The present invention pertains to a rack with pivoting fingers and in particular a rack including fingers that may be pivoted between retracted and extended positions for supporting articles thereon.
Racks for supporting articles such as bottles and dishes and having pegs or fingers to support articles thereon for drying are well known. Such racks generally have a base for catching water and supporting articles that are placed either on or between the fingers. Such racks have been formed of wires with pivoting hinges so that the entire rack may be folded and stored conveniently.
Other racks have a rigid base with fingers which are mounted on the base to be pivoted to move between a retracted and extended position. Such an arrangement is shown in U.S. Pat. No. 6,125,548. However, the movement of the fingers is very time consuming in that each row of fingers must be grasped one by one and moved between the retracted and extended positions. As well, in the retracted position the rack fails to provide a smooth, unencumbered upper surface. Finally, such a rack fails to provide a mechanism by which all of the fingers may be moved simultaneously between a retracted and extended position via actuation by a single hand of an operator making a single motion. The present invention provides such an invention that overcomes the above-mentioned disadvantages.
The present invention provides for a rack for supporting articles, the rack comprising a base having an upper surface and a lower surface. The upper surface has a plurality of holes therein. An actuator is mounted between the surfaces and has a plurality of fingers movably attached thereto and respectively extendable through the holes. The actuator is movable between extended and retracted conditions. The fingers are responsive to movement of the actuator to its extended condition for simultaneously moving the fingers to extended positions, protruding from the holes approximately perpendicular to the upper surface. The fingers are responsive to movement of the actuator to its retractable condition for simultaneously moving the fingers to retracted positions recessed below the upper surface. In an embodiment the fingers may be received by guide channels formed adjacent the holes. The fingers may be attached to a plurality of rods. The rods may be oriented in rows spaced within the base. The rods are attached to the actuator which includes a handle exposed at a side of the base. Upon sliding the handle from a closed condition, where the handle is adjacent an edge of the side, to an open condition where the handle is extended from the side, the rods slide through the base and the fingers slide through the guide channels and pivot from the retracted position to the extended position. In an embodiment, the actuator may be slidable and carries the fingers thereon in order to move between the extended condition and the retracted condition. In an embodiment the lower surface and the actuator may be attached to and activate the fingers in a simultaneous manner. In an embodiment, each finger may be slidingly received in the guide channels formed in the upper surface of the base. In an embodiment, each hole may include an extending edge and a retracting edge that abuts the fingers and, upon sliding of the actuator, the fingers engage the edges to either extend or retract the fingers.
In an embodiment, the actuator may include a rectangular frame formed by a pair of sliders at each side, a handle at an end and an enclosed edge at the end opposite the handle. In an embodiment, a plurality of rods may be provided between and perpendicular to the sliders. In an embodiment, a web may be formed and attached to the rods and each finger may include a proximal end attached to a rod so that, upon sliding of the actuator to the retracted condition, the web carries each rod and causes each finger to pivot and rotate from the extended position toward the retracted position. In an embodiment, the actuator may include a tab protruding therefrom in order to engage a protrusion formed in the base so that, upon sliding of the actuator to the extended condition, the tab engages the protrusion in order to lock the sliding member in the extended condition. In an embodiment, the tab is associated with a latch member so that, upon depression of the latch member, the tab disengages the protrusion so that the sliding member may return to the retracted condition. In an embodiment, the tab may be provided at a first end of a pivot arm and the latch member is provided at a second end of the pivot arm and the pivot arm is pivotally mounted to the actuator and includes a spring to urge the pivot arm to an extended condition with the tab protruding from the side. In an embodiment, the pivot arm includes a pivot point provided intermediate to the tab and the latch member so that the pivot arm is mounted at the pivot point so that upon sliding the actuator from the retracted condition to an extended condition a ramped surface of the tab slidingly abuts against the protrusion causing the pivot arm to pivot so that the tab moves away from the protrusion, allowing the actuator to slide past the protrusion to the extended condition, whereupon the tab and pivot arm may move outward into a locked condition with a flat edge of the tab abutting the protrusion. In an embodiment, a stop abutment is provided to limit outward movement of the actuator in the retracted condition.
The present invention further provides a method of moving a rack between a flat folded orientation and a splayed, unfolded orientation for supporting articles thereon, comprising the steps of providing a base having an actuator having a plurality of fingers pivotally attached thereto, sliding the actuator so that the fingers are in a retracted position below a top surface of the base and adjacent holes formed in the top surface. Sliding the actuator so that it extends beyond an edge of the base and pivoting the fingers so that they slide through the holes and extend to an upright position approximately perpendicular to the top surface. In an embodiment, the method may comprise the step of activating a latch member in order to slide the actuator to the retracted condition. In an embodiment, the method may comprise the actuator including rods pivotally attached to the fingers so that the fingers may pivot up and out of the holes when the actuator is moved. In an embodiment, the method may further comprise the steps of sliding the actuator toward the retracted condition and carrying each finger to a position so that each finger abuts against a retracting edge of the holes, moving the actuator to the retracted condition, the fingers engaging the retracting edge and pivoting the finger to the retracted position. In an embodiment, the method may further comprise the steps of sliding the actuator toward the extended condition and carrying each finger to a position so that each finger abuts against an extending edge of the holes, moving the actuator to the extended condition, the fingers engaging the extending edge and pivoting the fingers to the extended position.
The present invention may also comprise a pivoting assembly for moving a finger between an extended and retracted position comprising a finger pivotally mounted to a base, an upper surface having a hole for receiving the finger therethrough, an extending surface and a retracting surface attached to the upper surface and an actuator causing the extending surface to abut the finger in order to pivot the finger to an extended position and the actuator causing the retracting surface to abut the finger in order to pivot the finger to the retracted position. In an embodiment, the base may be formed of a web forming the actuator. In an embodiment, the upper surface and actuator may be formed together and slide along the base. In an embodiment, the upper surface and base may form a cavity for slidingly receiving the actuator therein. In an embodiment, the extending surface may form a semicircular side of a hole and the retracting surface may form a semicircular side of the hole opposite the extending side and the hole is formed in the upper surface and receives the finger. In an embodiment, the retracting surface is approximately coplanar with the upper surface and the extending surface is oriented approximately between the upper surface and the base.
In a further embodiment the present invention provides a rack comprising a first member having fingers moveably attached thereto. A second member is provided for receiving the fingers therethrough and the first and second members are coupled for relative movement to each other between a first condition and a second condition. The fingers are responsive to the relative movement so that in the first condition the fingers are in a retracted position and in the second condition the fingers are in an extended position. In an embodiment, the first and second members may form a housing and the first member slides relative to the housing and the fingers are pivotally attached to the first member so that upon sliding of the first member the fingers pivot between the extended and retracted position. In an embodiment, the first and second members may form a housing and the second member slides relative to the housing. The fingers are pivotally attached to the first member so that upon sliding of the second member the fingers pivot between the extended and retracted position. In an embodiment, a cavity may be provided and the first member may include an actuator that slides within the cavity. The actuator has the fingers pivotally mounted thereto. In an embodiment, the actuator may slide between the first condition where the actuator is retracted within the cavity and the second condition where the actuator is extended from the cavity. In an embodiment, the second member may include an upper surface having an extending surface and a retracting surface corresponding to each finger so that when the fingers are received through the upper surface of the second member, each finger is adjacent to each of the extending surfaces and the retracting surfaces. In an embodiment, upon movement to the first condition each retracting surface may act on each finger in order to move the fingers to the retracted position. In an embodiment, the upper surface may include a plurality of holes and each hole may include the retracting surface formed therein. In an embodiment, upon movement to the second condition each extending surface may act on each finger in order to move the fingers to the extended position. In an embodiment, the upper surface may include a plurality of holes and each hole may include the extending surface formed therein.
For the purpose of facilitating an understanding of the subject matter sought to be protected, there are illustrated in the accompanying drawings embodiments thereof, from an inspection of which, when considered in connection with the following description, the subject matter sought to be protected, its construction and operation, and many of its advantages should be readily understood and appreciated.
An embodiment of the invention is described with respect to
In a preferred embodiment, the actuator 20 is formed of a rectangular frame 38 including a handle 37 and, at an opposite end, an rear edge 39 (see
In a preferred embodiment, pairs of brackets 50, 51 are formed on the web 43 of the actuator 20 in order to retain the rods 47 therein. In a preferred embodiment, the actuator is formed of a polymer material, such as a plastic, and the brackets 50, 51 are sufficiently resilient so that the rod 47 may be snapped in place between the pair of brackets 50, 51 (see
In a preferred embodiment, a boss 53 is formed where the proximal end 35 of each finger 22 attaches to the rod 47. The boss 53, in a preferred embodiment, is a cylindrical portion having a diameter slightly larger than the diameter of the cylindrical rod 47. The boss 53 adds a rigid structure and strengthens the connection between the fingers 22 and the rod 47 and restricts longitudinal movement of the rod 47. Apertures 45 are formed in the web 43 of the actuator 20 so that, upon pivoting of the fingers 22 and rods 47, the bosses 53 may protrude downward through the apertures 45 without providing a frictional resistance against the surface of the web 43 (see
The actuator 20 includes latch members 55, 56 in order to lock and/or latch the actuator 20 to or from its extended condition as shown in
In order to extend the fingers 22, the process discussed above is reversed and the handle 37 is grasped at a depression 57 (see
When the handle 37 is fully extended, the latch members 55, 56 will be actuated to lock the handle 37 in its extended condition. The first end 63, in a preferred embodiment, having a tab 66 will slide so that a ramped surface on the tab 66 will abut a protrusion 68 within the base. The pivot arm 60 will pivot outward so that the tab 66 may slide past the protrusion 68 and then the tab 66 will snap to a locked position where a flat edge of the tab 66 abuts against the protrusion formed within the base 10. A flat edge 69 of the actuator 20 will act as a stop abutment, abutting against the first edge 58 of the lower surface 15 (see
In a preferred embodiment, the base 10 also includes a translucent prism 75 (see
In an alternate embodiment the colored surface may be white, black, orange, yellow, green, blue, violet or any other color. In an embodiment, a light source 100 transmits light rays 101 into the prism 75. When liquid or water 80 is not present at the beveled end 78 (see
In an embodiment, the beveled end 78 may have an angle “a” of approximately 45°. In an embodiment, an apex 91 of the beveled end 78 may be slanted at an angle “b” of approximately 10-30° from the plane of the base or lower surface 15 which is a liquid collecting surface. In a preferred embodiment, the angle “b” may be 14° from the lower surface 15. This slant forms an acute angled surface along the apex 91 between a first edge 92 and a second edge 93 of the prism 75. This arrangement allows for detection of the amount of water present in the base 15 by illuminating the entire length of the beveled end 78 of the prism 75 with the colored stripe, when a high level (volume) of water is present. In other words, when the water 80 reaches a level high enough to reach the second end 93, the prism will appear completely red; indicating the liquid collecting surface 15 or reservoir is full. As shown in
In an alternate embodiment of the invention, the actuator 20 and upper surface 13 or lower surface 15 may be attached or integrally formed together. In a further alternate embodiment, the fingers 22 may be attached to the base or lower surface 15 and the upper surface 13 or lower surface 15 may act as the actuator and slide in order to pivot the fingers 22. It may be understood that when the actuator 20 is in its extended condition (
The matter set forth and the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. While particular embodiments have been shown or descroded it will be obvious to those skilled in the art that changes in modifications may be made without departing from the broader aspects of Applicant's contribution. The actual scope of the protection sought is intended to be defined in the following claims when viewed in their proper perspective based on the prior art.
Number | Date | Country | |
---|---|---|---|
Parent | 10340120 | Jan 2003 | US |
Child | 11881648 | Jul 2007 | US |