1. Field of the Invention
The present invention relates to the art of refrigerators and, more specifically, to a rack and pinion storage system for a drawer assembly of a refrigerator.
2. Discussion of the Related Art
Pullout drawers in refrigerator cabinets, and in particular bottom mounted freezer drawers in which the freezer compartment is located at the bottom of the refrigerator while the fresh food compartment is located at the top of the refrigerator, are often used to increase versatility of storing a wide range of food items, and increasing the accessibility of items stored in the lower portion of the refrigerator cabinet. To this end, in commercially available bottom mounted freezers, a large freezer drawer or basket is provided in connection with or in place of a hinged or swinging door. These bottom mounted freezer drawers are typically mounted on slides or glides fastened to the sidewalls of the inner liner of the refrigerator cabinet and telescopically extend horizontally, outwardly of the refrigerator. Unfortunately, these slides extend at different rates when the large drawer is opened and closed, particularly when the horizontal force, i.e., the consumer pushing or pulling on the drawer or basket, is not centered. The effect of the different rates of extension creates a “wobble” as the drawer or basket is extended and inserted. This drawer rack or wobble typically occurs when the velocity of the drawer and glide assembly varies with position along the face of the drawer as it is extended or inserted.
A further problem with presently available systems is that it is difficult to ensure identical, or near identical, placement relative to the refrigerator cabinet face of left and right drawer components. Without proper component placement, the drawer may not completely close, resulting in the failure to create an effective seal which allows air to permeate into or out of the drawer. The inability of the drawer to completely close creates an inefficient system, making it difficult to regulate temperatures, humidity, and other factors within the drawer.
Attempts have been made in drawer systems to overcome wobble or racking problems. For instance, anti-rack systems have been developed for drawers and drawer glides in which a shaft having a gear wheel mounted on each side is used for engaging associated racks. Though such systems prevent wobble, these attempts have not prevented the drawer from assuming a racked condition resulting from the opening force or food load center of mass occurring significantly away from the drawer's center. Likewise, no simple means of aligning, during initial assembly, left and right gear wheels to associated rack gears of a drawer employing a rack and pinion system has been available. As a result, if the drawer, and in particular the rack and pinion system, becomes misaligned, no means exists for the correction of the misaligned drawer apart from complete disassembly and removal of the drawer from the cabinet. This task becomes particularly difficult when the drawer is filled with food or other stored items.
Complex mechanisms involving the resetting of misaligned slide pairs in a drawer suspension system have been developed. Such systems require the removal, reinsertion and moving of the drawer in and out from the cabinet to reset the misaligned drawer. Due to the removal and reinsertion of the drawer, as well as the inward and outward movement required to reset the misaligned drawer, these systems do not provide much improvement, as the drawer must still be removed, and a significant amount of effort is required of the drawer operator to realign the drawer.
Other systems exist that involve a single displaceable gear tooth provided on the end of a rack gear for enabling meshing with a single pinion that approaches from beyond the end of the rack. The use of a single rack and pinion, however, does not provide a stable means of securing the drawer, as a minor amount of lateral force or movement of the drawer will cause misalignment of the drawer, as well as the rack and pinion, causing wobble, or resulting in jamming of the drawer.
Therefore, there exists a need in the art for a simple and easily installed refrigerator drawer system having a stable means for sliding the drawer into and out of a refrigerator cabinet.
The present invention is directed to a rack and pinion storage system for a refrigerator compartment. In general, the system includes a storage basket, a pair of supports mounted on opposing sidewalls of the refrigerator compartment, a gear assembly, and a pair of gear covers. The gear assembly comprises two gear wheels attached at their respective hubs by an axle. The gear covers are adapted to snap-fittingly engage respective retainers or mounting brackets extending from opposing sides of the storage basket.
In use, the gear covers are partially attached to the respective retainers and the gear wheels are connected by the axle extending through the gear covers and retainers. The storage basket can then be angled such that first and second retaining bars extending from the basket are hooked under tabs extending from the respective supports. First and second retaining bars extending from the bottom of the storage basket fit within a channel defined by the top walls of telescoping slide assemblies and the supports. The gear wheels are then aligned upon rack gears located on respective supports, and the gear covers are snapped into full engagement with the retainers. With this configuration, the gear wheels are rotatably connected to the storage basket and have equal rotational and linear motion along the rack gears when the storage basket is slid into and out of the refrigerator compartment. In this fully assembled configuration, the gear covers lock the gear assembly to the basket, and the tabs engage the retaining bar to prevent the storage basket from being removed from the refrigerator compartment. Optionally, a removable basket divider may be utilized to partition the storage basket into multiple storage units.
Additional objects, features and advantages of the present invention will become more readily apparent from the following detailed description of a preferred embodiment when taken in conjunction with the drawings wherein like reference numerals refer to corresponding parts in the several views.
With initial reference to
With reference to
With reference to
As best seen in
The manner in which the rack and pinion storage system of the present invention is assembled for use will now be discussed with reference to
Once retaining bar 166 is located beyond tabs 116, covers 124 and 125 are shifted further downward and snapped to respective retainers 140 and 141 to secure gear assembly 106 in alignment with respective rack gears 112. More specifically, basket 100 is aligned against tabs 116 and cover 124 is pushed down over retainer 140 such that side arms 144 fully engage retainer 140 and projections 146 and 150 engage respective cut-outs 148 and 162 in a locking manner. Simultaneously or sequentially, cover 125 is pushed down over retainer 141 in a similar manner. The engagement of covers 124 and 125 with retainers 140 and 141 cause gear wheels 120 and 121 to engage respective rack gears 112 of first and second supports 102 and 103. As depicted in
As should be understood from the above description of system 24, basket 100 is supported by top walls 40 of telescoping slide assemblies 30 when in both of the opened and closed positions. At the same time, gear wheels 120 and 121 are engaged with rack rears 112 such that, when basket 100 is slid to an open position, the teeth on gear wheels 120 and 121 engage corresponding rack gears 112 which are rigidly fastened to liner 15, providing equal rotational and linear motion of gear wheels 120 and 121 along respective rack gears 112. Retaining bars 166 slide within channels 168 created between the top walls 40 of telescoping slide assemblies 30 and bottom walls 169 of first and second supports 102 and 103, as best seen in
In an additional aspect of the present invention, rack and pinion storage system 24 preferably includes a basket divider, as depicted in
Although described with reference to preferred embodiments of the invention, it should be readily understood that various changes and/or modifications can be made to the invention without departing from the spirit thereof. For instance, although shown in conjunction with a bottom-mount freezer drawer, it should be understood that the above system could be utilized within other known refrigerated compartment arrangements. In general, the invention is only intended to be limited by the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3794401 | Dean et al. | Feb 1974 | A |
4324439 | Hagen et al. | Apr 1982 | A |
4375907 | Vander Kooi et al. | Mar 1983 | A |
4470642 | Gasperin | Sep 1984 | A |
4600254 | Whalen | Jul 1986 | A |
5970887 | Hardy | Oct 1999 | A |
6499818 | Brustle | Dec 2002 | B2 |
6641239 | Kaiser | Nov 2003 | B2 |
6848759 | Doornbos et al. | Feb 2005 | B2 |
6851775 | Kaiser | Feb 2005 | B2 |
6971730 | Koons | Dec 2005 | B2 |
7059211 | Sasaki et al. | Jun 2006 | B2 |
7240978 | Kobayashi et al. | Jul 2007 | B2 |
7240980 | Koons | Jul 2007 | B2 |
7430937 | Rotter et al. | Oct 2008 | B2 |
7527342 | Lemm | May 2009 | B2 |
7594707 | Kunkle et al. | Sep 2009 | B2 |
7677125 | Rotter | Mar 2010 | B2 |
7740331 | Koo | Jun 2010 | B2 |
20030067257 | Gasser | Apr 2003 | A1 |
20050160854 | Rotter | Jul 2005 | A1 |
20060250059 | Lemm | Nov 2006 | A1 |
20070144408 | Rotter | Jun 2007 | A1 |
20090026906 | Kim | Jan 2009 | A1 |
20090261698 | Cabal Velarde et al. | Oct 2009 | A1 |
20090322196 | Park | Dec 2009 | A1 |
20110050065 | Lee et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
11-118320 | Apr 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20090302728 A1 | Dec 2009 | US |