1. Field of the Invention
The present invention is directed to a horse drawn sulky, particularly to a racing sulky drawn by a horse in a harness racing competition.
2. Description of the Related Art
Horse racing with sulkies has been known for several millennia. However several problems still exist that decrease the speed and efficiency of the horse and sulky during a race.
The wheels of sulkies often are unaligned with respect to the longitudinal direction of travel. Wheels of sulkies are typically mounted after the sulky is assembled, and in many cases the wheels are not aligned, for example, the front of a wheel being closer to the center of the sulky than the back so that the wheel is angled inwardly, or vice versa, so that the wheel is angled outwardly, in either event creating a plowing effect that slows the horse. Many times this misalignment goes undetected and, even if detected, uncorrected.
Additionally, traditional sulkies have generally straight rails that are rigidly connected to an arch of the sulky. The straight and rigid rails can make it more difficult for the horse because the sulky tends to slide sideways during a turn as the sulky tends to be forced into a position directly behind the horse, i.e., to be forced by the harness and rails to the outside as the horse turns.
Attempts have been made to alleviate this problem, including U.S. Pat. No. 6,247,711, which uses pivotable wheels, and U.S. Pat. Nos. 4,863,180 and 5,183,279 which disclose a complicated connection between the rails and the arch that allows for lateral movement of the rails about a pivot axis. However, the pivoting assembly between the rail and the arch requires a complicated assembly of parts to work together to accommodate the lateral movement of the rails. The aforementioned sulkies may not meet the applicable standards of the United States Trotting Association Sulky Performance Standard, which is incorporated by reference as if reproduced herein.
Many sulkies have rails situated so that the center line between the rails is aligned with the center of the horse, but it is known that if the center line between the rails is offset toward the inside of the track, i.e., toward the left side of the sulky if the race is run counterclockwise or to the right if the race is run clockwise around a track, it moves the horse closer to the inside of the track so that the horse is permitted to run a shorter distance than with centered rails. International patent application WO 93/19969 discloses a sulky where the rails and the seat are shifted so that the center line of the rails and the seat are offset from the wheels. The “Time Machine” sulky, manufactured by Fab Weld, is believed to have included straight offset rails welded at right angles to the top of the arch. However, the geometry of the offset rails on the Time Machine sulky and those disclosed in WO 93/19969 tends to cause the pull on the sulky to be slightly uneven and also gives the sulky an unbalanced appearance.
The wheels of sulkies typically are wire-spoked. According to the United States Trotting Association Sulky Performance Standard, it is required to cover the spokes on both sides of the wheel to prevent the foot of the horse from stepping through the wheel. The wire-spokes of sulky wheels typically form a conical shape on each side of the wheel so that the wheel is wider at the axle than at the rims, such as in U.S. Pat. No. 5,857,686 and international patent application WO 93/19969. The wheel covers are also typically generally conical in shape to complement the wire spokes. However, conical wheel covers result in increased wind drag, slowing the horse during the race.
What is needed is a sulky that overcomes the problems associated with the prior art.
The inventive sulky includes a generally tubular arch having two ends, a seat mounted to the arch between the ends, a pair of strut assemblies depending downwardly from generally opposite ends of the arch, there being a wheel mounted to each strut assembly, a pair of rails mounted to the arch, one rail being mounted on one side of the seat and the other rail being mounted on the other side of the seat, each of the rails extending generally in a longitudinal direction from the arch to a distal end, the distal ends of the rails being adapted for harnessing the horse between the rails, a pair of supports, one support being connected to one of the rails at one end thereof and to one of the strut assemblies at the other end thereof and the other support being connected to the other rail at one end thereof and to the other strut assembly at the other end thereof, wherein the connection between each support and the corresponding rail is adjustable to allow for substantially longitudinal alignment of the wheels.
Also in accordance with the present invention, a novel sulky for being drawn by a horse is provided having a generally tubular arch having two ends, a seat mounted to the arch between the ends, a pair of strut assemblies depending downwardly from generally opposite ends of the arch, each strut assemblies for receiving a wheel, a pair of rails mounted to the arch, one rail being mounted on one side of the seat and the other rail being mounted on the other side of the seat, each of the rails extending generally in a longitudinal direction from the arch to a distal end, the distal ends being adapted for harnessing the horse between the rails, wherein the arch and the strut assemblies are positioned for substantially longitudinal alignment of the wheels prior to welding.
Also in accordance with the present invention, a novel sulky for being drawn by a horse is provided having a generally tubular arch having two ends, a pair of laterally spaced wheels mounted generally at opposite ends of the arch, a seat mounted to the arch between the ends and the wheels, a pair of rails mounted to the arch and extending forwardly, one of the rails being mounted to the arch on one side of the seat, and the other rail being mounted to the arch on the other side of the seat, each rail having a proximal portion mounted to the arch and a distal portion pivotally connected to the proximal portion so that the distal portion can pivot with respect to the proximal portion, each of the distal portions having a distal end adapted for harnessing the horse between the rails.
In another aspect of the invention, a novel sulky for being drawn by a horse is provided having a pair of laterally spaced wheels mounted generally at opposite ends of a generally tubular arch, there being a longitudinal center line between the pair of wheels, a seat mounted to the arch between the ends and the wheels, a first rail and a second rail extending from the arch, each rail having a proximal end mounted to the arch and a distal end adapted for harnessing to the horse, the first rail being mounted to the arch on one side of the seat and the second rail being mounted to the arch on the other side of the seat, wherein a portion of the first rail proximate the arch is angled toward the center line as the portion extends from the arch so that a longitudinal center line between the distal ends is offset from the longitudinal center line between the pair of wheels.
Also in accordance with the present invention, a wheel assembly is provided for a sulky to be drawn by a horse. The novel wheel assembly includes a wheel having two sides, a set of tubular spokes, and a rim, and a pair of substantially planar covers mounted on opposite sides of the wheel and substantially covering the tubular spokes. In another aspect of the invention, a pair of the novel wheel assemblies is mounted to generally opposite ends of an arch of a sulky.
Referring to
Sulky 10 is designed with advantages particularly helpful in a racing sulky. Removing resistances, such as wind drag, to decrease the amount of work the horse needs to exert is important during a race. Also, it is important to provide for the efficient transfer of energy between the horse and the sulky in the racing direction.
Sulky 10 also includes a pair of rails 24, 26 having proximal ends 28, 30 mounted to arch 14 and extending forwardly generally in the longitudinal direction of center line 2 to distal ends 32, 34. One of the rails is mounted on one side of seat 22 and the other rail is mounted on the other side of seat 22. For example, proximal end 28 of rail 24 is mounted on the left side of seat 22 and proximal end 30 of rail 26 is mounted on the right side of seat 22. Preferably, rails 24, 26 extend generally in a common rail plane 6, best seen in
In one embodiment, best seen in
Turning to
Aligned Wheels
Sulky 10 of the present invention provides aligned wheels 16 that are substantially longitudinally aligned with center line 2, which corresponds to the direction the horse is pulling sulky 10. Sulky 10 ensures wheels 16 are aligned by either providing for adjustment of the wheels or by welding strut assemblies 40 to arch 14 and rails 24, 26 to arch 14 in a jig to ensure that wheels 16 will be aligned.
The alignment of wheels 16 is determined mainly by the orientation of strut assemblies 40 and rails 24, 26 in relation to arch 14. If strut assemblies 40 or rails 24, 26 are not oriented properly with arch 14, it is difficult to make wheels 16 aligned. Much of the alignment of strut assemblies 40 occurs during the manufacture of a sulky, however, sulky 10 advantageously provides for adjustments of wheels 16 after sulky 10 has been assembled.
Turning to
Sulky 10 includes an adjustable connection 58 between support 46 and rail 24, 26 at first end 48 to allow for alignment of wheels 16 in the longitudinal direction of center line 2. In one embodiment, shown in
As shown in
Turning to
In another embodiment of the invention, sulky 10 is manufactured to ensure that strut assemblies 40 and wheels 16 are properly aligned with arch 14, rails 24, 26 and center line 2. To ensure that wheels 16 are aligned, strut assemblies 40 and arch 14 are placed in a jig (not shown), and strut assemblies 40 and arch 14 are positioned with the jig to ensure that strut assemblies are oriented so they are substantially normal to arch 14 prior to attaching strut assemblies 40 and arch 14 together, such as by welding or other attaching means. The jig positions arch 14 and strut assemblies 40 to ensure substantially longitudinal alignment of wheels 16 with rails 24, 26 and center line 2 before welding sulky 10 together. After alignment is confirmed, the pieces are attached, such as by welding, so that the strut assemblies and the arch 14 are aligned properly.
A similar method can be applied to ensure that the rails 24, 26 are oriented properly with respect to arch 14. Arch 14 and each rail 24, 26 are placed in a jig (not shown), and rails 24, 26 and arch 14 are aligned by the jig to ensure that arch 14 and rails 24, 26 are oriented properly, before rails 24, 26 are welded to arch 14.
Each alignment and welding step, i.e., between strut assemblies 40 and arch 14, and between arch 14 and rails 24, 26 can be performed separately, with a separate jig for each alignment and welding step, or a combined jig can be used to align all the pieces together at essentially the same time.
Wheel Covers
Turning to
Tubular spokes 92 are larger than wire spokes so that each spoke 92 is stronger and can support more weight than a wire spoke. Also each spoke 92 is only wide enough between sides 88 and 90 to support the desired weight, but is not so wide that spokes 92 protrude past rim 94, so that no part of wheel 16 is wider than rim 94 and tire 96. Preferably, spokes 92 are flattened somewhat, having a generally oval or elliptically shaped cross section, as is best seen in
Preferably there are five tubular spokes 92, as is shown in
Covers 98, 100 are mounted to wheel 16, such as by a plurality of fasteners 102, such as Allen headed screws, shown in
It is preferred that covers be removable so that they can be interchanged onto one or more wheels, and to allow for maintenance, such as refilling tires 96, or replacement of a wheel 16 or cover 98, 100. In one embodiment, covers 98, 100 are mounted to wheels 16 using Velcro 104 on covers 98, 100 and complementary Velcro 106 on wheel 16, best seen in
In a preferred embodiment, covers 98, 100 are mounted to wheel 16 so that covers 98, 100 are substantially recessed beneath the edge of tire 96, preferably so covers 98, 100 are flush or below the edge of tire 96, as is shown in
Covers 98, 100 are preferably made out of plastic or other resilient materials. Covers 98, 100 can be solid, opaque, colors, but preferably covers 98, 100 are transparent. Covers 98, 100 should be durable enough to withstand bumping by other sulkies, or kicking by a horse. Also, the material of covers 98, 100 should be chosen to minimize the noise transmitted between covers 98, 100 and wheels 16, as a horse racing track can be very bumpy and full of divots due to the hooves of several horses running on a dirt race track.
Offset Rails
Turning to
Continuing with
Portion AB of inside rail 24 proximate to arch 14 is angled toward center line 2 at an angle δ as portion AB extends from arch 14 toward distal end 28. Portion FG of outside rail 26 proximate arch 14 is angled toward center line 2 at an angle γ as portion FG extends from arch 14 toward distal end 30. Angle γ is larger than angle δ of portion AB of inside rail 24, so that center line 4 between distal ends 32, 34 is offset from center line 2 between wheels 16.
Preferably portion BC of inside rail 24 is substantially parallel to portion GH of outside rail 26, and to center lines 2 and 4 so that when stirrups 38 are adjusted along rails 24, 26, the stirrups remain generally the same distance apart.
In one embodiment, angle γ of portion FG is between 15° and 45°, preferably between 20° and 35°, still more preferably about 30°, while angle δ of portion AB is between 0° and about 20°, preferably between about 3° and about 10°, still more preferably about 5°. The distance D1 between inside end 18 of arch 14 and proximal end 28 of inside rail 24 is preferably substantially equal to the distance D2 between outside end 20 and proximal end 30 of outside rail 26 so that the pull experienced by arch 14 by rails 24, 26 is generally equal and balanced. Also, the substantially equal distances D1, D2 between proximal ends 28, 30 and arch ends 18, 20 give sulky 10 an even and balanced appearance.
Hinged Rails
Continuing with
Hinged inside rail 24 includes a proximal portion 66a between points A and C mounted to arch 14 on the inside, or left, of seat 22 and a distal portion 68a between points C and E pivotally connected to proximal portion 66a so that distal portion 68a can pivot in rail plane 6 with respect to proximal portion 66a. Similarly, hinged outside rail 26 includes a proximal portion 66b between points F and H mounted to arch 14 on the outside, or right, of seat 22 and a distal portion 68b between points H and K pivotally connected to proximal portion 66b so that distal portion 68b can pivot substantially in the rail plane 6 with respect to proximal portion 66b. Distal portions 68a, 68b preferably pivot through a generally lateral arc to permit lateral tracking of sulky 10 as the horse turns. Distal portions 68, 68b are adapted for harnessing the horse between rails 24, 26.
Turning to
In one embodiment, shown in
Turning to
In an alternative embodiment, shown in
Preferably, hinges 70, 70′ allow distal portions 68, 68′ to pivot with respect to proximal portions 66, 66′ over enough of a lateral range to allow the horse pulling sulky 10 to have enough lateral freedom of movement around a turn. It has been found that a horse will use between about 1 inch and about 1½ inches of lateral movement relative to a sulky when negotiating a turn, therefore, it is preferred that hinges 70, 70′ of sulky 10 allow for at least this much lateral movement for the horse. However, too much lateral movement can allow the horse to turn too quickly and can make it difficult to control the sulky. In one embodiment, hinges 70, 70′ allow distal portions 68, 68′ to pivot so that distal ends 32, 34 laterally move over a predetermined total lateral range of between about 1 inch and about 1 foot, preferably between about 3 inches and about 6 inches, still more preferably between about 4 inches and about 4½ inches as distal portions 68, 68′ pivot with respect to proximal portions 66, 66′.
The sulky of the present invention removes or lessons many problems with conventional sulkies including providing a way to align the wheels to ensure that they are aligned with the direction the horse is pulling the sulky, a novel wheel assembly with substantially planar wheel covers, a novel way of allowing the horse and the sulky to track independently of each other, and a novel way of offsetting the horse from the center line between the wheels.
While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific exemplary embodiment herein. The invention should therefore not be limited by the above described embodiments, but by all embodiments within the scope and spirit of the invention.