The present disclosure relates generally to dishwasher appliances, and more particularly to improved rack mounting features for dishwasher appliances.
Dishwasher appliances generally include a tub that defines a wash chamber. Rack assemblies can be mounted within the wash chamber of the tub for receipt of articles for washing. Multiple spray assemblies can be positioned within the wash chamber for applying or directing wash fluid towards articles disposed within the rack assemblies in order to clean such articles. Dishwasher appliances are also typically equipped with at least one pump for circulating fluid through the multiple spray assemblies. In addition, devices referred to as diverters may be used to control the flow of fluid received from the pump.
In addition to conventional lower and middle rack assemblies, certain dishwasher appliances include a “third rack” or “upper rack” positioned above the lower and middle rack assemblies, e.g., for receiving flatware, cutlery, or other cooking utensils. For both conventional and third rack assemblies, properly supporting such rack assemblies within the tub of the dishwasher appliance requires the installation of a mounting bracket or assembly. However, installing such mounting brackets is often complicated, requiring multiple parts and increasing the potential for misalignment or improper mounting. For example, assembly of such mounting brackets typically requires blind insertion of a mechanical fastener through a support plate and washer, through the tub, and into a boss defined on the mounting bracket.
Accordingly, a dishwasher appliance that utilizes improved rack mounting features would be useful. More specifically, a rack mounting assembly that enables a simple mounting of a third rack assembly with very few parts would be particularly beneficial.
Aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In one exemplary embodiment, a dishwasher appliance defining a vertical, a lateral, and a transverse direction is provided. The dishwasher appliance include a tub defining a wash chamber for receipt of articles for washing, the tub defining a first aperture, a third rack assembly slidably positioned within the wash chamber and configured for movement along the transverse direction, and a rack mounting assembly for supporting the third rack assembly. The rack mounting assembly includes a mounting body positioned inside the wash chamber and defining a first mounting feature that extends through the first aperture defined in the tub and a latching arm positioned outside the wash chamber and defining a first locking feature for engaging the first mounting feature to secure the mounting body to the tub.
In another exemplary embodiment, a rack mounting assembly for supporting a third rack assembly within a tub of a dishwasher appliance is provided. The tub defines a wash chamber for receipt of articles for washing and a plurality of apertures. The rack mounting assembly includes a mounting body positioned inside the wash chamber and defining a first mounting feature that extends through a first aperture of the plurality of apertures defined in the tub and a latching arm positioned outside the wash chamber and defining a first locking feature for engaging the first mounting feature to secure the mounting body to the tub.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As used herein, the terms “includes” and “including” are intended to be inclusive in a manner similar to the term “comprising.” Similarly, the term “or” is generally intended to be inclusive (i.e., “A or B” is intended to mean “A or B or both”). Approximating language, as used herein throughout the specification and claims, is applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” “approximately,” and “substantially,” are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. For example, the approximating language may refer to being within a 10 percent margin.
As used herein, the term “article” may refer to, but need not be limited to dishes, pots, pans, silverware, and other cooking utensils and items that can be cleaned in a dishwashing appliance. The term “wash cycle” is intended to refer to one or more periods of time during which a dishwashing appliance operates while containing the articles to be washed and uses a detergent and water, preferably with agitation, to e.g., remove soil particles including food and other undesirable elements from the articles. The term “rinse cycle” is intended to refer to one or more periods of time during which the dishwashing appliance operates to remove residual soil, detergents, and other undesirable elements that were retained by the articles after completion of the wash cycle. The term “drain cycle” is intended to refer to one or more periods of time during which the dishwashing appliance operates to discharge soiled water from the dishwashing appliance. The term “wash fluid” refers to a liquid used for washing and/or rinsing the articles and is typically made up of water that may include other additives such as detergent or other treatments.
The tub 104 includes a front opening 114 and a door 116 hinged at its bottom for movement between a normally closed vertical position (shown in
As best illustrated in
Some or all of the rack assemblies 122, 124, 126 are fabricated into lattice structures including a plurality of wires or elongated members 130 (for clarity of illustration, not all elongated members making up rack assemblies 122, 124, 126 are shown in
Dishwasher 100 further includes a plurality of spray assemblies for urging a flow of water or wash fluid onto the articles placed within wash chamber 106. More specifically, as illustrated in
The various spray assemblies and manifolds described herein may be part of a fluid distribution system or fluid circulation assembly 150 for circulating water and wash fluid in the tub 104. More specifically, fluid circulation assembly 150 includes a pump 152 for circulating water and wash fluid (e.g., detergent, water, and/or rinse aid) in the tub 104. Pump 152 may be located within sump 138 or within a machinery compartment located below sump 138 of tub 104, as generally recognized in the art. Fluid circulation assembly 150 may include one or more fluid conduits or circulation piping for directing water and/or wash fluid from pump 152 to the various spray assemblies and manifolds. For example, as illustrated in
As illustrated, primary supply conduit 154 is used to supply wash fluid to one or more spray assemblies, e.g., to mid-level spray arm assembly 140 and upper spray assembly 142. However, it should be appreciated that according to alternative embodiments, any other suitable plumbing configuration may be used to supply wash fluid throughout the various spray manifolds and assemblies described herein. For example, according to another exemplary embodiment, primary supply conduit 154 could be used to provide wash fluid to mid-level spray arm assembly 140 and a dedicated secondary supply conduit (not shown) could be utilized to provide wash fluid to upper spray assembly 142. Other plumbing configurations may be used for providing wash fluid to the various spray devices and manifolds at any location within dishwasher appliance 100.
Each spray arm assembly 134, 140, 142, integral spray manifold 144, or other spray device may include an arrangement of discharge ports or orifices for directing wash fluid received from pump 152 onto dishes or other articles located in wash chamber 106. The arrangement of the discharge ports, also referred to as jets, apertures, or orifices, may provide a rotational force by virtue of wash fluid flowing through the discharge ports. Alternatively, spray arm assemblies 134, 140, 142 may be motor-driven, or may operate using any other suitable drive mechanism. Spray manifolds and assemblies may also be stationary. The resultant movement of the spray arm assemblies 134, 140, 142 and the spray from fixed manifolds provides coverage of dishes and other dishwasher contents with a washing spray. Other configurations of spray assemblies may be used as well. For example, dishwasher 100 may have additional spray assemblies for cleaning silverware, for scouring casserole dishes, for spraying pots and pans, for cleaning bottles, etc. One skilled in the art will appreciate that the embodiments discussed herein are used for the purpose of explanation only, and are not limitations of the present subject matter.
In operation, pump 152 draws wash fluid in from sump 138 and pumps it to a diverter assembly 156, e.g., which is positioned within sump 138 of dishwasher appliance. Diverter assembly 156 may include a diverter disk (not shown) disposed within a diverter chamber 158 for selectively distributing the wash fluid to the spray arm assemblies 134, 140, 142 and/or other spray manifolds or devices. For example, the diverter disk may have a plurality of apertures that are configured to align with one or more outlet ports (not shown) at the top of diverter chamber 158. In this manner, the diverter disk may be selectively rotated to provide wash fluid to the desired spray device.
According to an exemplary embodiment, diverter assembly 156 is configured for selectively distributing the flow of wash fluid from pump 152 to various fluid supply conduits, only some of which are illustrated in
The dishwasher 100 is further equipped with a controller 160 to regulate operation of the dishwasher 100. The controller 160 may include one or more memory devices and one or more microprocessors, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with a cleaning cycle. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor. Alternatively, controller 160 may be constructed without using a microprocessor, e.g., using a combination of discrete analog and/or digital logic circuitry (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, and the like) to perform control functionality instead of relying upon software.
The controller 160 may be positioned in a variety of locations throughout dishwasher 100. In the illustrated embodiment, the controller 160 may be located within a control panel area 162 of door 116 as shown in
It should be appreciated that the invention is not limited to any particular style, model, or configuration of dishwasher 100. The exemplary embodiment depicted in
Referring now generally to
As best illustrated in
Referring now also to
In order to permit interaction between the mounting body 210 and latching arm 212, tub 104 defines a plurality of apertures 220 through which a portion of mounting body 210 and/or latching arm 212 may pass to engage each other. Specifically, according to the illustrated embodiment, tub 104 defines a first aperture 222 and a second aperture 224 that are spaced apart along the transverse direction T. According to exemplary embodiments, first aperture 222 and second aperture 224 are sized just large enough to receive the mounting features of mounting body 210 and latching arm 212 without introducing a large leak point. In addition, first aperture 222 and second aperture 224 may have a resilient sealing element (not shown), such as a gasket or O-ring, mounted therein to provide a fluid tight engagement with mounting body 210 and/or latching arm 212. Although two apertures 220 are illustrated for purposes of explaining aspects of the present subject matter, it should be appreciated that the number, size, position, and configuration of apertures 220 may vary while remaining within the scope of the present subject matter.
Referring now specifically to
According to exemplary embodiments of the present subject matter, first mounting feature 230 is a cylindrical post 240 that defines a flattened portion 242 that is positioned between rear surface 232 of mounting body 210 and a locking flange 244 that is positioned on a distal end of cylindrical post 240. In addition, first locking feature 234 generally includes a locking clip 246 that defines a notch 248 for securely receiving cylindrical post 240. More specifically, notch 248 includes an opening 250 for receiving cylindrical post 240 and a base 252 where cylindrical post 240 bottoms out within notch 248. In this regard, once a cylindrical post 240 is inserted through first aperture 222, locking clip 246 may be moved toward cylindrical post 240 such that flattened portion 242 slides through opening 250 into notch 248 before stopping against base 252.
In addition, locking clip 246 may include one or more resilient elements 254 that are generally positioned and configured for securing cylindrical post 240 within notch 248, e.g., securely seating cylindrical post 240 against base 252 such that it may not be removed from notch 248. Specifically, according to the illustrated embodiment, resilient element 254 is mounted on locking clip 246 proximate opening 250 and extends toward base 252. In this manner, as cylindrical post 240 slides into notch 248, resilient element 254 is deflected until a cylindrical post 240 clears resilient element 254, at which point resilient element 254 snaps back into place and secures cylindrical post 240.
Referring now to
Notably, to install rack mounting assembly 200 as shown in
Referring now to
After insertion arm 274 is fully received within the receiving hole 270, latching arm 212 may be rotated such that keyed entry flange 272 and keyed distal end 276 engage each other to lock insertion arm 274 within the receiving hole 270. According to the illustrated embodiment, first mounting feature 230 engages first locking feature 234 when latching arm 212 continues to rotate into a second angular position. Specifically, according to the illustrated embodiment, moving latching arm 212 from the first angular position to the second angular position includes rotating the latching arm by 180° about central axis 266.
Notably, the embodiments of rack mounting assembly 200 illustrated in
It should be appreciated that rack mounting assembly 200 is described herein only for the purpose of explaining aspects of the present subject matter. Modifications and variations may be made to rack mounting assembly 200 while remaining within the scope of the present subject matter. For example, the size, configuration, position, and operation of mounting body 210 and latching arm 212 may vary or be adjusted to control the interaction with tub 104 or each other while remaining within the scope of the present subject matter. Rack mounting assembly 200 as described above provides a simple and effective mechanism for installing third rack assembly 126 or any other suitable rack assembly within dishwasher appliance 100 in a reliable manner and with only two pieces. Other configurations and benefits will be apparent to those of skill in the art.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
9579010 | Shewmaker | Feb 2017 | B2 |
9833123 | Shaffer | Dec 2017 | B2 |
10022035 | Dabade et al. | Jul 2018 | B2 |
10456006 | Maddux | Oct 2019 | B2 |
20150190033 | Shaffer | Jul 2015 | A1 |
20160360946 | Shewmaker | Dec 2016 | A1 |
20190365197 | Maddux | Dec 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20220167826 A1 | Jun 2022 | US |