Quinazoline Derivatives

Information

  • Patent Application
  • 20080096881
  • Publication Number
    20080096881
  • Date Filed
    September 15, 2004
    19 years ago
  • Date Published
    April 24, 2008
    16 years ago
Abstract
The invention concerns quinazoline derivatives of Formula (I): wherein each of R1, X1, R2, R3, R5, n and m have any of the meanings defined in the description; processes for their preparation, pharmaceutical compositions containing them and their use in the manufacture of a medicament for use as an antiproliferative agent in the prevention or treatment of tumours which are sensitive to inhibition of EGF and erbB receptor tyrosine kinases.
Description
EXAMPLE 1
Preparation of 4-(3-Chloro-2-fluoroanilino)-7-methoxy-6-{[1-(N-methylcarbamoylmethyl)piperidin-4-yl]oxy}quinazoline

2-Chloro-N-methylacetamide (32 mg, 0.3 mmol) was added dropwise to a mixture of 4-(3-chloro-2-fluoroanilino)-7-methoxy-6-[(piperidin-4-yl)oxy]quinazoline (120 mg, 0.3 mmol), potassium iodide (16 mg, 0.1 mmol), and potassium carbonate (50 mg, 0.36 mmol) in acetonitrile (5 ml). The mixture was heated at reflux for one hour. After evaporation of the solvents under vacuum, the residue was taken up in dichloromethane. The organic solution was washed with water and brine, dried over magnesium sulfate. After evaporation of the solvents under vacuum, the residue was purified by chromatography on silica gel (eluant: 1% to 2% 7N methanolic ammonia in dichloromethane) to give the title compound as a white solid (85 mg, 60%).



1H NMR Spectrum: (CDCl3) 1.98 (m, 2H), 2.08 (m, 2H), 2.46 (m, 2H), 2.85 (m, 2H), 2.87 (d, 3H), 3.07 (s, 2H), 4.02 (s, 3H), 4.49 (m, 1H), 7.16 (m, 4H), 7.31 (m, 2H), 8.49 (m, 1H), 8.71 (s, 1H); Mass spectrum: MH+ 474


4-(3-Chloro-2-fluoroanilino)-7-methoxy-6-[(piperidin-4-yl)oxy]quinazoline used as the starting material was prepared as follows:


Step 1
6-Acetoxy-4-(3-chloro-2-fluoroanilino)-7-methoxyquinazoline hydrochloride

6-Acetoxy-4-chloro-7-methoxyquinazoline (prepared as described in Example 25-5 of in WO01/66099, 6.00 g, 23.8 mmol) and 3-chloro-2-fluoroaniline (3.46 g, 23.8 mmol) were suspended in iso-propanol (200 ml). The mixture was heated to 80° C. under reflux for 3 hours. The solvent was evaporated; the residue was crystallised from acetonitrile, giving the product hydrochloride as a pale pink crystalline solid (8.16 g, 92%);



1H NMR: 2.37 (s, 3H), 4.00 (s, 3H), 7.34 (ddd, 1H), 7.48 (s, 1H), 7.52 (ddd, 1H), 7.61 (ddd, 1H), 8.62 (s, 1H), 8.86 (s, 1H); Mass Spectrum: 362.4, 364.4.


Step 2
4-(3-Chloro-2-fluoroanilino)-6-hydroxy-7-methoxyquinazoline

6-Acetoxy-4-(3-chloro-2-fluoroanilino)-7-methoxyquinazoline hydrochloride from step 1 (8.72 g, 21.9 mmol) was dissolved in methanol (200 ml). Concentrated aqueous ammonia (15 ml) was added, and the solution heated to 50° C. with stirring for 2 hours, causing precipitation of a cream coloured solid. The solid was collected by filtration, washed with diethyl ether (3×200 ml), and dried in vacuo at 60° C. over diphosphorous pentoxide, giving the product as an off white solid (5.40 g, 77%);



1H NMR: 3.95 (s, 3H), 7.19 (s, 1H), 7.23 (dd, 1H), 7.42 (dd, 1H), 7.50 (dd, 1H), 7.64 (s, 1H), 8.32 (s, 1H), 9.43 (s, 1H), 9.67 (br.s, 1H); Mass Spectrum: 320.4, 322.4.


Step 3
6-{[(1-tert-Butoxycarbonyl)piperidin-4-yl]oxy}-4-(3-chloro-2-fluoroanilino)-7-methoxy quinazoline

4-(3-Chloro-2-fluoroanilino)-6-hydroxy-7-methoxyquinazoline from Step 2 (1870 mg, 5.85 mmol) was dissolved in DMA (50 ml). tert-Butyl (4-methanesulfonyloxy)piperidine-1-carboxylate (prepared as in Chemical & Pharmaceutical Bulletin 2001, 49(7), 822-829; 490 mg, 1.76 mmol) and cesium fluoride (890 mg, 5.85 mmol) were added, and the mixture was heated to 85° C. with stirring. At intervals of 2 hours, 4 hours and 6 hours, tert-butyl 4-methanesulfonyloxypiperidine-1-carboxylate and cesium fluoride were added in the above quantities to the reaction mixture. Heating was continued at 85° C. for a further 6 hours after the final addition. The solvent was evaporated, and the residue was partitioned between DCM (150 ml) and H2O (150 ml). The aqueous layer was extracted with DCM (4×100 ml), and the extractions combined with the DCM layer. The combined DCM fractions were dried over MgSO4 and evaporated. The residue was purified by chromatography, eluting with 0 to 2.5% (7:1 MeOH/concentrated aqueous NH4OH) in DCM. The appropriate fractions were combined and evaporated, giving the product as a light brown foam (2.40 g, 58%, allowing for 2.3 equivalents of residual DMA);



1H NMR: 1.40 (s, 9H), 1.60-1.65 (m, 2H), 1.95-2.00 (m, 2H), 3.20-3.25 (m, 2H), 3.65-3.70 (m, 2H), 3.92 (s, 3H), 4.68 (m, 1H), 7.21 (s, 1H), 7.27 (dd, 1H), 7.47 (ddd, 1H), 7.51 (dd, 1H), 7.85 (s, 1H), 8.36 (s, 1H), 9.53 (s, 1H); Mass Spectrum: 503.5, 505.5.


Step 4
4-(3-chloro-2-fluoroanilino)-7-methoxy-6-[(piperidin-4-yl)oxy]quinazoline

6-([(1-tert-Butoxycarbonyl)piperidin-4-yl]oxy) 4-(3-chloro-2-fluoroanilino)-7-methoxyquinazoline from step 3 (350 mg, 0.70 mmol) was dissolved in trifluoroacetic acid (5 ml), and the solution stood for 2 hours. The excess trifluoroacetic acid was evaporated, and the residue was azeotroped twice with DCM. The residue was purified by chromatography, eluting with 0 to 4% (7:1 MeOH/concentrated aqueous NH4OH) in DCM. Evaporation of the appropriate fractions gave the product as an off-white solid (270 mg, 96%);



1H NMR: 1.53-1.64 (m, 2H), 2.00-2.05 (m, 2H), 2.64-2.72 (m, 2H), 3.00-3.07 (m, 2H), 3.92 (s, 3H), 4.60 (m, 1H), 7.20 (s, 1H), 7.26 (ddd, 1H), 7.47 (dd, 1H), 7.50 (dd, 1H), 7.82 (s, 1H), 8.34 (s, 1H), 9.56 (s, 1H); Mass Spectrum: 403.2, 405.2.


EXAMPLE 2
Preparation of 4-(3-Chloro-2-fluoroanilino)-7-methoxy-6-{[1-(N-methylcarbamoyl)piperidin-4-yl]oxy}quinazoline

Methylisocyanate (20.4 μl, 0.33 mmol) was added dropwise to a mixture of 4-(3-chloro-2-fluoroanilino)-7-methoxy-6-[(piperidin-4-yl)oxy]quinazoline (120 mg, 0.3 mmol) in dichloromethane (5 ml) at room temperature. The mixture was stirred at room temperature for 4 hours. After evaporation of the solvents under vacuum, the residue was purified by chromatography on silica gel (eluant: 2% 7N methanolic ammonia in dichloromethane) to give the title compound as a white solid (100 mg, 72%).



1H NMR Spectrum: (CDCl3) 1.98 (m, 2H), 2.08 (m, 2H), 2.83 (d, 3H), 3.32 (m, 2H), 3.72 (m, 2H), 4.01 (s, 3H), 4.48 (m, 1H), 4.64 (m, 1H), 7.16 (m, 2H), 7.23 (s, 1H), 7.31 (s, 1H), 7.38 (br s, 1H), 8.44 (m, 1H), 8.70 (s, 1H); Mass spectrum: MH+ 460.


EXAMPLE 3
Preparation of 4-(3-Chloro-2-fluoroanilino)-7-methoxy-6-{[1-(N-(2-pyrrolidin-1-ylethyl)carbamoyl)piperidin-4-yl]oxy}quinazoline

A mixture of 6-{[1-(N-(2-chloroethyl)carbamoyl)piperidin-4-yl]oxy}-4-(3-chloro-2-fluoroanilino)-7-methoxyquinazoline (204 mg, 0.4 mmol), pyrrolidine (0.14 ml, 1.6 mmol) and potassium iodide (134 mg, 0.8 mmol) in dimethylacetamide (3 ml) was heated at 80° C. for 4 hours. After cooling and evaporation of the solvents under vacuum, the residue was partitioned in water, dichloromethane and extracted with dichloromethane. The organic layer was washed with water and brine, and dried over magnesium sulfate. After evaporation of the solvents under vacuum, the residue was purified by chromatography on silica gel (eluant: 3% to 4% 7N methanolic ammonia in dichloromethane) to give the title compound as a white solid (77 mg, 36%).



1H NMR Spectrum: (CDCl3) 1.78 (m, 4H), 1.93 (m, 2H), 2.04 (m, 2H), 2.53 (m, 4H), 2.62 (t, 2H), 3.33 (m, 4H), 3.75 (m, 2H), 4.01 (s, 3H), 4.64 (m, 1H), 5.27 (m, 1H), 7.16 (m, 2H), 7.22 (s, 1H), 7.30 (s, 1H), 7.36 (br s, 1H), 8.45 (m, 1H), 8.70 (s, 1H); Mass spectrum: MH+ 543.


The 6-{[1-(N-(2-chloroethyl)carbamoyl)piperidin-4-yl]oxy}-4-(3-chloro-2-fluoroanilino)-7-methoxyquinazoline used as starting material was made similarly to Example 2 by reaction of 4-(3-chloro-2-fluoroanilino)-7-methoxy-6-[(piperidin-4-yl)oxy]quinazoline (160 mg, 0.4 mmol) and 2-chloroethylisocyanate (34 μL, 0.4 mmol). Yield: 200 mg, 100%. Mass spectrum: MH+ 508, 510.


EXAMPLE 4
Preparation of 4-(3-Chloro-2-fluoroanilino)-7-methoxy-6-{[1-(morpholin-4-ylcarbonyl)piperidin-4-yl]oxy}quinazoline

4-Morpholinylcarbonyl chloride (35 μl, 0.3 mmol) was added dropwise to a ice-cooled mixture of 4-(3-chloro-2-fluoroanilino)-7-methoxy-6-[(piperidin-4-yl)oxy]quinazoline (120 mg, 0.3 mmol) and diisopropylethylamine (63 μl, 0.36 mmol) in dichloromethane (5 ml). At the end of the addition, the mixture was stirred at room temperature for 18 hours. The mixture was diluted with dichloromethane, washed with water and brine and dried over magnesium sulfate. After evaporation of the solvents under vacuum, the residue was purified by chromatography on silica gel (eluant: 1% to 2% 7N methanolic ammonia in dichloromethane) to give the title compound as a white solid (100 mg, 64%).



1H NMR Spectrum: (CDCl3) 1.93 (m, 2H), 2.05 (m, 2H), 3.20 (m, 2H), 3.29 (m, 4H), 3.62 (m, 2H), 3.70 (m, 4H), 4.01 (s, 3H), 4.64 (m, 1H), 7.16 (m, 2H), 7.20 (s, 1H), 7.31 (m, 2H), 8.49 (m, 1H), 8.71 (s, 1H); Mass spectrum: MH+ 516.


EXAMPLE 5
4-(3-chloro-2,4-difluoroanilino)-7-methoxy-6-{[1-(N-methylcarbamoylmethyl)piperidin-4-yl]oxy}quinazoline

2-Chloro-N-methylacetamide (51 mg, 0.47 mmol) was added dropwise to a mixture of 4-(3-chloro-2,4-difluoroanilino)-7-methoxy-6-[(piperidin-4-yl)oxy]quinazoline (200 mg, 0.47 mmol), potassium iodide (79 mg, 0.47 mmol) and potassium carbonate (79 mg, 0.57 mmol) in dimethylacetamide (5 ml). The mixture was heated at 70° C. for one hour. After cooling and filtration of the solids, the filtrate was purified on an HPLC column (C18, 5 microns, 19 mm diameter, 100 mm length) of a preparative HPLC-MS system eluting with a mixture of water and acetonitrile containing 2 g/l of ammonium formate (gradient) to give the title compound (55 mg, 24%) as a white solid.



1H NMR Spectrum: (CDCl3) 1.98 (m, 2H), 2.07 (m, 2H), 2.44 (m, 2H), 2.86 (m, 2H), 2.87 (d, 3H), 3.06 (s, 2H), 4.01 (s, 3H), 4.48 (m, 1H), 7.07 (m, 1H), 7.15 (m, 1H), 7.20 (s, 1H), 7.30 (m, 2H), 8.32 (m, 1H), 8.66 (s, 1H); Mass spectrum: MH+ 492.


4-(3-chloro-2,4-difluoroanilino)-7-methoxy-6-[(piperidin-4-yl)oxy]quinazoline used as starting material was made as follows:


3-Chloro-2,4-difluoroaniline (1.7 g, 10.1 mmol) and 5N hydrogen chloride in isopropanol (2 ml) were added to a suspension of tert-butyl 4-[(4-chloro-7-methoxyquinazolin-6-yl)oxy]piperidine-1-carboxylate (4 g, 10.1 mmol, PCT Int. Appl. WO2003082831, AstraZeneca) in isopropanol (50 ml). The mixture was stirred at 80° C. for 3 hours. After evaporation of the solvents, the residue was purified by chromatography on silica gel (eluant: 5-10% 7N methanolic ammonia in dichloromethane) to give 4-(3-chloro-2,4-difluoroanilino)-7-methoxy-6-[(piperidin-4-yl)oxy]quinazoline (3.63 g, 85%) as a white solid.



1H NMR Spectrum: (CDCl3+CD3CO2D): 2.15 (m, 2H), 2.30 (m, 2H), 3.34 (m, 2H), 3.47 (m, 2H), 4.01 (s, 3H), 4.91 (m, 1H), 7.03 (m, 1H), 7.58 (m, 2H), 7.90 (s, 1H), 8.55 (s, 1H); Mass spectrum: MH+ 421.


EXAMPLES 6 TO 10

A suspension of [4-({4-(3-chloro-2-fluoroanilino)-7-methoxyquinazolin-6-yl}oxy)piperidin-1-yl]acetic acid dihydrochloride salt (212 mg, 0.4 mmol), 1-hydroxybenzotriazole (66 mg, 0.48 mmol), diisopropylethylamine (0.14 ml, 0.8 mmol), the appropriate amine (0.48 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (92 mg, 0.48 mmol) in dichloromethane (5 ml) was stirred for 2 hours. The mixture was washed with water, 10% aqueous sodium bicarbonate and brine and dried over magnesium sulfate. After evaporation of the solvents, the residue was purified by chromatography on silica gel (eluant: 2-3% 7N methanolic ammonia in dichloromethane) and triturated in acetonitrile to give the title compound.


EXAMPLE 6
4-(3-chloro-2-fluoroanilino)-6-{[1-(N-ethylcarbamoylmethyl)piperidin-4-yl]oxy}-7-methoxyquinazoline

The amine used was ethylamine.


Yield: 47 mg, 24%; 1H NMR Spectrum: (CDCl3) 1.17 (t, 3H), 1.98 (m, 2H), 2.09 (m, 2H), 2.45 (m, 2H), 2.87 (m, 2H), 3.05 (s, 2H), 3.33 (m, 2H), 4.02 (s, 3H), 4.49 (m, 1H), 7.16 (m, 4H), 7.30 (s, 1H), 7.33 (s br, 1H), 8.48 (m, 1H), 8.71 (s, 1H); Mass spectrum: MH+ 488.


EXAMPLE 7
4-(3-chloro-2-fluoroanilino)-7-methoxy-6-{[1-(N-[2-(pyrrolidin-1-yl)ethyl]carbamoylmethyl)piperidin-4-yl]oxy}quinazoline

The amine used was 1-(2-aminoethyl)pyrrolidine.


Yield: 53 mg, 24%; 1H NMR Spectrum: (CDCl3) 1.80 (m, 4H), 1.98 (m, 2H), 2.07 (m, 2H), 2.45 (m, 2H), 2.53 (m, 4H), 2.62 (t, 2H), 2.87 (m, 2H), 3.07 (s, 2H), 3.40 (m, 2H), 4.02 (s, 3H), 4.48 (m, 1H), 7.16 (m, 3H), 7.31 (m, 2H), 7.55 (s br 1H), 8.50 (m, 1H), 8.71 (s, 1H); Mass spectrum: MH+ 557.


EXAMPLE 8
4-(3-chloro-2-fluoroanilino)-7-methoxy-6-{[1-(N-(2-methoxyethyl)carbamoylmethyl)piperidin-4-yl]oxy}quinazoline

The amine used was 2-methoxyethylamine.


Yield: 57 mg, 28%; 1H NMR Spectrum: (CDCl3) 1.98 (m, 2H), 2.09 (m, 2H), 2.45 (m, 2H), 2.87 (m, 2H), 3.07 (s, 2H), 3.38 (s, 3H), 3.48 (s, 4H), 4.02 (s, 3H), 4.49 (m, 1H), 7.16 (m, 3H), 7.31 (m, 2H), 7.48 (s br, 1H), 8.49 (m, 1H), 8.71 (s, 1H); Mass spectrum: MH+ 518.


EXAMPLE 9
4-(3-chloro-2-fluoroanilino)-6-{[1-(N-(2-dimethylaminoethyl)carbamoylmethyl)piperidin-4-yl]oxy}-7-methoxyquinazoline

The amine used was N,N-dimethylethylenediamine.


Yield 79 mg, 37%; 1H NMR Spectrum: (CDCl3) 1.98 (m, 2H), 2.10 (m, 2H), 2.26 (s, 6H), 2.43 (m, 4H), 2.88 (m, 2H), 3.07 (s, 2H), 3.37 (m, 2H), 3.48 (s br, 1H), 4.03 (s, 3H), 4.49 (m, 1H), 7.16 (m, 3H), 7.31 (m, 2H), 7.51 (s br, 1H), 8.49 (m, 1H), 8.71 (s, 1H); Mass spectrum: MH+ 531.


EXAMPLE 10
4-(3-chloro-2-fluoroanilino)-7-methoxy-6-({1-[2-(4-methylpiperazin-1-yl)-2-oxoethyl]piperidin-4-yl}oxy)quinazoline

The amine used was N-methylpiperazine.


Yield: 64 mg, 30%; 1H NMR Spectrum: (CDCl3) 1.96 (m, 2H), 2.11 (m, 2H), 2.32 (s, 3H), 2.40 (m, 6H), 2.87 (m, 2H), 3.24 (s, 2H), 3.65 (m, 4H), 4.02 (s, 3H), 4.47 (m, 1H), 7.16 (m, 3H), 7.30 (m, 1H), 7.33 (s br, 1H), 8.48 (m, 1H), 8.70 (s, 1H); Mass spectrum: MH+ 543.


EXAMPLE 11
4-(3-chloro-2-fluoroanilino)-7-methoxy-6-({1-[2-(piperazin-1-yl)-2-oxoethyl]piperidin-4-yl}oxy)quinazoline

The procedure according to Examples 6 to 10 was used except that 1-tert-butoxycarbonylpiperazine was used as the amine and that after the aqueous work-up, the residue was stirred for 90 minutes in a 1:1 mixture of dichloromethane-trifluoroacetic acid (3 ml) and then purified by HPLC.


Yield: (150 mg from a 0.56 mmol scale, 51%); 1H NMR Spectrum: (CDCl3) 1.96 (m, 2H), 2.11 (m, 2H), 2.41 (m, 2H), 2.87 (m, 6H), 3.23 (s, 2H), 3.59 (m, 4H), 4.01 (s, 3H), 4.46 (m, 1H), 7.16 (m, 3H), 7.29 (s, 1H), 7.41 (s br, 1H), 8.45 (m, 1H), 8.70 (s, 1H); Mass spectrum: MH+ 529.


The [4-({4-(3-chloro-2-fluoroanilino)-7-methoxyquinazolin-6-yl}oxy)piperidin-1-yl]acetic acid dihydrochloride salt used as starting material was made as follows:


Tert-butyl chloroacetate (1.43 ml, 10 mmol) was added dropwise to a mixture of 4-(3-chloro-2-fluoroanilino)-7-methoxy-6-[(piperidin-4-yl)oxy]quinazoline (4.02 g, 10 mmol), potassium iodide (1.66 g, 10 mmol) and potassium carbonate (1.66 g, 12 mmol) in dimethylacetamide (50 ml). The mixture was heated at 70° C. for one hour. After evaporation of the solvents under vacuum, the residue was triturated in water. The resulting solid was filtered, washed with water and purified by chromatography on silica gel (eluant: 2% 7N methanolic ammonia in dichloromethane) to give tert-butyl [4-({4-(3-chloro-2-fluoroanilino)-7-methoxyquinazolin-6-yl}oxy)piperidin-1-yl]acetate as a white solid (3.0 g, 60%).


NMR Spectrum: (CDCl3) 1.48 (s, 9H), 2.01 (m, 2H), 2.10 (m, 2H), 2.56 (m, 2H), 2.89 (m, 2H), 3.19 (s, 2H), 4.01 (s, 3H), 4.49 (m, 1H), 7.16 (m, 3H), 7.29 (m, 2H), 8.48 (m, 1H), 8.70 (s, 1H); Mass spectrum: MH+ 517.


A suspension of tert-butyl [4-({4-(3-chloro-2-fluoroanilino)-7-methoxyquinazolin-6-yl}oxy)piperidin-1-yl]acetate (3.0 g, 5.8 mmol) in a solution of 4N hydrogen chloride in dioxane (40 ml) was stirred at room temperature for 3 hours. The solvents were evaporated under high vacuum. The residue was triturated in ether, filtered and washed with ether to give [4-({4-(3-chloro-2-fluoroanilino)-7-methoxyquinazolin-6-yl}oxy)piperidin-1-yl]acetic acid as the dihydrochloride salt (3.1 g, 100%). Mass spectrum: MH+ 461.


EXAMPLE 12
4-(3-chloro-2,4-difluoroanilino)-7-methoxy-6-({1-[2-(4-methylpiperazin-1-yl)-2-oxoethyl]piperidin-4-yl}oxy)quinazoline

[4-({4-(3-chloro-2,4-difluoroanilino)-7-methoxyquinazolin-6-yl}oxy)piperidin-1-yl]acetic acid dihydrochloride salt and N-methylpiperazine were converted to the title compound (126 mg, 56%) using the procedure according to Examples 6 to 10.



1H NMR Spectrum: (CDCl3) 1.94 (m, 2H), 2.09 (m, 2H), 2.31 (s, 3H), 2.40 (m, 6H), 2.84 (m, 2H), 3.23 (s, 2H), 3.65 (m, 4H), 4.01 (s, 3H), 4.45 (m, 1H), 7.06 (m, 1H), 7.22 (s, 1H), 7.29 (m, 1H), 7.36 (s br, 1H), 8.28 (m, 1H), 8.65 (s, 1H); Mass spectrum: MH+ 561


The [4-({4-(3-chloro-2,4-difluoroanilino)-7-methoxyquinazolin-6-yl}oxy)piperidin-1-yl]acetic acid dihydrochloride salt used as starting material was made from 4-(3-chloro-2,4-difluoroanilino)-7-methoxy-6-[(piperidin-4-yl)oxy]quinazoline using the same procedure as described in Example 11:


tert-Butyl[4-({4-(3-chloro-2,4-difluoroanilino)-7-methoxyquinazolin-6-yl}oxy)piperidin-1-yl]acetate (2.56 g, 67%): Mass spectrum: MH+ 535.


[4-({4-(3-chloro-2,4-difluoroanilino)-7-methoxyquinazolin-6-yl}oxy)piperidin-1-yl]acetic acid (dihydrochloride salt, 2.45 g, 93%): Mass spectrum: MH+ 479.


EXAMPLE 13
Pharmaceutical Compositions

The following illustrates a representative pharmaceutical dosage forms of the invention as defined herein (the active ingredient being termed “Compound X”), for therapeutic or prophylactic use in humans:



















(a)
Tablet I
mg/tablet








Compound X
100




Lactose Ph.Eur
182.75




Croscarmellose sodium
12.0




Maize starch paste (5% w/v paste)
2.25




Magnesium stearate
3.0







(b)
Injection I
(50 mg/ml)















Compound X
5.0%
w/v



1M Sodium hydroxide solution
15.0%
v/v



0.1M Hydrochloric acid (to adjust pH to 7.6)



Polyethylene glycol 400
4.5%
w/v



Water for injection to 100%.










The above formulations may be obtained by conventional procedures well known in the pharmaceutical art. For example the tablet may be prepared by blending the components together and compressing the mixture into a tablet.

Claims
  • 1. A quinazoline derivative of the Formula I:
  • 2. A quinazoline derivative according to claim 1, wherein n is 1, 2 or 3.
  • 3. A quinazoline derivative according to claim 1 or claim 2, wherein n is 2 or 3.
  • 4. A quinazoline derivative according to any one of claims 1 to 3, wherein n is 2.
  • 5. A quinazoline derivative according to any one of claims 1 to 3, wherein n is 3.
  • 6. A quinazoline derivative according to any one of the preceding claims, wherein each group R5 is a halogeno group.
  • 7. A quinazoline derivative according to any one of the preceding claims, wherein each group R5 is selected from chloro and fluoro.
  • 8. A quinazoline derivative according to any one of the preceding claims, which includes a group R5 positioned at an ortho- (2-) position on the benzene ring to which it is attached.
  • 9. A quinazoline derivative according to claim 8, wherein the group R5 positioned at the ortho- (2-) position is fluoro.
  • 10. A quinazoline derivative according to any one of the preceding claims, wherein in the Formula I, the group of sub-formula (i):
  • 11. A quinazoline derivative according to claim 10, wherein one of R10 or R12 is hydrogen and the other is fluoro, and R11 is chloro.
  • 12. A quinazoline derivative according to claim 10, wherein R10 is fluoro, R11 is chloro, and R12 is hydrogen.
  • 13. A quinazoline derivative according to claim 10, wherein R10 is fluoro, R11 is chloro, and R12 is fluoro.
  • 14. A quinazoline derivative according to any one of the preceding claims, wherein X1 is oxygen.
  • 15. A quinazoline derivative according to any one of the preceding claims, wherein R1 is selected from hydrogen, (1-6C)alkyl and (1-6C)alkoxy(1-6C)alkyl, wherein any (1-6C)alkyl group in R1 optionally bears one or more hydroxy or halogeno substituents
  • 16. A quinazoline derivative according to claim 15, wherein R1 is selected from (1-6C)alkyl, which optionally bears one or more hydroxy or halogeno substituents.
  • 17. A quinazoline derivative according to any one of the claims 1 to 13, wherein R1—X1— is selected from hydrogen, methoxy, ethoxy and 2-methoxyethoxy.
  • 18. A quinazoline derivative according to claim 17, wherein R1—X1— is methoxy.
  • 19. A quinazoline derivative according to claim 1 of Formula IA:
  • 20. A quinazoline derivative according to claim 1 of Formula IB:
  • 21. A quinazoline derivative according to claim 1 of Formula IC:
  • 22. A quinazoline derivative according to any one of claims 19 to 21, wherein R13 is methoxy.
  • 23. A quinazoline derivative according to any one of the preceding claims, wherein m is 0 or 1.
  • 24. A quinazoline derivative according to any one of the preceding claims, wherein m is 1.
  • 25. A quinazoline derivative according to any one of the preceding claims, wherein R2 is hydrogen or (1-3C)alkyl.
  • 26. A quinazoline derivative according to any one of the preceding claims, wherein R2 is hydrogen or methyl.
  • 27. A quinazoline derivative according to any one of the preceding claims, wherein R2 is hydrogen.
  • 28. A quinazoline derivative according to any one of the preceding claims, wherein R3 is (1-6C)alkyl.
  • 29. A quinazoline derivative according to any one of the preceding claims, wherein R3 is (1-3C)alkyl.
  • 30. A quinazoline derivative according to any one of the preceding claims, wherein R3 is methyl.
  • 31. A quinazoline derivative according to claim 1, which is selected from one or more of the following:
  • 32. A process for preparing a quinazoline derivative according to any one of the preceding claims, which comprises either Process (a) reacting a compound of the Formula II:
  • 33. A pharmaceutical composition which comprises a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined in any one of claims 1 to 31 in association with a pharmaceutically-acceptable diluent or carrier.
  • 34. A quinazoline derivative of the Formula I as defined in any one of claims 1 to 31, or a pharmaceutically acceptable salt thereof, for use as a medicament.
  • 35. The use of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined in any one of claims 1 to 31 in the manufacture of a medicament for use in the production of an anti-proliferative effect in a warm-blooded animal.
  • 36. A method for producing an anti-proliferative effect in a warm-blooded animal in need of such treatment which comprises administering to said animal a quinazoline derivative of the Formula I, or a pharmaceutically acceptable salt thereof, as defined any one of claims 1 to 31.
  • 37. A compound of the Formula VI, VII, VIII, X or XX as defined in claim 32 or a salt thereof.
Priority Claims (2)
Number Date Country Kind
03292309.6 Sep 2003 EP regional
04291248.5 May 2004 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/GB04/03937 9/15/2004 WO 00 3/15/2006