BACKGROUND
Cabinetry, including kitchen and other cabinets, routinely become filled with various items, at times preventing additional items to be stored therein. When cabinets either have limited shelf space, or have not enough shelves, space may be present within such cabinets and no means to utilize the space. Furthermore, a number of cabinets have external features, such as the recessed portion underneath a kitchen wall cabinet, that is typically only used, if ever, as a base for lighting or a kitchen radio. Accordingly, devices and systems useful to provide additional storage space within or around current cabinetry would be well received, including such devices and systems having features to make their use easy and convenient.
SUMMARY
In an exemplary embodiment of a rack system of the present disclosure, the rack system comprises a tray having a bottom, a first side, and an opposing second side, a first glider mechanism coupled to the first side of the tray, a second glider mechanism coupled to the second side of the tray, a first hinge mechanism coupled to a first end of the first glider mechanism, and a second hinge mechanism coupled to a first end of the second glider mechanism, wherein the first glider mechanism and the second glider mechanism are operable to allow the tray to move back and forth along a glider mechanism axis, and wherein the first hinge mechanism and the second hinge mechanism are operable to allow the tray to pivotally move relative to a pivot point. In another embodiment, the first glider mechanism and the second glider mechanism each comprise a side wall bracket and an engagement bracket. In yet another embodiment, the side wall bracket and the engagement bracket of each said glider mechanism slidingly engage one another. In an additional embodiment, the first glider mechanism and the second glider mechanism each further comprise a coupler bracket, wherein the side wall bracket slidingly engages the coupler bracket of each said glider mechanism, and wherein the coupler bracket slidingly engages the engagement bracket of each said glider mechanism. In yet an additional embodiment, the first glider mechanism and the second glider mechanism each further comprise a bracket cover coupled to the engagement bracket.
In an exemplary embodiment of a rack system of the present disclosure, the rack system comprises a tray having a base panel, a first side, and an opposing second side, a first glider mechanism coupled to the first side of the tray, a second glider mechanism coupled to the second side of the tray, a first rotation mechanism coupled to the first side of the tray, and a second rotation mechanism coupled to the second side of the tray, wherein the first glider mechanism and the second glider mechanism are operable to allow the tray to move back and forth along a glider mechanism axis, and wherein the tray is operable to rotate about the first and second rotation mechanisms. In another embodiment, the rack system further comprises a first hinge mechanism coupled to a first end of the first glider mechanism, and a second hinge mechanism coupled to a first end of the second glider mechanism, wherein the first hinge mechanism and the second hinge mechanism are operable to allow the tray to pivotally move relative to a pivot point. In another embodiment, the first hinge mechanism and the second hinge mechanism are counterbalance hinges operable to facilitate the pivotal movement of the tray.
In an exemplary embodiment of a rack system of the present disclosure, the tray has a first access configuration and a second access configuration, the first access configuration corresponding to no rotation of the tray about the first and second rotation mechanisms, and the second access configuration corresponding to rotation of the tray about the first and second rotation mechanisms at or about 180°.
In an exemplary embodiment of a rack system of the present disclosure, the rack system further comprises a first tray cover, the first tray cover coupled to the tray at a relative top of the tray. In another embodiment, the rack system further comprises a second tray cover, the second tray cover coupled to the tray at a relative bottom of the tray. In an additional embodiment, the first tray cover is hingedly coupled to the first tray so that the first tray cover may open and close about the first tray. In another embodiment of a rack system of the present disclosure, the rack system further comprises a first closure mechanism operable to secure the first tray cover in a closed position about the tray. In an additional embodiment, the first closure mechanism comprises a hook coupled to the tray and a receiver coupled to the first tray cover. In yet an additional embodiment, the first closure mechanism comprises a hook coupled to the first tray cover and a receiver coupled to the tray. In another embodiment, the rack system further comprises a second closure mechanism operable to secure the first tray cover in a closed position about the tray.
In an exemplary embodiment of a rack system of the present disclosure, the first glider mechanism and the second glider mechanism each comprise a side wall bracket and an engagement bracket. In another embodiment, the side wall bracket and the engagement bracket of each said glider mechanism slidingly engage one another. In yet another embodiment, the first glider mechanism and the second glider mechanism each further comprise a coupler bracket, wherein the side wall bracket slidingly engages the coupler bracket of each said glider mechanism, and wherein the coupler bracket slidingly engages the engagement bracket of each said glider mechanism. In an additional embodiment, the first glider mechanism and the second glider mechanism each further comprise a bracket cover coupled to the engagement bracket.
In an exemplary embodiment of a rack system of the present disclosure, the first hinge mechanism and the second hinge mechanism each comprise a first arm and a second arm hingedly coupled to one another. In an additional embodiment, the first hinge mechanism and the second hinge mechanism are counterbalance hinges operable to facilitate the pivotal movement of the tray. In an additional embodiment, the first glider mechanism, the second glider mechanism, the first hinge mechanism, and the second hinge mechanism are each configured to engage an external structure when the rack system is positioned relative to the external structure. In yet an additional embodiment, the first glider mechanism and the second glider mechanism each comprise a side wall bracket and an engagement bracket, wherein each engagement bracket engages the external structure at a pivot point, wherein the first hinge mechanism and the second hinge mechanism each comprise a first arm and a second arm hingedly coupled to one another, and wherein each second arm engages the external structure at a connection point.
In an exemplary embodiment of a rack system of the present disclosure, the rack system further comprises at least one glider spacer coupled to either the first glider mechanism or the second glider mechanism. In another embodiment, the first rotation mechanism is further coupled to the first glider mechanism. In yet another embodiment, the first rotation mechanism is further coupled to the at least one glider spacer. In an additional embodiment, the tray further comprises a cover plate positioned adjacent to the front side of the tray.
In an exemplary embodiment of a rack system of the present disclosure, the rack system further comprises a latch mechanism, the latch mechanism configured to engage a latch member positioned external to the tray. In another embodiment, the latch mechanism is further configured to engage the latch member to support the tray and its contents. In yet another embodiment, the latch mechanism is coupled to the tray. In an additional embodiment, the latch mechanism is coupled to cover plate positioned adjacent to the front side of the tray. In yet an additional embodiment, the latch mechanism is positioned within a tray pocket of the cover plate.
In an exemplary embodiment of a rack system of the present disclosure, the rack system further comprises one or more tray stops coupled to the tray, the one or more tray stops capable of stopping rotation of the tray about the first rotation mechanism. In an additional embodiment, the one or more tray stops each comprise a stop body and a stop fastener. In another embodiment, the rack system further comprises at least one glider actuator coupled to the tray, the at least one glider actuator capable of automatically facilitating back and forth movement of the tray. In yet another embodiment, the rack system further comprises at least one glider actuator coupled to one or more of the first glider mechanism and/or the second glider mechanism, the at least one glider actuator capable of automatically facilitating back and forth movement of the tray.
In an exemplary embodiment of a rack system of the present disclosure, the rack system further comprises at least one hinge actuator coupled to the tray, the at least one hinge actuator capable of automatically facilitating pivotal movement of the tray. In another embodiment, the rack system further comprises at least one hinge actuator coupled to one or more of the first glider mechanism and/or the second glider mechanism, the at least one hinge actuator capable of automatically facilitating pivotal movement of the tray. In yet another embodiment, the rack system further comprises at least one rotation actuator coupled to the tray, the at least one rotation actuator capable of facilitating rotational movement of the tray.
In an exemplary embodiment of a rack system of the present disclosure, the rack system further comprises a lock mechanism coupled to the tray, the lock mechanism capable of locking the tray in place before or after rotation of the tray. In an additional embodiment, the lock mechanism comprises a spring-loaded ball configured to engage a lock receiver coupled to an adjacent component of the rack system. In another embodiment, the lock receiver is selected from the group consisting of a receiver plate having an aperture defined therethrough and a pocket.
In an exemplary embodiment of a rack system of the present disclosure, the rack system is configured as a drawer. In an exemplary embodiment of a rack system of the present disclosure, the rack system comprises a tray having a base panel, a first side, and an opposing second side, a first glider mechanism coupled to the first side of the tray, a second glider mechanism coupled to the second side of the tray, a first rotation mechanism coupled to the first side of the tray, a second rotation mechanism coupled to the second side of the tray, a first hinge mechanism coupled to a first end of the first glider mechanism, a second hinge mechanism coupled to a first end of the second glider mechanism, a first tray cover, the first tray cover coupled to the tray at a relative top of the tray, a second tray cover, the second tray cover coupled to the tray at a relative bottom of the tray, a first closure mechanism operable to secure the first tray cover in a closed position about the tray, and a second closure mechanism operable to secure the first tray cover in a closed position about the tray, wherein the first glider mechanism and the second glider mechanism are operable to allow the tray to move back and forth along a glider mechanism axis, wherein the tray is operable to rotate about the first and second rotation mechanisms, and wherein the first hinge mechanism and the second hinge mechanism are operable to allow the tray to pivotally move relative to a pivot point.
In an exemplary embodiment of a rack system of the present disclosure, the rack system comprises a first tray having a base panel, a first side, and an opposing second side, a second tray having a base panel, a first side, and an opposing second side, a first glider mechanism coupled to the first side of the second tray, a second glider mechanism coupled to the second side of the second tray, and at least one pivot mechanism coupled to the first tray and the second tray, wherein the first glider mechanism and the second glider mechanism are operable to allow the second tray to move back and forth along a glider mechanism axis, and wherein the first tray and the second tray are operable to pivot relative to one another by way of the first pivot mechanism. In yet another embodiment, the at least one pivot mechanism comprises at least one lift actuator capable of pivoting the first tray relative to the second tray. In an additional embodiment, the rack system further comprises a first tray cover, the first tray cover coupled to the first tray at a relative top of the tray.
In an exemplary embodiment of a rack system of the present disclosure, the rack system comprises at least one cam mechanism configured to engage at least one guide channel, the at least one guide channel configured to enable the second tray to tilt as the first and second glider mechanisms extend. In yet another embodiment, the rack system comprises a tilt actuator coupled to the second tray and configured to automatically facilitate tilting motion of the second tray.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows an top view of a tray of a rack system in a relatively open configuration, according to an embodiment of the present disclosure;
FIG. 2 shows a perspective view of an outer portion of a first side of a rack system in a relatively open configuration, according to an embodiment of the present disclosure;
FIG. 3 shows a perspective view of an inner portion of a first side of a rack system in a relatively open configuration, according to an embodiment of the present disclosure;
FIG. 4 shows a perspective view of an outer portion of a second side of a rack system in a relatively open configuration, according to an embodiment of the present disclosure;
FIG. 5 shows a perspective view of an inner portion of a second side of a rack system in a relatively open configuration, according to an embodiment of the present disclosure;
FIG. 6 shows a perspective view of an outer portion of a first side of a rack system in a relatively closed configuration, according to an embodiment of the present disclosure;
FIG. 7 shows a perspective view of an outer portion of a second side of a rack system in a relatively closed configuration, according to an embodiment of the present disclosure;
FIG. 8 shows a front perspective view of an outer portion of the front of a rack system in a relatively closed configuration, according to an embodiment of the present disclosure;
FIG. 9 shows a top view of the inside of a tray of a rack portion, according to an embodiment of the present disclosure;
FIGS. 10A and 10B show side views of a latch mechanism and a latch member, according to an embodiment of the present disclosure;
FIG. 11 shows a front view of a rack system coupled to a kitchen wall cabinet, according to an embodiment of the present disclosure;
FIG. 12 shows a front view of a rack system coupled to a free-standing cabinet having doors, according to an embodiment of the present disclosure;
FIG. 13 shows a perspective view of a tray of a rack system in a relatively open configuration retaining a plurality of spices, according to an embodiment of the present disclosure;
FIG. 14 shows a block diagram of various components of a rack system, according to an embodiment of the present disclosure;
FIGS. 15 and 16 show opposing side views of a rack system, according to at least one embodiment of the present disclosure;
FIG. 17 shows a top perspective view of a rack system in a first access configuration, according to an embodiment of the present disclosure;
FIG. 18 shows an exemplary latch mechanism of a rack system, according to an embodiment of the present disclosure;
FIG. 19 shows a top perspective view of a rack system in a second access configuration; according to an embodiment of the present disclosure;
FIG. 20 shows a perspective view of a tray being rotated about a rotation mechanism, according to an embodiment of the present disclosure;
FIG. 21A shows a side view of a portion of a tray having a lock mechanism coupled thereto, according to an embodiment of the present disclosure;
FIGS. 21B and 21C show side views of a component of a rack system having various lock receivers coupled thereto or defined therein, according to an embodiment of the present disclosure;
FIG. 22 shows a top perspective view of a rack system in a first access configuration, according to an embodiment of the present disclosure;
FIGS. 23 and 24 show a perspective view of a tray being rotated about a rotation mechanism, according to an embodiment of the present disclosure;
FIG. 25 shows a front view of a rack system as part of a kitchen base cabinet, according to an embodiment of the present disclosure;
FIG. 26 shows a view of a rack system in a closed configuration, according to an embodiment of the present disclosure;
FIG. 27 shows a view of a rack system in an open configuration, according to an embodiment of the present disclosure;
FIG. 28 shows a view of a rack system in an open configuration and with an open cover, according to an embodiment of the present disclosure;
FIGS. 29 and 30 show perspective views of a rack system having a first tray and a second tray, according to embodiments of the present disclosure;
FIGS. 31 and 32 show perspective views of portions of a first tray and a second tray of an exemplary rack system with an actuator positioned therein, according to embodiments of the present disclosure;
FIG. 33 shows a perspective view of a rack system configured as an insert, according to an embodiment of the present disclosure;
FIGS. 34A and 34B show front views of a rack system positioned under a wall cabinet, according to embodiments of the present disclosure;
FIG. 35 shows a side view of a rack system positioned under a wall cabinet, according to embodiments of the present disclosure;
FIG. 36 shows an isometric view of a portion of a rack system, according to embodiments of the present disclosure;
FIG. 37 shows a view of a rack system in a closed configuration, according to an embodiment of the present disclosure;
FIG. 38 shows a side view of a rack system in a first access configuration, according to an embodiment of the present disclosure;
FIG. 39 shows a side view of a rack system in a second access configuration, according to an embodiment of the present disclosure;
FIG. 40 shows a front perspective view of a rack system in a second access configuration with tray cover in an closed configuration, according to an embodiment of the present disclosure;
FIG. 41 shows a front perspective view of a rack system in a second access configuration with tray cover in an open configuration, according to an embodiment of the present disclosure;
FIG. 42 shows a view of a rack system in a transition between a second access configuration and a third access configuration, according to an embodiment of the present disclosure; and
FIG. 43 shows a side view of a two-sided of a tray rack system, according to an embodiment of the present disclosure.
DETAILED DESCRIPTION
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of this disclosure is thereby intended.
An exemplary rack system of the present disclosure is shown in FIG. 1. As shown in FIG. 1, an exemplary rack system 100 comprises a tray 102 having a bottom 104, a first side 106, and an opposing second side 108. In various embodiments, and as shown in FIG. 1, rack system 100 may further comprise an optional front side 110, an optional opposing back side 112, and/or an optional cover plate 114 coupled to optional front side 110.
In addition, and as shown in FIG. 1, rack system 100 may further comprise hardware 116, such as, for example, one or more knobs, handles, pulls, pockets, etc. In various embodiments, rack systems 100 may also comprise one or more optional dividers 118 which may be positioned within tray 102, for example, using one or more divider braces 120, 122.
In at least one exemplary embodiment of a rack system 100 of the present disclosure, and as shown in FIG. 1, rack system 100 is a spice rack useful to store one or more spice containers. Various other embodiments of rack systems 100 of the present disclosure may be used to store any number of other items, including, but not limited to, paperwork, books, food, clothing, etc.
As shown in FIG. 1, an exemplary rack system 100 may comprise one divider 118, positioned in the relative middle of tray 102, to create two sections of tray 102. Divider 118, as shown in FIG. 1, is positioned using divider braces 120, 122. Each section of tray 102 can then be used to store various spices, in an embodiment of a rack system 100 used as a spice rack, for example.
An exemplary glider mechanism useful with a tray 102 of the present disclosure is shown in FIG. 2. As shown in FIG. 2, glider mechanism 200 (of rack system 100) comprises a side wall bracket 202 and an engagement bracket 204, whereby side wall bracket 202 and engagement bracket 204 can either directly slidingly engage one another or indirectly engage one another by way of a coupler bracket 206 positioned therebetween. As referenced herein, a glider mechanism 200 of the present may refer to the mechanism positioned on a side of a tray 102, and in an embodiment having two glider mechanisms 200, said mechanisms may be referred to as a first glider mechanism and a second glider mechanism. Portions of glider mechanism 200, in at least one embodiment, may move back and forth in a direction shown by the bi-directional arrow A in FIG. 2.
As shown in FIG. 2, engagement bracket 204 may further comprise an optional bracket cover 208 coupled to side wall bracket 202 or engagement bracket 204. Bracket cover 208, in at least one embodiment, may comprise the same or similar material (wood, plastic, metal, etc.) as tray 102, front side 110, and/or cover plate 114, in order to improve the overall aesthetic appearance of rack system 100 and/or to match components of rack system 100 to surrounding cabinetry and/or furniture. For example, cover plate 114 may be made of mahogany, and bracket cover 208 may also be made of mahogany with the same or similar finish.
In various embodiments, cover plate 114 and/or various other components of exemplary rack systems 100, may comprise various types of wood, including but not limited to oak, cherry, maple, pine, teak, etc., and may have any number of types of stains and/or finishes, such as lacquer, polyurethane, etc., applied thereto. In addition, cover plate 114, and potentially additional components of rack systems 100 of the present disclosure, may comprise any number of “standard finishes,” such as stained natural oak to match or compliment standard off-the-rack cabinetry available at various home improvement centers for immediate purchase, or it/they may comprise any number of “custom finishes” that are available at home improvement centers or custom cabinet shops for special ordering.
Various glider mechanisms 200 of the present disclosure may further comprise a hinge mechanism 210, such as shown in FIG. 2. Hinge mechanism 210, in at least one embodiment, is coupled to engagement bracket 204 (or bracket cover 208), whereby a first end 212 of hinge mechanism 210 engages engagement bracket 204 or bracket cover 208 at a first end 216 of engagement bracket 204 or a first end 218 of bracket cover 208. A second end 214 of hinge mechanism 210 may then be coupled to an external structure 220, such as a kitchen cabinet or another type of cabinet, as shown in FIG. 2. As such, and in at least one embodiment, the first end 212 of hinge mechanism 210 is coupled to the first end 216 of engagement bracket 204 (or a first end 218 of bracket cover 208), and the second end 214 of hinge mechanism 210 is coupled to external structure 220.
Hinge mechanism 210, as shown in FIG. 2, can comprise a first arm 222 and a second arm 224, whereby first arm 222 and second arm 224 are hingedly coupled to one another at hinge 226. Various embodiments of hinge mechanism 210, as shown in FIG. 2, can pivot away from and toward an external structure 220, such as the underside of a wall kitchen cabinet, in a direction shown by the bi-directional arrow B in FIG. 2. The various glider mechanisms 200 and hinge mechanisms 210 disclosed herein are not intended to be exhaustive in nature, as other gliders and/or hinges suitable to permit tray 102 to glide back and forth along a glider axis and suitable to permit tray 102 to pivot up and down about a pivot point, respectively, may be useful in one or more embodiments of rack systems 100 of the present disclosure.
Another view of portions of a rack system 100 of the present disclosure is shown in FIG. 3. In the perspective view shown in FIG. 3, a relative inside of engagement bracket 204 is visible, whereby coupler bracket 206 slidingly engages engagement bracket 204. Such a sliding engagement allows tray 102 to move back and forth in a direction shown by the bi-directional arrow A in FIG. 3. Furthermore, hinge mechanism 210, as shown in FIG. 3, would allow tray 102 to pivot away from and toward an external structure 220 in a direction shown by the bi-directional arrow B. An overall pivot movement of tray 102 is further facilitated by way of coupling a second end 228 of engagement bracket 204 or a second end 230 of bracket cover 208 to external structure 220 at pivot point 232, as shown in FIG. 3. Such a coupling may be made using one or more fasteners 234, which may include, but are not limited to, screws, nails, and/or bolts. In addition, pivot movement may be facilitated by way the coupling of portions of hinge mechanism 210, such as second arm 224, to external structure 220 at connection point 236, using one or more fasteners.
FIG. 4 shows an embodiment of a glider mechanism 200 comprising a hinge mechanism 210 coupled to opposing second side 108 of tray 102. Glider mechanism 200, as shown in FIG. 4, may contain the same or similar components as the glider mechanism 200 coupled to the first side 106 of tray 102 shown in FIGS. 2 and 3. Similarly, FIG. 5 shows an inside perspective view of portions of a rack system 100 of the present disclosure, which may contain the same or similar components as shown in FIG. 3. FIGS. 1-5, as described herein, show exemplary embodiments of rack systems of the present disclosure in relatively open configurations.
FIGS. 6 and 7 show opposing side views of a rack system 100 of the present disclosure in a relatively closed configuration. As shown in FIGS. 6 and 7, tray 102 is substantially or completely housed within a portion of an external structure 220, namely the bottom portion of a kitchen cabinet. FIG. 8 shows a front view of an exemplary rack system 100 of the present disclosure in a relatively closed configuration, whereby tray 102 is positioned underneath a kitchen wall cabinet (external structure 220). As shown in various figures herein, external structure 220 may comprise a kitchen wall cabinet having a recessed portion, so that spices, for example, positioned within tray 102 may be positioned underneath external structure 220 at least partially within the recessed portion of said cabinet. External structure 220, in at least one embodiment, may further comprise one or more doors 800 coupled thereto.
FIG. 9 shows an exemplary embodiment of a portion of a tray 102 of the present disclosure having an latch mechanism 900 coupled thereto. As shown in FIG. 9, latch mechanism 900 may be either directly coupled to tray 102, such as at the inside of front side 110, or may be indirectly coupled thereto by way of a spacer 902. Latch mechanism 900, as shown in FIG. 9, may be configured to engage a latch member 904 (as shown in FIGS. 10A and 10B) coupled to structure 220, so that when rack system 100 is in a relatively closed position, tray 102 is held in place by way of the engagement of latch mechanism 900 and latch member 904. Alternatively, latch mechanism 900 may be coupled to structure 220, and latch member 904 may be coupled to tray 102, in various embodiments.
As shown in FIG. 10A, an exemplary latch mechanism 900 can engage a latch member 904 by moving said components toward one another in a direction shown by bi-directional arrow C. In at least one embodiment, protrusion 906 of latch member 904 engages button 908 of latch mechanism 900, whereby engagement of button 908 causes arms 910, 912 of latch mechanism 900 to close about protrusion 906. Button 908 may click in place, similar to the engagement portion of a writing pen, whereby button 908 is pressed using protrusion 906 to an initial distance and releases back slightly in order to close latch mechanism 900 about latch member 904, as shown in FIG. 10B. To open latch mechanism 900, button 908 could be pressed again (using protrusion 906) to the initial distance, but then button 908 would release back to its original distance to open arms 910, 912 of latch mechanism 900 and release latch member 904 from latch mechanism 900.
The exemplary latch mechanism 900 shown in FIGS. 9, 10A, and 10B is but one exemplary latch mechanism 900 of the present disclosure, as any number of other latch mechanisms 900, utilizing magnets, snaps, and or other componentry sufficiently strong to hold a relatively heavy and filled tray 102 in place without tray 102 disengaging from structure 220 at or near latch mechanism 900, could be used with various embodiments of rack systems 100 of the present disclosure. In addition, and for example, latch mechanism 900 could comprise a spring-loaded indexing plunger, whereby engagement of the plunger could lock and/or release the same so that tray 102 (or another component of rack system 100) can move relative to an external structure 220, for example.
Various embodiments of rack systems 100 of the present disclosure are operable as follows. First, and when a rack system 100 is in a relatively closed position, a user can press the bottom of tray 102 upward to release tray from external structure 220, such as, for example, pressing the bottom of tray 102 upward so that protrusion 906 of latch member 904 engages button 908 so that arms 910, 912 of latch mechanism 900 open to release latch member 904 from latch mechanism 900. After such disengagement, tray 102 can then pivot downward to a relatively open configuration, such as shown in FIGS. 1-5. Tray 102 can then be pulled out (toward a user, for example), whereby glider mechanism 200 permits tray 102 to move toward the user (out and down), providing the user with ready access to the inside of tray 102 when glider mechanism is in a relatively open position. To close said tray 102, a user would then push tray 102 up and back (so that glider mechanism 200 is in a relatively closed position), and then the user would pivot tray 102 upward so that engagement of latch mechanism 900 can occur to effectively close rack system 100 and prevent tray 102 from pivoting downward.
Furthermore, various rack systems 100 of the present disclosure can be used in connection with any number of structures 220, including, but not limited to, kitchen cabinets, office cabinets, walls, doors, countertops, and other structures suitable to support various rack systems 100 of the present disclosure. For example, and as shown in FIG. 11, an exemplary rack system 100 may be placed under a wall kitchen cabinet (an exemplary external structure 220). In another embodiment, and as shown in FIG. 12, an exemplary rack system 100 may be placed within a free-standing cabinet (another exemplary external structure 220) underneath a shelf 1200 of said cabinet, whereby rack system 100 can also be enclosed within said external structure 220 using one or more doors 1202.
FIG. 13 shows an exemplary embodiment of a rack system 100 of the present disclosure used as a spice rack. As shown in FIG. 13, rack system 100 comprises a tray 102 sized and shaped to retain a plurality of spice containers 1300.
In addition to the foregoing, and in various embodiments of rack systems 100 of the present disclosure, said rack systems 100 may comprise one or more automated components. For example, and as shown in the block diagram of FIG. 14, an exemplary tray 102 of a rack system 100 may have one or more glider actuators directly or indirectly coupled thereto, such as a first glider actuator 1400 and a second glider actuator 1402, whereby said actuator(s) facilitate automatic glide movement of tray 102.
In at least one embodiment, rack system 100 comprises a first glider actuator 1400 coupled either directly or indirectly to tray 102, whereby first glider actuator 1400 is operable to move tray 102 back and forth as described herein. In addition, and as shown in FIG. 14, an exemplar rack system 100 of the present disclosure may have one or more hinge actuators directly or indirectly coupled thereto, such as a first hinge actuator 1404 and/or a second hinge actuator 1406, whereby said actuator(s) facilitate automatic hinge movement of tray 102. In at least one embodiment, rack system 100 comprises a first hinge actuator 1404 coupled either directly or indirectly to tray 102, whereby first hinge actuator 1404 is operable to hingedly move tray 102 up and down as described herein. In various embodiments, first glider actuator 1400, second glider actuator 1402, first hinge actuator 1404, and/or second hinge actuator 1406 are coupled to one or more power sources (such as an electrical outlet and/or a battery, not shown) to facilitate operation thereof. Glider actuators 1400, 1402 and hinge actuators 1404, 1406 may be any means of enabling the applicable automated movement of tray 102, including, but not limited to, stepper motors, servo motors, spring-loaded gas springs, or the like.
An exemplary side view of at least a portion of an exemplary embodiment of a rack system 100 of the present disclosure is shown in FIG. 15. As shown in FIG. 15, rack system 100 comprises a tray 102 (with first side 106 shown in the figure) having a rotation mechanism 1500 coupled thereto. Rotation mechanisms 1500, in various embodiments, are capable of being coupled to tray 102 and one or more other components of rack system 100 (such as portions of a glider mechanism 200, for example, or a glider spacer 2000 as referenced in further detail herein), so that tray 102 is operable to rotate or capable of rotation about rotation mechanism 1500. Rotation mechanisms 1500 may include, but are not limited to, lazy-Susan bearings, swivel bearings, wheel bearings, simple axles, or the like.
FIG. 16 shows an exemplary side view of at least another portion of a rack system 100 of the present disclosure. As shown in FIG. 16, tray 102 (with second side 108 shown in the figure) has a rotation mechanism 1500 coupled thereto. As referenced herein, such an embodiment of a rack system 100 may comprise a “first rotation mechanism” and a “second rotation mechanism,” each referring to a rotation mechanism 1500. As shown in FIGS. 15 and 16, rotation mechanisms 1500 may be positioned at or near relative middles of first side 106 or second side 108, as applicable, to facilitate rotation of tray 102 as described in further detail herein.
FIG. 17 shows a top perspective view of an exemplary embodiment of a rack system 100 of the present disclosure. As shown in FIG. 17, rack system 100 has a first access configuration, which corresponds to a native or a non-rotated configuration of tray 102. In operation, tray 102 could be engaged by a user and pressed so that a latch mechanism 900 disengages a latch member 904, for example, so that tray 100 is allowed to pivot downward by way of a hinge mechanism 210. Tray 102 can then be pulled toward a user by way of a glider mechanism 200, resulting in a positioning of tray 102 as shown in FIG. 17. Such a procedure does not involve rotation of tray 102 about a rotation mechanism 1500, and such positioning may be referred to herein as a first access configuration, whereby the relative top of tray 102 is revealed.
As shown in FIG. 17, an exemplary rack system 100 of the present disclosure may comprise a first tray cover 1700 coupled to tray 102. Tray cover 1700, as shown in FIG. 17, may be made of Plexiglass, but in various other embodiments, tray cover 1700 may comprise a number of other materials, including, but not limited to, wood, metal, plastic, and glass.
Tray cover 1700, as shown in FIG. 17, may be hingedly coupled to tray 102 by way of one or more cover hinges 1702. In other embodiments, tray cover 1700 may be coupled to (or otherwise engage) tray 1700 by other means, including, but not limited to, various hooks, clasps, and/or pockets in various components of rack system 100.
Tray cover 1700 may be held in a closed position about tray 102 by way of one or more closure mechanisms 1704, as shown in FIGS. 17 and 18. As shown in FIG. 18, closure mechanism 1704 may comprise a hook 1800 and a receiver 1802 configured to receive at least part of hook 1800. Hook 1800, in various embodiments, may be coupled to tray 102, and receiver 1802 may be coupled to tray cover 1700, and in various other embodiments, said hook 1800 and receiver 1802 may be coupled tray cover 1700 and tray 102, respectively. Closure mechanisms 1704 of the present disclosure are not intended to be limited only to hook 1800 and receiver 1802 embodiments, as various other closure mechanisms 1704 capable of securing a cover/lid (such as a tray cover 1700) to a receptacle (such as a tray 102) may be within the scope of closure mechanisms 1704 as referenced herein. As referenced above, hinges 1702 may facilitate the opening and closing of tray cover 1700, and closure mechanisms 1704 may be used to secure tray cover 1700 in a closed position.
FIG. 19 shows a top perspective view of an exemplary embodiment of a rack system 100 of the present disclosure. As shown in FIG. 19, rack system 100 has a second access configuration, which corresponds to a rotated configuration of tray 102. For example, and in various embodiments of rack systems 100 of the present disclosure, a tray 102 of a rack system 100 could be extended to a first access configuration (as shown in FIG. 17 and described herein), and then subsequently rotated by way of rotation mechanism(s) 1500 to reveal the relative bottom of tray 102, effectively positioning rack system 100 in a second access configuration.
The relative bottom of tray 102, similar to the relative top of tray 102, may comprise a tray cover 1700 coupled to tray 102 by way of hinges 1702 and a closure mechanism 1704, as shown in FIG. 19 and described herein with respect to other embodiments and/or views of rack systems 100 of the present disclosure. Closure mechanisms 1704, in various embodiments, are used to keep tray covers 1700 closed such that any contents of tray 102 (such as spice containers 1300 if used as a spice rack, documents if used for document storage, books if used to store books or provide a platform to hold one or more books, etc.) will not fall out of tray 102 when tray is rotated about rotation mechanism(s) 1500.
In at least one embodiment of a rack system 100 of the present disclosure, rack system 100 can be used to contain two rows of spice containers 1300 on both the relative top 1712 and bottom 1714 of tray 102. For example, and as shown in FIGS. 17 and 19, rack system 100 comprises a base panel 1706 (somewhat similar to a bottom 104 of a tray 102 as otherwise described herein), which can serve as a base to receive one or more items. Tray 102 may then include one or more optional dividers 118, which, in various embodiments, could be held in place with optional divider braces 120, 122. Divider(s) 118, in various embodiments, could separate tray 102 into two or more rows, each of which could be used to hold a variety of items, such as spices (spice containers) or other items as may fit within said tray 102. Divider(s) 118 may be positioned relative to base panel 1706 at a first side 1712 of base panel 1706, as shown in FIG. 17, and/or relative to base panel 1706 at a second side 1714 of base panel 1706, as shown in FIG. 19.
Tray cover(s) 1700, in various embodiments, could comprise various indicia. As shown in FIG. 17, tray cover 1700 comprises indicia 1708 in the form of hand-painted words and images. In various other embodiments, indicia 1708 may comprise other words, other images, numbers, various labels/stickers, carvings, drawings, indentions/depressions, openings, etc., which may be used to indicate contents of tray 102, potential contents of tray 102, or merely as decoration, for example.
In at least one embodiment according to the present disclosure, rotation of tray 102 performed to move tray 102 from a first access configuration (as shown in FIG. 17) to a second access configuration (as shown in FIG. 19), may be performed by engaging various parts of rack system 100, including, but not limited to, the top edge of the front side 110 or other areas of tray 102, hardware 116 present upon (or engaging) the front side 110 of tray 102 (as shown in FIG. 17), hardware 116 present upon (or engaging) the back side 112 of tray 102 (as shown in FIG. 19), hardware 116 present upon (or engaging) other areas of tray 102 (or other components of rack system 100), pockets/apertures formed in various portions of rack system 100, or by merely engaging, pushing, or pulling portions of rack system 100 in various directions. For example, and as shown in the perspective view of various components of an exemplary rack system 100 as shown in FIG. 20, a user may engage hardware 116 present upon (or engaging) the back side 112 of tray 102 and push or pull hardware 116 to facilitate rotation of tray 102.
In addition to hardware 116, or as an alternative to hardware 116, rotation of tray may be facilitated by a rotation actuator 1408 coupled to tray 102 as shown in FIG. 14. Rotation actuator 1408, in various embodiments, may be coupled to tray 102 or other components of rack system 100, and may facilitate automated rotation of tray 102 in addition to, or in lieu of, manual rotation. Rotation actuator 1408 may be any means of enabling automated rotation of tray 102, including, but not limited to, stepper motors, servo motors, or the like.
In the view of rack system 100 shown in FIG. 20, rotation mechanism 1500 is not visible because it is positioned beneath a glider spacer 2000. Glider spacer 2000, as shown in FIG. 20, may be used to facilitate operative connection of tray 102 to glider mechanism 200, and in such an embodiment, rotation mechanism 1500 would directly engage glider spacer 2000, be positioned within an aperture defined within glider spacer 2000, or otherwise engage glider mechanism 200 by way of (or through) glider spacer 2000. Glider spacer 2000, in various embodiments, would be sized and shaped so that various portions of rack system 100 would couple to and/or engage one another as intended so that tray 102 may rotate in embodiments of rack systems 100 comprising a rotatable tray 102.
Various embodiments of rack systems 100 of the present disclosure may comprise a latch mechanism 900 coupled to tray 102, as described herein and as shown in FIG. 9, for example. However, in at least one additional embodiment and as shown in FIG. 17, latch mechanism 900 may be coupled to tray 102 within a tray pocket 1710. Tray pocket 1710 may itself be a recessed portion defined within the front side 110 of tray 102, or, as shown in FIG. 17, defined within a cover plate 114 coupled to the front side 110 of tray 102. Positioning latch mechanism 900 (or a corresponding latch member 904, in various embodiments) within tray pocket 1710, or within at least a part of tray pocket 1710, could not only improve the overall aesthetics of rack system 100, but could itself not get in the way of, or hinder placement of, any contents within tray 102.
In addition, and as shown in FIGS. 15, 16, and 20, for example, exemplary rack systems 100 of the present disclosure could comprise one or more tray stops 2002 coupled thereto. Tray stops 2002, as shown in FIG. 15 for example, may comprise a stop body 2004 secured to tray 102 by way of a stop fastener 2006, such as a screw or other securing device. Stops 2002, in various embodiments of rack systems 100 of the present disclosure, would be positioned about tray 102 (or other portions of rack system 100) so that rotation of tray 102 would eventually stop to provide a user with a more stable platform to hold various items, and so that tray 102 would not unintentionally or undesirably rotate.
Various embodiments of rack systems 100 may further comprise a lock mechanism as shown in FIG. 21A-21C. As shown in FIG. 21, a first side 106 and/or second side 108 of tray 102 may comprise a lock mechanism 2100 operable to lock or secure tray 102 in place upon rotation so that tray 102 does not move when a user of rack system 100 does not desire tray to rotate. Lock mechanism 2100, in at least one embodiment and as shown in FIG. 21A, may comprise a spring-loaded ball 2102 held in place by mechanism faceplate 2104. In various embodiments, mechanism faceplate 2104 may be secured to tray 102 using fasteners 2106, such as screws or nails. In such an embodiment, spring-loaded ball 2102 would be at least partially recessed in tray 102, and could engage a lock receiver 2108, which in at least one embodiment would comprise receiver plate 2110 having an aperture 2112 defined therein configured to receive at least part of spring-loaded ball 2102, as shown in the side view of a glider spacer 2000 as shown in FIG. 21B. In at least another embodiment, spring-loaded ball 2102 could engage another embodiment of a lock receiver 2108, comprising a pocket 2114 defined within glider spacer 2000 as shown in FIG. 21C. Fasteners 2106 could also be used to secure a receiver plate 2110 to glider spacer 2000 or another component of rack system 100.
The aforementioned embodiments of lock mechanisms 2100 of the present disclosure are not intended to define the comprehensive scope of potential lock mechanisms 2100 useful in the present disclosure. For example, other embodiments of lock mechanisms, such as various protrusions, hardware components, etc., could be used of said embodiments are operable to or capable of temporarily locking tray 102 in place before or after rotation. In addition, and in at least one embodiment, lock mechanism 2100 may be placed within or upon glider spacer 2000, and lock receiver 2108 could be positioned upon or defined within tray 102, for example.
For overall clarity within the present disclosure, at least one embodiment of a rack system 100 of the present disclosure would comprise an effective one-sided tray 102, and at least one embodiment of a rack system 100 of the present disclosure would comprise an effective two-sided tray 102. An exemplary one-sided tray 102 may be as shown in one or more of FIGS. 1-8, and an exemplary two-sided tray may be as shown in one or more of FIGS. 15-20.
FIG. 22 shows a top perspective view of another exemplary embodiment of a rack system 100 of the present disclosure. As shown in FIG. 22, rack system 100 comprises a tray 102 configured so that tray 102 can then be pulled toward a user by way of a glider mechanism 200, resulting in a positioning of tray 102 as shown in FIG. 22. In such a configuration, rack system 100 has the appearance of a traditional drawer; however, the functionality of rack system 100 as compared to a traditional drawer is quite different.
As shown in FIG. 22, an exemplary rack system 100 of the present disclosure may comprise a first tray cover 1700 coupled to tray 102. Tray cover 1700, as shown in FIG. 22, may be made of Plexiglass, but in various other embodiments, tray cover 1700 may comprise a number of other materials, including, but not limited to, wood, metal, plastic, and glass.
Tray cover 1700, as shown in FIG. 22, may be hingedly coupled to tray 102 by way of one or more cover hinges 1702. In other embodiments, tray cover 1700 may be coupled to (or otherwise engage) tray 1700 by other means, including, but not limited to, various hooks, clasps, and/or pockets in various components of rack system 100.
Rotation of tray 102, in such an exemplary embodiment, is shown in FIGS. 23 and 24. Rotation of tray 102 may be performed to move tray 102 from a first access configuration (as shown in FIG. 22) to a second access configuration (as shown in FIG. 24, whereby a relative second side of tray 102 is facing relatively upward).
As shown in FIGS. 23 and 24, tray 102 (with second side 108) has a rotation mechanism 1500 coupled thereto. As referenced herein, such an embodiment of a rack system 100 may comprise a “first rotation mechanism” and a “second rotation mechanism,” each referring to a rotation mechanism 1500. As shown in FIGS. 23 and 24, rotation mechanisms 1500 may be positioned at or near relative middles of first side 106 and/or second side 108, as applicable, to facilitate rotation of tray 102 as described herein. Tray 102, as shown in the sequence of figures from FIGS. 22 through 24, may be rotated using rotation mechanisms 1500 so that a user of rack system 100 can access both relative sides of tray 102 and the contents of each relative side of tray 102.
As referenced above, various rack systems 100 of the present disclosure can be used in connection with any number of structures 220, including, but not limited to, kitchen cabinets, office cabinets, walls, doors, countertops, and other structures suitable to support various rack systems 100 of the present disclosure. For example, and as shown in FIG. 25, an exemplary rack system 100 may comprise part of a kitchen cabinet (such as a base cabinet, for example), which is generally referred to herein as an exemplary external structure 220. Various embodiments may also be used with, for example, a kitchen wall cabinet, a bathroom cabinet, a garage cabinet, a closet cabinet, and/or any number of other cabinet, shelving, or storage structures.
In use, the embodiments of rack systems 100 shown in FIGS. 22 through 25 may be used as follows. First, a user may engage the drawer handle (hardware 116) to pull the drawer (rack system 100) away from the rest of the cabinet so that rack system 100 is open as shown in FIG. 22, for example. This may be accomplished using a glider mechanism 200 as referenced in further detail herein. After the drawer is opened, the user may access the contents of the first side of tray 102 by opening tray cover 1700. Should the user decide to access the contents of the second side of tray 102, the user would then rotate tray 102 (using rotation mechanism 1500, for example), as shown in FIGS. 23 and 24, to access the second side of tray 102. The second side of tray 102 would also have a tray cover 1700 to prevent any contents of tray 102 from falling out. When the user is done, the user can push rack system 100 back into the cabinet so that rack system 100 is closed as shown in FIG. 25, for example.
FIGS. 26 and 27 show front and perspective views, respectively, of an additional exemplary embodiment of a rack system 100 of the present disclosure. FIG. 26 shows a closed embodiment, and FIG. 27 shows a relatively open embodiment. In such embodiments, rack system 100 is configured as a drawer shown within a base cabinet, but in other embodiments, for example and as referenced generally herein, rack systems 100 may be within, or under, upper cabinetry as well.
As shown in FIG. 27, an exemplary rack system 100 of the present disclosure comprises a tray 102 configured so that tray 102 can then be pulled toward a user by way of a glider mechanism 200, resulting in a positioning of tray 102 as shown in FIG. 27. In such a configuration, rack system 100 has the appearance of a traditional drawer; however, the functionality of rack system 100 as compared to a traditional drawer is quite different.
As shown in FIG. 27, an exemplary rack system 100 of the present disclosure may comprise a first tray cover 1700 coupled to tray 102. Tray cover 1700, as shown in FIG. 22, may be made of Plexiglass, but in various other embodiments, tray cover 1700 may comprise a number of other materials, including, but not limited to, wood, metal, plastic, and glass.
Tray cover 1700, as shown in FIG. 27, may be hingedly coupled to tray 102 by way of one or more cover hinges 1702. In other embodiments, tray cover 1700 may be coupled to (or otherwise engage) tray 1700 by other means, including, but not limited to, various hooks, clasps, and/or pockets in various components of rack system 100. FIG. 28 shows a perspective view of an exemplary rack system 100 of the present disclosure whereby tray cover 1700 is open so that contents of tray 102 can be accessed.
FIGS. 29 and 30 show perspective view of an exemplary embodiment of a rack system 100 of the present disclosure having two trays. As shown in FIGS. 29 and 30, rack system 100 comprises a first tray 102 and a second tray 2900, whereby first tray 102 is positioned above second tray 2900. First tray 102 and second tray 2900 may be hingedly coupled to one another by way of one or more tray coupler hinges 2902 as shown in FIG. 30 and/or one or more lift actuators 2904 as shown in FIGS. 31 and 32. Tray coupler hinges 2902, as shown in FIG. 30, may be positioned at the relative back of rack system 100 so to couple the first tray 102 at the bottom of first tray 102 to the second tray 2900 at the top of second tray 2900. Furthermore, one or more lift actuators 2904 could be coupled to the underside of first tray 102 and to the inside of second tray 2900, so that when first tray 102 and second tray 2900 are closed (completely or substantially resting/stacked upon one another), lift actuators 2904 are within second tray 2900 so that rack system 100 can open and close as desired. In such an embodiment, contents of first tray 102 and second tray 2900 can be readily accessed with minimal movement or shifting of items contained therein.
As referenced above, first tray 102 is described as being above second tray 2900. In other embodiments, said trays may be reversed, and in various embodiments, components referenced herein in connection with various rack systems 100 of the present disclosure, such as various glider mechanisms, pulls, hinges, covers, face plates, etc., may be used in connection with either tray 102, 2900. Furthermore, tray coupler hinges 2902 and lift actuators 2904 (which may be generally referred to herein as “pivot mechanisms”) are not intended to be the sole mechanisms used to couple and allow pivoting movement of one tray relative to another, as other mechanisms, such as other hardware useful to pivot one item relative to another, may be used with, or in lieu of, tray coupler hinges 2902 and lift actuators 2904.
Embodiments of rack systems 100 shown in FIGS. 26 through 31 may be used as follows. First, a user may engage the drawer handle (hardware 116) to pull the drawer (rack system 100) away from the rest of the cabinet so that rack system 100 is open as shown in FIG. 27, for example. This may be accomplished using a glider mechanism 200 as referenced in further detail herein. After the drawer is opened, the user may access the contents of the first tray 102 first by opening tray cover 1700. Should the user decide to access the contents of the second tray 2900, the user would then pivot first tray 102 upwards to access second tray 2900. When the user is done, the user can close first tray 102 relative to second tray 2900, push rack system 100 back into the cabinet so that rack system 100 is closed as shown in FIG. 26, for example.
At least another embodiment of a rack system 100 of the present disclosure is shown in FIG. 33. As shown in FIG. 33, an exemplary rack system 100 (also referred to herein as an “insert”) comprises a first tray 102, a second tray 2900, and one or more tray coupler hinges 2902 to couple and/or allow pivoting movement of first tray 102 relative to second tray 2900. As shown in FIG. 33, and as applicable to various other embodiments of rack systems 100 of the present disclosure, rack system 100 comprises one or more optional dividers 118 which may be positioned within first tray 102, for example, to separate contents of first tray 102.
In such an embodiment, rack system 100 would be configured to fit within a drawer or other cabinetry, and would allow a user to access first tray 102 and second tray 2900 as referenced herein. So to take advantage of as large of a rack system 100 as desired, the drawer may utilize one or more glider mechanisms 200 of a sufficient length to allow for the drawer to be pulled forward as far as desired so to allow a desired sized rack system 100 to be placed therein.
Additional schematics of exemplary rack systems 100 of the present disclosure in various types of cabinetry are shown in FIGS. 34A, 34B, and 35. FIGS. 34A and 34B show front views of an exemplary embodiment of a rack system 300 of the present disclosure positioned underneath an upper cabinet in a closed configuration (FIG. 34A) and in an open configuration (FIG. 34B). FIG. 35 shows a side view of an exemplary embodiment of a rack system 300 of the present disclosure in a full open configuration. In various embodiments, and as shown in FIG. 35, rack system 300 may comprise a first tray 102 and a second tray 2900, whereby first tray 102 is positioned above second tray 2900. First tray 102 and second tray 2900 may be hingedly coupled to one another by way of one or more tray coupler hinges 2902 as shown in FIG. 30 and/or one or more lift actuators 2904 as shown in FIGS. 31 and 32. Tray coupler hinges 2902, as shown in FIG. 30, may be positioned at the relative back of rack system 300 so to couple to first tray 102 at the bottom of first tray 102 and to couple to second tray 2900 at the top of second tray 2900. Furthermore, one or more lift actuators 2904 could be coupled to the underside of first tray 102 and to the inside of second tray 2900, so that when first tray 102 and second tray 2900 are closed (completely or substantially resting/stacked upon one another), lift actuators 2904 are within second tray 2900 so that rack system 300 can open and close as desired.
In various embodiments, and as shown in FIG. 35, rack system 300 may further comprise at least one cam mechanism 3502, at least one guide channel 3504, a support box 3500, and at least one tilt actuator 3604. The cam mechanism 3502 may be positioned at the relative back of the second tray 2900 and positioned such that cam mechanism 3502 moves within, along, or through the guide channel 3504. The guide channel 3504 may be formed in the side wall of the support box 3500 or the external structure 220, either of which may support the glide mechanism hardware for the second tray 2900, including the side wall bracket 202, the coupler bracket 206, and the tilt actuator 3604. Moreover, the guide channel 3504 may be formed to engage the cam mechanism 3502 and enable tilting of the rack system 300. Furthermore, the guide channel 3504 may be formed to enable the rack system 300 to move parallel to ground initially but to tilt the relative front edge of second tray 2900 downward as the second tray 2900 reaches the end of its travel, thereby positioning the rack system 300 in an open access configuration as shown in FIG. 35.
FIG. 36 shows an isometric view of a portion of a rack system 300, according to embodiments of the present disclosure. As shown in FIG. 36, the guide channel 3504 may be angled upward along its length 3505 relative to the ground to enable the tilting motion described. In at least one embodiment, the rack system 300 may further include at least one tilt actuator 3604, which may be operably attached to a back edge of the second tray 2900 and the support box 3500 or the external structure 220 by any appropriate means, to further assist the tilting and return motions of tray 2900. Tilt actuator 3604 may be any means of enabling and assisting tilting of tray 102, including, but not limited to, gas springs or the like.
In operation according to one embodiment of the present disclosure, when the rack system 300 is opened, the cam mechanism 3502 moves within, along, or through the guide channel 3504. As the guide channel 3504 angles upward along its length 3505 relative to the ground, the relative front edge of the second tray 2900 tilts downward as the tray reaches the end of its travel, pivoting about the at least one rotation mechanism 1500. As the second tray 2900 pivots, the lift actuators 2904 raise the first tray 102 as described herein, thereby positioning the rack system 300 in an open access configuration and allowing access to the space within both the first tray 102 and the second tray 2900. Such embodiments may include one or more additional features of rack systems 100 of the present disclosure other than those shown herein.
FIG. 37 shows a view of a rack system 400 in a closed configuration, according to an embodiment of the present disclosure. In at least one embodiment, the rack system 400, having a first side 480 and an opposing second side 460, may be mounted underneath an upper cabinet 220 and hidden from view by cover plate 414 as shown in FIG. 37. As shown in FIG. 38, the rack system 400 includes a housing 404, a glider mechanism 420 operably coupled thereto, and a tray 402 (with a first side 480 shown in figure) having at least one rotation mechanism 4500 operably coupled thereto. The rotation mechanism 4500, in various embodiments, is capable of being coupled to tray 402 and one or more other components of rack system 400 (such as portions of the glider mechanism 420, for example, or a side wall bracket 409 as referenced in further detail herein), so that tray 402 is operable to rotate or capable of rotation about rotation mechanism 4500. As referenced herein, such an embodiment of a rack system 400 may comprise a “first rotation mechanism” and a “second rotation mechanism,” each referring to a rotation mechanism 4500. Likewise, such an embodiment of a rack system 400 may comprise a “first glider mechanism” and a “second glider mechanism,” each referring to a glider mechanism 420. As shown in FIGS. 38, 39 and 42, rotation mechanisms 4500 may be positioned at or near relative middles of first side 480 and second side 460, as applicable, to facilitate rotation of tray 402 as described in further detail herein. In the view of rack system 100 shown in FIG. 20, rotation mechanism 1500 is not visible because it is positioned beneath a glider spacer 2000.
FIG. 38 shows a side view of a rack system 400 in a first access configuration, with the cover plate 414 open and secured to cabinet structure 220 by cover hinge 4703. FIG. 39 shows a side view of a rack system in a second access configuration, according to an embodiment of the present disclosure. As shown in FIG. 39, the glider mechanism 420 may include a counterbalance hinge 410 coupled to a drop down arm 408 at pivot point 426 and attached to the housing 404. The drop down arm 408 may be slidingly engage a coupler bracket 406, which slidingly engages a drawer guide 407, which may be attached to a side wall bracket 409. In at least one embodiment, the drop down arm 408, coupler bracket 406, drawer guide 407 are configured to enable sliding motion relative to one another in a direction shown by the bi-directional arrow A in FIG. 39, thus enabling the tray 402 to extend away from pivot point 426 and into a second access configuration. Further, the counterbalance hinge 410 enables smooth and controlled rotation of the tray 402 and glide mechanism 420 as each concurrently pivots from the first to the second access configuration. Further, counterbalance hinge 410 at least partially counterbalances the weight of the rack system 400 such that less force is required to return the rack system 400 from the second to the first access configuration.
In at least one embodiment of the present disclosure, the glider mechanism 200 may further include a glider actuator 4904 attached at a first end to the housing 404 and at a second end to the drop down arm 408. In at least embodiment, the glider actuator 4904 may be attached to any component of glider mechanism 200 that enables the desired motion and function described herein. The glider actuator 4904 enables smooth and controlled motion as the glide mechanism 420 moves the tray 402 from the first to the second access configuration. Glider actuators 4904 may be any means of enabling the applicable automated movement of tray 102, including, but not limited to, stepper motors, servo motors, spring-loaded gas springs, or the like.
FIG. 40 shows a front perspective view of an exemplary embodiment of a rack system 400 in a second access configuration with tray cover in an closed configuration, according to the present disclosure. As shown in FIGS. 39 and 40, rack system 400 has a second access configuration, which corresponds to a native or a non-rotated configuration of tray 402. In operation, tray 402 could be engaged by a user and pressed so that a latch mechanism 900 disengages a latch member 904 (shown in FIG. 39), for example, so that tray 402 is allowed to pivot downward by way of a counterbalance hinge 410. Tray 402 then extends toward a user by way of a glider mechanism 200, resulting in a positioning of tray 102 as shown in FIG. 40. Such a procedure does not involve rotation of tray 102 about a rotation mechanism 1500, so such a positioning may be referred to herein as a second access configuration, whereby the relative top of tray 402 is revealed.
As shown in FIG. 40, an exemplary rack system 400 of the present disclosure may comprise a first tray cover 4700 coupled to tray 402. Tray cover 4700 may be made of Plexiglas, but in various other embodiments, tray cover 4700 may comprise a number of other materials, including, but not limited to, wood, metal, plastic, glass or a combination of these as shown in FIG. 40. Tray cover 4700 may be hingedly coupled to tray 402 by way of one or more cover hinges 4702. In other embodiments, tray cover 4700 may be coupled to (or otherwise engage) tray 402 by other means, including, but not limited to, various hooks, clasps, and/or pockets in various components of rack system 400. Tray cover 4700 may further include an opening 4701 formed to enable latch mechanism 900 to couple with the latch member 904 as described herein.
The exemplary latch mechanism 900 shown in FIG. 40 is but one exemplary latch mechanism 900 of the present disclosure, as any number of other latch mechanisms 900, utilizing magnets, snaps, and or other componentry sufficiently strong to hold a relatively heavy and filled tray 102 in place without tray 102 disengaging from structure 220 at or near latch mechanism 900, could be used with various embodiments of rack systems 100 of the present disclosure.
FIG. 41 shows a front perspective view of an embodiment of a rack system 400 in a second access configuration with tray cover in an open configuration, according to an embodiment of the present disclosure. Tray cover 4700 may be held in a closed position about tray 402 by way of one or more closure mechanisms 4704, as shown in FIG. 41. As shown in FIG. 41, closure mechanism 4704 may include, but is not limited to, a strike plate formed with spring tension that engages a fastener (not shown) holding hardware 416 to the tray cover 4700. Closure mechanisms 4704 of the present disclosure are not intended to be limited only to strike plate formed with spring tension embodiments, as various other closure mechanisms 4704 capable of securing a cover (such as a tray cover 4700) to a receptacle (such as a tray 402) may be within the scope of closure mechanisms 4704 as referenced herein. As referenced above, hinges 4702 may facilitate the opening and closing of tray cover 4700, and closure mechanisms 4704 may be used to secure tray cover 4700 in a closed position.
FIG. 42 shows a view of an embodiment of a rack system 400 in a transition between a second access configuration and a third access configuration, according to an embodiment of the present disclosure. As shown in FIG. 42, rack system 400 has a third access configuration, which corresponds to a rotated configuration of tray 402. For example, and in various embodiments of rack systems 400 of the present disclosure, a tray 402 of a rack system 400 could be extended to a second access configuration (as shown in FIG. 39 and described herein), and then subsequently rotated 180 degrees by way of rotation mechanism(s) 4500 (in a direction shown by the bi-directional arrow C) to reveal the bottom cover 4710 of tray 402, effectively positioning rack system 400 in a third access configuration.
In at least one embodiment of a rack and drawer system 100 according to the present disclosure as shown in FIG. 42, rack system 400 may include a second glider actuator 4904 on both the first side 480 and the second side 480. The second glider actuator 4904 may further assist and control the motion of the glide mechanism 420 as the tray 402 moves from the first to the second access configuration. In at least one embodiment, the second glider actuator 4904 is configured to continue its articulating motion after the first glider actuator 4904 has reached the end of its travel or otherwise stopped its articulating motion.
In at least one embodiment of a rack and drawer system 100 according to the present disclosure as shown in FIG. 43, rack system 400 may include a tray 402 with at least two compartments to receive one or more items: the first compartment 4712 defined by a base panel 4706 (somewhat analogous to a bottom 104 of a tray 102 as otherwise described herein), the tray cover 4700, the first side 480, and the opposing second side 460; the second compartment 4714 defined by the base panel 4706, the bottom cover 4710, the first side 480, and the opposing second side 460. Rotation of tray 402 into a third access configuration of rack system 400 enables easy access to the second compartment 4714, which may include additional storage for the items disclosed herein.
The bottom cover 4710, similar to tray cover 4700, may be coupled to tray 402 by way of hinges 4702 and a closure mechanism 4704, as shown in FIG. 43, and described herein with respect to other embodiments or views of rack systems 100 of the present disclosure. Closure mechanisms 4704, in various embodiments, are configured to either keep tray covers 4700 closed so that any contents of tray 402 (such as spice containers 1300 if used as a spice rack, documents if used for document storage, books if used to store books or provide a platform to hold one or more books, etc.) will not fall out when the tray 402 is rotated about rotation mechanism(s) 4500.
In at least one embodiment according to the present disclosure, rotation of tray 402, performed to move tray 402 from a second access configuration (as shown in FIG. 39) to a third access configuration (as shown in FIG. 43), may be performed by engaging various parts of rack system 400, including, but not limited to, hardware 416 present upon (or engaging) the tray cover 4700 of tray 402 (as shown in FIG. 40), hardware (not shown) present upon (or engaging) other areas of tray 402 (or other components of rack system 400), pockets/apertures formed in various portions of rack system 400, or by merely engaging, pushing, or pulling portions of rack system 400 in various directions. In addition to hardware 416, or as an alternative to hardware 416, rotation of tray may be facilitated by a rotation actuator 1408 coupled to tray 402, for example, as shown in FIG. 14. Rotation actuator 1408, in various embodiments, may be coupled to tray 402 or other components of rack system 400, and may facilitate automated rotation of tray 402 in addition to, or in lieu of, manual rotation.
According to at least one embodiment of the present disclosure as shown in FIG. 39, a rack system 400 may further comprise a lock mechanism 4102, such that tray 402 does not move when a user of rack system 400 does not desire tray 402 to rotate. Similar to the lock mechanism 2100 as shown in FIG. 21A, lock mechanism 4102 may include a spring-loaded pin attached to the side wall bracket 409 that interfaces with a mating aperture in first side 480 or second side 460 of tray 402. The lock mechanism 4102 may be further operable to lock or secure tray 402 in place upon rotation so that tray 102 does not return to its native position until the local mechanism 4102 is disengaged by a user. The aforementioned embodiments of lock mechanism 4102 of the present disclosure are not intended to define the comprehensive scope of potential lock mechanisms 4102 useful in the present disclosure. For example, other embodiments of lock mechanisms, such as various protrusions, hardware components, etc., could be used of said embodiments are operable to or capable of temporarily locking tray 402 in place before or after rotation.
Various embodiments of rack systems 100 of the present disclosure, as referenced herein, may be coupled to a kitchen wall cabinet (an exemplary external structure 220). Various embodiments of kitchen wall cabinets have a recessed portion underneath, which could be, in various embodiments, 1¼″ deep, 1½″ deep, ¾″ deep, less, or more. Various embodiments of rack systems 100 of the present disclosure could either be provided separately, as component parts, and/or as a system in connection with an external structure 220, such as a cabinet or a shelf, for example. In addition, at least one embodiment of a rack system 100 of the present disclosure would comprise a cushioning member, such as foam, at felt pad, rubber, etc., to provide cushion in the case of impact between one rack system 100 component and another, or a portion of a rack system 100 with an external structure 220 and/or a wall, for example.\
Although various embodiments of rack systems 100 are described and shown herein, not all embodiments are labeled with each and every component. It is understood that a component or element of one embodiment of a rack system 100 may apply, and be part of, another embodiment of a rack system 100 of the present disclosure.
While various embodiments of rack systems and methods for using the same have been described in considerable detail herein, the embodiments are merely offered by way of non-limiting examples of the disclosure described herein. It will therefore be understood that various changes and modifications may be made, and equivalents may be substituted for elements thereof, without departing from the scope of the disclosure. Indeed, this disclosure is not intended to be exhaustive or to limit the scope of the disclosure.
Further, in describing representative embodiments, the disclosure may have presented a method and/or process as a particular sequence of steps. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. Other sequences of steps may be possible. Therefore, the particular order of the steps disclosed herein should not be construed as limitations of the present disclosure. In addition, disclosure directed to a method and/or process should not be limited to the performance of their steps in the order written. Such sequences may be varied and still remain within the scope of the present disclosure.