Rack for loading parts for heat treatment

Information

  • Patent Grant
  • 6401941
  • Patent Number
    6,401,941
  • Date Filed
    Thursday, January 4, 2001
    23 years ago
  • Date Issued
    Tuesday, June 11, 2002
    22 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Gibson, Jr.; Robert W.
    Agents
    • Weingarten, Schurgin, Gagnebin & Lebovici LLP
Abstract
The rack is made essentially out of thermostructural composite material and comprises a baseplate (12), a partition (14) extending above the baseplate, and a plurality of support arms (20) fixed to the partition and extending substantially horizontally therefrom to their own free ends, so that parts to be treated (A) can be supported in cantilevered-out positions on said arms.
Description




FIELD OF THE INVENTION




The invention relates to a rack or tooling for supporting parts in a heat treatment furnace.




A particular but non-exclusive field of application of the invention is that of tooling for supporting parts in a cementation furnace.




BACKGROUND OF THE INVENTION




In the above field, the tooling most commonly used is made of metal. It suffers from the following main drawbacks:




the tooling is itself subjected to cementation and rapidly becomes brittle, which can give rise to a large amount of disorder in a furnace;




it must be bulky in order to avoid deforming excessively under load, since such deformation can in turn cause the supported parts to become deformed, requiring them to be rectified subsequently and consequently losing thickness in the cemented layer;




tooling that is bulky makes gas exchange more difficult and decreases loading efficiency, i.e. reduces the working fraction of the volume which it occupies by the parts to be treated;




violent thermal shock can cause the metal to be deformed or to break; and




the inevitable variations in dimensions that are of thermal origin make it impossible for the operations of loading and unloading parts and of handling the tooling to be robotized because of the unacceptable lack of accuracy in positioning.




It is already known, in particular from document EP 0 518 746-A to use a thermostructural composite material instead of a metal when making the sole plates of heat treatment furnaces. A plurality of sole plates can be provided and spaced apart from one another by spacers likewise made out of thermostructural composite material. The composite material used is a carbon/carbon (C/C) composite material or a ceramic matrix composite (CMC) material.




Nevertheless, that known loading device is poorly adapted to achieving optimum loading, of the kind that can be desired when a relatively large number of identical parts are to be treated. In addition, that device does not lend itself to robotization of the operations of loading and unloading the parts.




OBJECT AND BRIEF SUMMARY OF THE INVENTION




An object of the present invention is to remedy the above-mentioned drawbacks of prior art devices, and to this end the invention provides a rack made essentially out of thermostructural composite material and comprising: a baseplate; a partition extending upwards from the baseplate and comprising, for example, uprights with cross-members extending therebetween; and a plurality of support arms fixed to the partition and extending substantially horizontally therefrom to their ends which are free, the arms being disposed in substantially symmetrical manner on either side of the partition such that parts for treatment can be supported cantilevered out on said arms.




Because it is made of thermostructural composite material and because it has horizontal arms with free ends, the rack provides the positioning and accessibility accuracy required for robotizing the operations of loading and unloading the parts to be treated. Thermostructural composite materials such as C/C and CMC composites are characterized by their dimensional stability and by their bending strength, thus making it possible to load the parts in a cantilevered-out position.




In addition, such a rack can be made to be lightweight and open-structured, while providing a large amount of filling capacity. It is therefore easy to handle, provides great capacity for exchange with the parts to be treated, in particular during cementation or quenching operations, and presents high loading efficiency.




In addition, since the arms extend substantially symmetrically on both sides of the partition, loading can be balanced.




Furthermore, its structure is suitable for modular construction, making it easy from standard basic elements to adapt racks for parts of different dimensions and for different heat treatment installations.




According to a feature of the rack, pegs can be mounted on the support arms to mark locations for the parts to be treated. The parts can then be threaded or hooked onto the support arms if the parts have a through passage, or they can be suspended by resting on two adjacent arms.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will be better understood on reading the following description given by way of non-limiting indication and with reference to the accompanying drawings, in which:





FIG. 1

is a diagrammatic perspective view of a first embodiment of a rack of the invention;





FIG. 2

is an exploded view showing some of the elements making up the

FIG. 1

rack prior to being assembled together; and





FIG. 3

is a diagrammatic perspective view of a second embodiment of a rack of the invention.











DETAILED DESCRIPTION OF EMBODIMENTS




In the description below, reference is made to racks for metal parts for cementation. The invention is not limited to such an application and, more generally, covers carrying parts, whether made of metal or not, that are to be subjected to heat treatment.




The rack


10


shown in

FIG. 1

is intended specifically for supporting annular parts A such as gears for gear boxes. Only a few parts A are shown in FIG.


1


.




The rack comprises (

FIGS. 1 and 2

) a support structure essentially formed by a baseplate


12


, a vertical partition


14


supported by the baseplate


12


in the middle thereof, lateral reinforcing gussets


16


and


18


, and horizontal support arms


20


. The central partition


14


comprises lateral uprights


140


,


142


with horizontal cross-bars


144


extending between them. The support arms


20


are constituted by bars


22


whose central portions are supported by the cross-bars


144


. The bars


22


extend on either side of the partition


14


so that each forms two arms in alignment and of the same dimensions. At their ends remote from the partition


14


, the arms


20


are free.




In a variant, the horizontal support arms


20


could be screwed to the partition


14


on either side thereof. The arms are mounted substantially symmetrically about the mid-vertical plane of the partition. This means that the arms are of substantially the same dimensions and in the same number on both sides of the partition, but not necessarily aligned in pairs.




The above elements constituting the structure of the rack are made out of thermostructural composite material.




Suitable composite materials are carbon/carbon (C/C) composites and ceramic matrix composite (CMC) materials. C/C composites are obtained by making a fiber preform out of carbon fibers and densifying the preform by forming a carbon matrix in the pores thereof. The carbon matrix can be obtained by a liquid method, i.e. by impregnating the preform with a liquid composition (such as a resin) that is a carbon precursor, and by applying heat treatment to transform the precursor into carbon,-or by a gas method, i.e. chemical vapor infiltration. CMCs are obtained by making a fiber preform out of refractory fibers, e.g. carbon fibers or ceramic fibers, and densifying the preform to form a ceramic matrix within its pores. In well-known manner, the ceramic matrix, e.g. of silicon carbide (SiC) can be obtained by a liquid method or by chemical vapor infiltration.




An advantage of thermostructural composite materials lies in their excellent mechanical properties, in particular their bending strength.




Consequently, it is possible to support the annular parts A by threading them onto the arms


20


from the free ends thereof, with each part A resting in a cantileveredout position, and without causing the arms to bend. is Advantageously, the load as a whole is kept in balance by distributing the parts equally on both sides of the partition


14


.




Another advantage of thermostructural composite materials lies in their great dimensional stability, even when exposed to large variations of temperature. This makes it possible for the support arms


20


to conserve practically invariable position references and thus to have the precision required for robotizing loading and unloading operations. The way in which the parts A are supported on the arms


20


has the further benefit of making such robotization easy.




Making the rack with arms


20


that extend on either side of the partition


14


in substantially symmetrical manner thereabout also makes it possible to perform loading and unloading simultaneously and symmetrically on both sides of the partition. This leads to a significant saving of time when performing such operations.




It will be observed that the parts A can be placed on the arms


20


side by side or in predetermined locations, with such locations being marked, for example, by notches formed in the arms.




As can be seen more particularly in

FIG. 2

, the uprights


140


,


142


have end portions


140




a


,


142




a


which engage in corresponding housings


12




a


,


12




b


formed in the baseplate


12


, while the cross-bars


144


have end portions


144




a


,


144




b


which engage in housings such as


142




c


formed in the uprights


140


,


142


. Such housings


142




c


can be provided at regular intervals along the uprights


140


,


142


so as to enable the cross-bars


144


to be mounted at a determined pitch as a function of the size of the parts A in the vertical direction. The gussets


16


,


18


have tenons


16




a


,


18




a


along their bottom edges which are engaged in corresponding housings


12




c


,


12




d


formed in the baseplate


12


. The uprights


140


,


142


engage the gussets


16


,


18


via setbacks


140




d


,


142




d


formed in their outside edges.




Each bar


22


has a notch


22




a


in its central portion for co-operating with the notch


144




c


formed in a crossbar


144


so as to engage the bar on the cross-bar. Each cross-bar has notches


144




c


distributed along its length so as to enable the bars


22


to be mounted on a given cross-bar at a pitch which is determined by the size of the parts A in a horizontal direction.




The modular nature of the rack can be extended by making each upright


140


,


142


not as a single piece, but as a plurality of pieces that are assembled end to end.




In a variant, the uprights


140


,


142


and the crossbars


144


of the partition


14


can be made as a single piece, e.g. by machining a plate of thermostructural composite material.





FIG. 1

shows that the rack possesses very great filling capacity while nevertheless presenting a structure that is lightweight and open, and holes can be formed in the structural elements such as the baseplate


12


and the gussets


16


,


18


. It is thus easy to handle a complete rack. Furthermore, when the heat treatment includes allowing a gas to diffuse in contact with the parts, gas exchange with the parts is facilitated.




The rack of

FIG. 3

differs from that of

FIG. 1

in that it is designed more particularly for supporting parts that are solid and elongate, such as shafts B which are disposed vertically (in

FIG. 3

, the parts B are shown on one side only of the rack). In addition, the locations for the parts B are marked by pegs


26


on which the parts rest.




The rack is built in identical manner to that shown in

FIG. 1

, with the baseplate


12


supporting the central partition


14


on which the bars


22


that form the horizontal arms


20


with free ends are mounted. The number of cross-bars


144


in the central partition, between the uprights


140


,


142


, and the spacing between the cross-bars are determined as a function of the vertical size of the parts B. The spacing between the arms


20


is determined as a function of the horizontal size of the parts B.




It will be observed that each part B rests via a shoulder on two pegs


26


carried by adjacent arms


20


at the same locations along said arms, each part being inserted for loading purposes in the gap between two arms. The pegs


26


are distributed along each arm at a spacing that is a function of the horizontal size of the parts B in the direction parallel to the arms


20


.




The pegs


26


can be made out of a thermostructural composite material, e.g. the same material as the other elements of the rack, or they can be made of a refractory metal material. The pegs


26


can be in the form of clips that are merely placed with a small amount of force on the arms


20


, with no adhesive being required.




Although

FIGS. 1 and 3

show racks each supporting parts that are all identical, it is naturally possible to put parts of different shapes on a single rack.



Claims
  • 1. A rack for supporting parts to be subjected to heat treatment, said rack comprising:a baseplate; a partition extending above the baseplate; and a plurality of support arms fixed to the partition and extending substantially horizontally from the partition to the ends of the arms which are free, the arms being disposed in substantially symmetrical manner relative to the partition, and said baseplate, said partition, and said plurality of support arms being made out of thermostructural composite material; thereby enabling parts to be treated to be supported in a cantilevered-out position on said arms, and enabling the parts to be loaded and unloaded in symmetrical manner on both sides of the partition.
  • 2. A rack according to claim 1, characterized in that it further includes pegs mounted on the arms to mark the locations for supporting parts (B).
  • 3. A rack according to claim 1, characterized in that the partition has uprights between which cross-bars extend.
  • 4. A rack according to claim 1, characterized in that the support arms are formed by bars each extending on either side of the partition to form two opposite arms.
  • 5. A rack according to claim 3, characterized in that the bars are interfitted on the cross-bars of the partition.
  • 6. A rack according to claim 2, characterized in that the partition has uprights between which cross-bars extend.
  • 7. A rack according to claim 2, characterized in that the support arms are formed by bars each extending on either side of the partition to form two opposite arms.
  • 8. A rack according to claim 3, characterized in that the support arms are formed by bars each extending on either side of the partition to form two opposite arms.
  • 9. A rack according to claim 4, characterized in that the bars are interfitted on the cross-bars of the partition.
Priority Claims (1)
Number Date Country Kind
99 05692 May 1999 FR
PCT Information
Filing Document Filing Date Country Kind
PCT/FR00/01206 WO 00
Publishing Document Publishing Date Country Kind
WO00/68626 11/16/2000 WO A
US Referenced Citations (11)
Number Name Date Kind
1813085 Rowland Jul 1931 A
3388806 Cunningham et al. Jun 1968 A
3858827 Glassbrook Jan 1975 A
4501369 Fox Feb 1985 A
4679510 Veyhl et al. Jul 1987 A
5186764 Stiasny Feb 1993 A
5667603 Ichikawa et al. Sep 1997 A
5688098 Theno Nov 1997 A
5894946 Darnell et al. Apr 1999 A
6119875 Smith Sep 2000 A
6129224 Mingers Oct 2000 A
Foreign Referenced Citations (5)
Number Date Country
15 58 553 Mar 1970 DE
30 20 888 Dec 1981 DE
43 41 648 Jan 1995 DE
297 21 475 Feb 1998 DE
0 518 746 Dec 1992 EP