.


After the pattern has been stitched in a panel, the panel must be cut to length and trimmed to a width such that the stitched pattern is centered on the cut panel. If a panel is automatically cut from a quilted material web without locating the quilted pattern, the quilted pattern may be shifted to one side of the panel or, in some circumstances, may be partially cut off when the panel was cut from the web. Thus, the panel must be cut from the web using manual or semiautomatic processes in which an operator is used to align cutting devices so that the quilted pattern is approximately centered in the panel. Further, proper centering of the pattern on the panel facilitates a more automated and less labor intensive panel assembly or sewing process. Therefore, there is a need to provide a panel cutter of a relatively simple design that accurately and quickly automatically centers the pattern on the panel in the cutting process.


SUMMARY OF THE INVENTION

The present invention provides a panel cutter and process that quickly positions cutters with respect to a quilted pattern in a panel. Further, the panel cutter and process of the present invention automatically cuts the panel to the proper length and width with the quilted pattern centered in the panel. In addition, the panel cutter of the present invention uses known, commercially available components and cutting devices and provides a relatively low cost solution to a difficult problem in the quilting industry. Thus, the panel cutter of the present invention is especially useful in cutting panels with quilted patterns from a quilted material web.


In accordance with the principles of the present invention and in accordance with the described embodiments, the present invention provides an apparatus for cutting a quilted material web having a quilted patterns thereon into panels having a desired length and width with respective quilted patterns centered therein. A first detector detects a center of a quilted pattern on the quilted material web; and in response thereto, a cutting apparatus cuts the quilted material web to form edges of a panel equidistant from the center of the quilted pattern.


In one aspect of the invention, the cutting apparatus is a trimming apparatus movable to a position displaced from the center of the quilted pattern a first distance in a transverse direction substantially perpendicular to a length of the quilted material web. The first distance being substantially equal to one-half the width of the panel, and the trimming apparatus being operable to cut the quilted material web to form a first side edge of the panel in a longitudinal direction in response to the first detector detecting the center of the quilted pattern.


In another aspect of the invention, the cutting apparatus is a pair of trim blades, wherein each of the trim blades is movable on an opposite side of the center of the quilted pattern. The pair of trim blades is operable to cut the quilted material web to form opposite side edges of the panel extending in the longitudinal direction equidistant from the center of the quilted pattern.


In a further aspect of the invention, the cutting apparatus includes a cross cutting apparatus movable in the transverse direction for cutting the quilted web material to form end edges of the panel extending in the transverse direction. A second detector is movable to a position displaced from the cross cutting apparatus by a second distance in the longitudinal direction, wherein the second distance is equal to the length of the panel. The second detector detects an end edge of the quilted material web, and the cross cutting apparatus is operable to cut the quilted material web and form end edges of the panel equidistant from the center of the quilted pattern.


These and other objects and advantages of the present invention will become more readily apparent during the following detailed description taken in conjunction with the drawings herein.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic top view of a web of quilted material containing quilted panels to be cut therefrom.



FIG. 2 is a schematic side view of one embodiment of a panel cutting machine that may be used to cut a panel from a quilted material web in accordance with the principles of the present invention.



FIG. 3 is a schematic end view of the panel cutting machine of FIG. 2 looking upstream from the downstream end of the panel cutting machine.



FIG. 4 is a schematic block diagram of a control system that may be used with the panel machine of FIG. 2 in accordance with the principles of the present invention.



FIG. 5 is as flowchart indicating the process of cutting a panel from the quilted material web using the panel cutting machine of FIGS. 2 and 3.



FIG. 6 is a schematic side view of the web of the quilted material of FIG. 1 illustrating a first cutting operation of another embodiment of a panel cutter in accordance with the principles of the present invention.



FIG. 7 is a schematic side view of the web of the quilted material of FIG. 1 illustrating a second cutting operation using components of the embodiment of FIG. 6.



FIG. 8 is a schematic side view of the web of the quilted material of FIG. 1 illustrating a further embodiment of a panel cutter in accordance with the principles of the present invention.




DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, a web of quilted material 20 is conveyed along an output portion of a quilting machine (not shown) in a direction indicated by the flow arrow 22. Such quilting machines are of the type shown and described in U.S. Pat. No. 5,154,130 and U.S. patent application filed as Express Mail No. EV354968586US, entitled MULTIPLE HORIZONTAL NEEDLE QUILTING MACHINE AND METHOD and filed Mar. 19, 2004, which patent and application are hereby incorporated in their entirety by reference herein. The quilted material 20 is to be cut to form quilted panels 24, 26 with respective perimeters 28, 30 within which quilted patterns 32, 34 are located. Thus, to cut the panel 24 to a desired length, the quilted material web 20 must be cut along cut lines 36, 38. Further, to cut the panel 24 to a desired width, the quilted material web 20 is cut along trim lines 40, 42, thereby removing selvage pieces 44, 46.


As will be appreciated, due to the nature of the quilting process, the positions of successive quilted patterns 32, 34 often vary slightly, which substantially complicates the panel cutting process. For example, if the panels 24, 26 are cut to length after moving the quilted material web through an incremental feed equal to a panel length, the quilted patterns in some panels will not be centered. Panels with noncentered quilted patterns are more difficult to properly assemble and/or sew together with other panels; and if the quilted pattern is so far off-center that it can't be used, the panel has to be scrapped.


Thus, to facilitate an automatic, fast and efficient cutting of the panels 24, 26, a center or reference mark 48 is used and accurately centered with respect to the quilting patterns 32, 34 in the respective panels 24, 26. The center mark 48 can be automatically applied to the web 20 as part of the quilting process using a variety of mediums and processes, for example, a stick-on element, painting, detectable stitching, etc. Further, the center mark 48 can be of any useful shape, for example, a circle, a dot, crosshairs, etc. Alternatively, the center mark 48 can be printed on the web 20 using apparatus and methods shown and described in U.S. Pat. Nos. 6,435,117; 6,263,816; 6,158,366; 6,012,403 and 5,873,315, all of which are hereby incorporated in their entireties by reference herein. The center mark is often located on a backside of the panel, that is, the side opposite a side presenting the quilted pattern to a user.


Referring to FIG. 2, a panel cutter 100 has an upstream portion 102, a cutting portion 104 and a downstream portion 106. As used herein, “upstream” refers to a position, motion or direction to the left of a cross cut blade 123; and “downstream” refers to a position, motion or direction to the right of the cross cut blade 123. A quilted material web 20 is fed over rollers 108, 110 across an upstream table 112 and through a pair of transversely extending, opposed pinch rollers 114. The pinch rollers are engaged and disengaged by means of actuators 116, for example, pneumatic cylinders. After the pinch rollers 114 are engaged with the quilted material web 20 pinched there between, actuator 117 (FIG. 3), for example, an electric motor, is turned On to feed the quilted material web between the pinch rollers 114 in a longitudinal direction 118 generally parallel to a length of the web.


The cutting portion 104 (FIG. 2) includes a cross cutting apparatus 120 and a trimming apparatus 122. The cross cutting apparatus 120 has a cutting blade 123 operatively connected to a motor 124 that is mounted on a carriage 126. A linear guide 128 extends in the transverse direction 130 (FIG. 3), that is, perpendicular to the longitudinal direction 118. The carriage 126 has a plurality of rollers 132 that ride on opposed longitudinal edges of the guide rail 128. The ends of a drive belt 136 are connected to the carriage 126 and are looped over an idler pulley 138 and a drive pulley 140 that is rotated by a motor 142. Thus, operating the motor 142 is effective to translate the carriage 126 and cross cutting blade 123 in the transverse direction 130 to cut the quilted material web 20.


A clamp bar 144 extends transversely over substantially a full width of the panel cutter 100 and is supported at its ends by cylinders 146. Motion of the clamp bar 144 in the vertical direction is guided by wheels 147 riding on opposite sides of linear guides 148. The actuators 146 move the clamp bar 144 toward a plate 149 to secure the quilted material web therebetween.


The trimming apparatus 122 includes left and right slitter and feed mechanisms 150, 152, respectively, that are located on opposite sides of the panel cutter 100 adjacent the ends of the pinch rollers 114. The slitter and feed mechanisms 150, 152 are described in detail in U.S. Pat. No. 6,736,078, the entirety of which is hereby incorporated by reference herein. Each of the slitter and feed mechanisms 150, 152 is operated by a motor 154 that rotates upper and lower slitting wheels 156, 158, respectively, as well as upper and lower conveyors 160, 162, respectively. Each of the slitter and feed mechanisms 152, 154 has a carriage 164 that supports the motor 154, slitting wheels 156, 158 and conveyors 160, 162 and is mounted via wheels 166 onto a guide rail 168. Each of the carriages 164 is mounted on a nut (not shown) that is threaded onto a screw 170 rotated by an actuator 172. Thus, the slitter and feed mechanisms 150, 152 are movable to desired positions on the rail 168 by operating respective actuators 172.


An upstream, center mark detector 180 has a sensor 182 mounted on a carriage 184 that is supported by linear guide rods 186 beneath the upstream table 112. The center mark detector 180 can be any device that is able to provide output signals representing a detected position of the center mark 48 on the quilted material web 20, for example, a vision camera. The vision camera has a charge coupled device (CCD) providing an output that is converted to digital form and processed to determine the location a center mark on the quilted material web 20. The carriage 184 is also connected to a drive belt 188 extending around an idler pulley 190 and a drive pulley 192 that is rotated by a motor 194. Thus, operation of the motor 194 is effective to move the sensor 182 in the longitudinal direction 118.


A downstream portion 106 has a downstream conveyor 174 operated by a drive pulley 176 that is rotated by a motor 178. A downstream length detector 196 has a sensor 198 mounted to a carriage 200 that is supported by linear guide rods 201. The sensor 198 can be any device capable of providing an output signal in response to detecting an edge of the quilted material web 20, for example, a photoeye. The carriage 200 is connected to a drive belt 202 looped over an idler pulley 204 and a drive pulley 206. A motor 208 rotates the drive pulley 206 to provide linear motion of the detector 198 in the longitudinal direction 118.


As shown in FIG. 4, a programmable controller 210 is used to coordinate the operation of the various actuators and motors on the panel cutter 100 to execute a panel cutting operation as shown in FIG. 5. A quilted material web 20 is first loaded onto the panel cutter 100 and located between the pinch rollers 114, and the operator is then able to initiate a panel cutting cycle of operation. The controller 210 first determines, at 250, the size of the next panel 24 (FIG. 1). In this embodiment, the panel cutter 100 has the capability of cutting panels up to 80 inches wide and 60 inches long. However, substantially smaller panels may also be cut; and further, successive panels on the quilted panel web 20 may be of different sizes.


Assuming the first panel to be cut is 60 inches long and 80 inches wide, the controller 210 first commands the detector positioning motor 194, at 252, to move the detector carriage 184 and center mark detector 182 to a location that is 30 inches upstream of the cross cut blade 123. Thus, as the web is moved downstream, the center mark detector 182 is now in a position to locate the next center mark on the quilted material web 20 with respect to the cross cut blade 123. In addition, the controller 210 commands the length sensor positioning motor 209 to move the length sensor carriage 200 and length sensor 198 to a position that is 60 inches downstream of the cross cut blade 123. In this position, the length sensor 198 is able to control the length of the panel to be cut from the quilted material web 20.


Thereafter, the controller 210, at 256, initiates a feed of the quilted material web 104. The web feed is initiated by the controller 210 commanding the pinch roller motor 117 to rotate the pinch rollers 114 in directions causing the web 20 to move downstream. The quilted material web 20 has a quilted pattern 32 on a top side facing upward above the upstream table 112 and a center mark 48 on an opposite, bottom side facing downward beneath the upstream table 112. Being below the upstream table 112, the center mark detector 182 is viewing the bottom side of the web 20. When the center mark crosses a transverse centerline 66 (FIG. 1) in a field of vision of the detector 182, the detector 182 provides an output signal to the controller 210; and the controller commands the pinch roller motor 117 to stop. As will be appreciated, the process of stopping the operation of the pinch rollers 114 may involve successive decelerations of the pinch roller motor 117, such that the quilted material web 20 can be stopped with the center mark 148 precisely located on the centerline 66 of the field of vision of the detector 182. If the center mark 48 is offset from a longitudinal centerline 68 (FIG. 1) of the field of vision of the detector 182, as indicated by the center mark 48a shown in phantom in FIG. 2, detector 182 and controller 210 are able, at 260, to determine the magnitude of the offset. The controller 210 then commands the side trim positioning motors 172 to position the slitter and feed mechanisms 150, 152, so that the side trim blades 156, 158 are equidistant from the detected center mark 48a.


Thereafter, at 262, the controller 210 commands the clamp actuators 146 to lower the clamp bar 144, thereby clamping the quilted material web 20 between the clamp bar 144 and stationary plate 149. Next, the controller 210 provides command signals to the cross cut blade motor 124 to initiate rotation of the cross cut blade 123. In addition, the controller 210 commands the cross cut blade positioning motor 142 to move the carriage 126 supporting the rotating cross cut blade 123 transversely across the panel cutter 100 along cut line 36 (FIG. 1). That motion is effective to cut off a crop-out piece 56 to form a leading edge of the panel 24. Upon the cross cut blade 123 finishing its transverse motion, the controller 210 terminates operation of the cross cut blade positioning motor 142 and initiates, at 264, operation of the downstream conveyor motor 178. Thus, the crop-out piece that has been cut off of the end of the quilted material web 20 is fed from the panel cutter 100.


The controller 210 then, at 266, commands the clamp actuators 146 to lift the clamp bar 144 from the plate 149, thereby unclamping the quilted material web. The controller 210 then turns On the side trim motors 154 of the left and right slitter and feed mechanisms 150, 152. Operating the side trim motors 154 initiates rotation of the upper and lower slitting wheels 156, 158, respectively, and the upper and lower conveyors 160, 162 of the slitter and feed mechanisms 150, 152. Thus, as the quilted material web 20 is pushed downstream by the pinch rollers 144, it is captured between the upper and lower conveyors 160, 162 on both sides of the panel cutter 100. The two sets of upper and lower conveyors 160, 162 are operative to pull the quilted material web 20 past respective sets of upper and lower slitting wheels 156, 158. The controller 210 also commands the operation of the down feed conveyor motor 178 to allow the down feed conveyor 174 to facilitate the conveyance of the quilted material web 20 along the panel cutter 100. Thus, the left and right sets of slitting wheels 156, 158 move along respective cut lines 40, 42 to form side edges of the panel 24 that are equidistant from the detected center mark.


That operation continues until, at 268, the length sensor 198 detects the leading edge 36 (FIG. 1) of the panel 24 and simultaneously provides a leading edge feedback signal to the controller 210. The controller 210 immediately turns Off the pinch roller feed motor 117, the two slitter and feed mechanism motors 154 and the downstream conveyor motor 178. Thereafter, the controller 210 commands the clamp actuators 146 to lower the clamp bar 144 onto the quilted material web 20 and against the fixed plate 149. In addition, the controller 210 commands the cross cut positioning motor 142 to move the carriage 126 and rotating cross cut blade 123 transversely across the panel cuter 100 along cutline 38 to form a trailing edge of the panel 24. Then, at 272, the controller 210 commands the clamp actuators 146 to raise the clamp bar and unclamp the quilted material web 20. The controller 210 then initiates a panel feed by activating the slitter and feed mechanism motors 154 and the downstream conveyor motor 178. The two sets of upper and lower slitter wheels continue to trim the side edges 40, 42 of the panel 32 to be equidistant from the center mark 48.


Thus, the panel cutter 100 has the advantage of cutting panels from a quilted material web in which quilted patterns are consistently and accurately centered on the panel. Further, with the panel cutter 100, successive quilted patterns can be of different sizes, and the panels can be accurately and quickly cut to different lengths and widths with the quilted panels centered thereon.


While the invention has been illustrated by the description of one embodiment and while the embodiment has been described in considerable detail, there is no intention to restrict nor in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those who are skilled in the art. As will be appreciated, there are many variations relating to the structure and operation of the detectors 182, 198, the cross cutting apparatus 120 and the trimming apparatus 150, 152. For, example, FIG. 6 illustrates an alternative embodiment of the panel cutter 100 that uses a cross cutting apparatus 120 and a single center mark detector or camera 182. The cross cutting apparatus 120 is mounted on a second cross cut blade carriage 214 that provides motion of the cross cutting apparatus 120 in the longitudinal direction 118. Thus, the cross cutting apparatus 120 is movable to the left and right as viewed in FIG. 4. In a process similar to that previously described, the controller 210 is operative to move the quilted material web 20 to the right as viewed in FIG. 4 and to cause the cross cutting apparatus 120 to cut the web 20 along the cut line 36. Thereafter, the controller 210 provides command signals to move the cross cutting apparatus 120 to the left as viewed in FIG. 6 to the position shown in FIG. 7. The cross cutting apparatus 120 is moved through a distance equal to a length of the quilted panel 24, that is, the distance between the cross cut paths 36, 38. As described earlier, the controller 210 is operative to cause the cross cutting apparatus 120 to move across the quilted material web 20 along the cut line 38, thereby cutting the panel 24 to the desired length. Thereafter, the controller 210 initiates motion of the quilted web material 20 and causes the slitter and feed apparatus 150, 152 to cut along the trim lines 40, 42 to form the side edges of the panel.



FIG. 8 illustrates a further embodiment of the panel cutter 100 using a single center mark detector 182 and two cross cutting apparatus 120a, 120b. Each of the cross cutting apparatus 120a, 120b is supported on a separate cross cut carriage 214a, 214b that is movable in the longitudinal direction 118. In a manner as earlier described, the controller 210 is operative to feed the quilted web 20 to the right as viewed in FIG. 8 until the center mark 48 is detected crossing the centerline 66 (FIG. 1) of the detector 182. The controller 210 then stops the feed of the quilted material web 20. Thereafter, the controller 210 causes the cross cutting apparatus 120a, 120b to move along the cut lines 36, 38, thereby cutting the panel 24 to its desired length. As will be appreciated, alternatively, the controller 210 can operate the cross cutting apparatus 120a, 120b sequentially or simultaneously. As will be appreciated, in a still further embodiment, both of the two cross cut blades and motors can be mounted on the respective longitudinal carriages 214a, 214b instead of the transverse carriage of FIG. 2. Then the longitudinal carriages 214a, 214b can be mounted on separate or a common transverse carriage.


Therefore, the invention in its broadest aspects is not limited to the specific details shown and described. Consequently, departures may be made from the details described herein without departing from the spirit and scope of the claims that follow.

Claims
  • 1. An apparatus for cutting a quilted material web having a quilted pattern into a panel, the panel having a width and length with the quilted pattern disposed therein, the quilted material web being movable in a longitudinal direction substantially parallel to a length of the quilted material web, the apparatus comprising: a first detector for detecting a center of the quilted pattern on the quilted material web; and a cutting apparatus responsive to the detector detecting the center of the quilted pattern for cutting the quilted material web to form edges of the panel equidistant from the center of the quilted pattern.
  • 2. An apparatus for cutting a quilted material web having a quilted pattern into a panel, the panel having a width and length with the quilted pattern disposed therein, the quilted material web being movable in a longitudinal direction substantially parallel to a length of the quilted material web, the apparatus comprising: a first detector for detecting a center of the quilted pattern on the quilted material web; and a trimming apparatus being movable to a position displaced from the center of the quilted pattern a first distance in a transverse direction substantially perpendicular to the longitudinal direction, the first distance being substantially equal to one-half the width of the panel, and the trimming apparatus being operable to cut the quilted material web to form a first side edge of the panel in the longitudinal direction in response to the first detector detecting the center of the quilted pattern.
  • 3. The apparatus of claim 2 wherein the trimming apparatus comprises a pair of trim blades, each of the trim blades being movable on an opposite side of the center of the quilted pattern, and the pair of trim blades being operable to cut the quilted material web to form opposite side edges of the panel extending in the longitudinal direction equidistant from the center of the quilted pattern.
  • 4. The apparatus of claim 3 wherein the trim blades are movable to respective positions displaced in opposite directions from the center of the quilted pattern by the first distance.
  • 5. The apparatus of claim 4 wherein the trim blades are movable in the transverse direction.
  • 6. The apparatus of claim 3 further comprising: a cross cutting apparatus being movable in the transverse direction for cutting the quilted web material to form end edges of the panel extending in the transverse direction; and a second detector for detecting an edge of the quilted material web and being movable to a position displaced from the cross cutting apparatus by a second distance in the longitudinal direction, the second distance being substantially equal to the length of the panel and the cross cutting apparatus being movable in response to the second detector to form the end edges equidistant from the center of the quilted pattern.
  • 7. The apparatus of claim 6 wherein the second detector is movable in the longitudinal direction.
  • 8. The apparatus of claim 6 wherein the first detector is movable to a position displaced from the cross cutting apparatus a third distance in the longitudinal direction, the third distance being substantially equal to one-half the length of the panel.
  • 9. The apparatus of claim 8 wherein the first detector is movable in the longitudinal direction.
  • 10. The apparatus of claim 6 further comprising a control connected to the first detector, the second detector, the trimming apparatus and the cross cutting apparatus and being operable to command operation of the trimming apparatus and the cross cutting apparatus.
  • 11. The apparatus of claim 6 wherein the first detector is a vision camera.
  • 12. The apparatus of claim 6 wherein the second detector is an edge sensor.
  • 13. The apparatus of claim 6 wherein the edge sensor is a photocell.
  • 14. The apparatus of claim 2 wherein the quilted pattern is displayed on a first side of the quilted material web and the second detector is located adjacent an opposite side of the quilted material web.
  • 15. The apparatus of claim 14 wherein the first detector is located adjacent the opposite side of the quilted material web.
  • 16. An apparatus for cutting a quilted material web having a quilted pattern into a panel, the panel having a width and length with the quilted pattern disposed therein, the quilted material web being movable in a longitudinal direction substantially parallel to a length of the quilted material web, the apparatus comprising: a cross cutting apparatus being movable in a transverse direction substantially perpendicular to the longitudinal direction for cutting the quilted web material to form end edges of the panel extending in the transverse direction; a length detector for detecting an edge of the quilted material web and being movable in the longitudinal direction to a position displaced from the cross cutting apparatus by a distance substantially equal to the length of the panel; a camera movable in the longitudinal direction to a position displaced from the cross cutting apparatus a distance substantially equal to one-half the length of the panel, the camera being operable to detect a center of the quilted pattern on the quilted material web; and a pair of trim blades, each of the trim blades being movable to a position on an opposite side of the center of the quilted pattern, and the pair of trim blades being operable to cut the quilted material web to form opposed side edges of the panel extending in the longitudinal direction equidistant from the center of the quilted pattern.
  • 17. The apparatus of claim 16 wherein the quilted pattern is displayed on a first side of the quilted material web and the camera is located adjacent an opposite side of the quilted material web.
  • 18. The apparatus of claim 17 wherein the length detector is located adjacent the opposite side of the quilted material web.
  • 19. A quilted material web comprising: a web of quilted material comprising a plurality of quilted patterns spaced longitudinally with respect to the quilted material web; and a plurality of center marks, each center mark representing a center of one of the plurality of quilted patterns, the plurality of center marks being used for cutting quilted panels to substantially center respective quilted patterns within the quilted panels.
  • 20. The apparatus of claim 19 wherein the quilted pattern is displayed on a first side of the quilted material web and the plurality of center marks are located on an opposite side of the quilted material web.
  • 21. A method of cutting a quilted material web having a quilted pattern into a panel, the panel having a width and length with the quilted pattern disposed therein, the quilted material web being movable in a longitudinal direction with respect to a length of the quilted material web, the method comprising: applying a center mark to the quilted material web, the center mark identifying a center of the desired quilted pattern; moving the quilted material web in the longitudinal direction; detecting the center mark; stopping motion of the quilted material web in response to detecting the center mark; and cutting the quilted web material to form opposed side edges of the panel extending in the longitudinal direction equidistant from the center of the quilted pattern.
  • 22. A method of claim 21 further comprising after stopping motion of the quilted material web, cutting the quilted web material in a transverse direction substantially perpendicular to the longitudinal direction to form a first end edge of the panel displaced from the center of the quilted pattern in the longitudinal direction by a distance substantially equal to one-half the length of the panel.
  • 23. A method of claim 21 further comprising: after cutting the first edge, moving the quilted web material in the longitudinal direction; detecting the first end edge of the panel; and cutting the quilted web material in the transverse direction in response to detecting the first end edge to form a second end edge of the panel separated from the first end edge by a distance substantially equal to the length of the panel, the first and second end edges being substantially equidistant from the center of the quilted pattern.
  • 24. A method of claim 23 further comprising: providing a cross cutting apparatus being movable in the transverse direction for cutting the quilted web material to form end edges of the panel; providing a length detector; and prior to detecting the first end edge of the panel, moving the length detector to a position displaced from the cross cutting apparatus by a distance substantially equal to the length of the panel.
  • 25. A method of claim 21 further comprising: providing a camera for detecting a center of the quilted pattern in response to the quilted material web moving in the longitudinal direction; and moving the camera to a position displaced from the cross cutting apparatus by a distance substantially equal to one-half the length of the panel.
  • 26. A method of claim 21 further comprising: providing a pair of trim blades, each of the trim blades being disposed on an opposite side of the center of the quilted pattern; and moving each of the trim blades to a position displaced from the center of the quilted pattern by a distance substantially equal to one-half the width of the panel; and cutting the quilted material web to form two opposed parallel side edges in the longitudinal direction that are equidistant from the center of the quilting pattern and separated by a distance substantially equal to the width of the panel.
  • 27. A method of cutting a quilted material web having quilted patterns into panels, each of the panels having a width and a length with a respective quilted pattern disposed therein, the quilted material web being movable in a longitudinal direction with respect to a length of the quilted material web, the method comprising: applying center marks to the quilted material web, the center marks identifying centers of respective quilted patterns; providing a cross cutting apparatus for cutting end edges of respective panels; providing a length detector for detecting end edges of respective panels; providing a trimming apparatus for cutting side edges of the panel; providing a center detector for detecting the centers of the quilted pattern; moving the center detector to a position displaced from the cross cutting apparatus by a distance substantially equal to one-half the length of the panel; moving the quilted material web in the longitudinal direction; detecting a position of a center mark; stopping motion of the quilted material web in response to detecting the position of the center mark; moving the trimming apparatus to a position centering the center mark with respect to the trimming apparatus; operating the cross cutting apparatus to form a first end edge of the panel; moving the length detector to a position displaced from the center mark by a distance substantially equal to the length of the panel; moving the quilted material web in the longitudinal direction; simultaneously operating the trimming apparatus to cut opposed side edges of the panel substantially equidistant from the center mark; detecting the first end edge with the length detector; stopping motion of the quilted material web in response to detecting the first end edge; operating the cross cutting apparatus to form a second end edge of the panel, the first end edge and the second end edge being equidistant from the center mark.
  • 28. A method of 27 further comprising iterating the steps of detecting a position of a center mark through operating the cross cutting apparatus to form a second end edge for each of the center marks on the quilted material web.
  • 29. A method of claim 27 wherein the quilted pattern is displayed on one side of the quilted material web, and the method further comprises applying the center marks to an opposite side of the web.
  • 30. A method of claim 29 further comprising printing the center marks on the opposite side of the web.
Parent Case Info

This application claims the benefit of U.S. Provisional Application Ser. No. 60/555,460, filed on Mar. 23, 2004, which is hereby expressly incorporated by reference herein.

Provisional Applications (1)
Number Date Country
60555460 Mar 2004 US