Radar-based baggage and parcel inspection systems

Information

  • Patent Grant
  • 11280898
  • Patent Number
    11,280,898
  • Date Filed
    Wednesday, July 24, 2019
    5 years ago
  • Date Issued
    Tuesday, March 22, 2022
    2 years ago
Abstract
The present specification provides a baggage scanning system including: an aperture defining a scanning tunnel; a conveyor moving through the scanning tunnel, a baggage being scanned moving on the conveyor; a UWB radar array surrounding the aperture for providing radar scan data corresponding to the baggage; a LCMD array positioned at a location around the baggage allowing obtaining of LCMD scan data corresponding to the baggage; and at least a processor for correlating the radar scan data and the LCMD scan data for providing one or more suspicious regions highlighted over a video image of the baggage being scanned.
Description
FIELD

The present specification generally relates to baggage screening systems, and in particular, relates to systems for material-specific detection using non-ionizing radiation and metal detectors.


BACKGROUND

Terrorism is a threat to the public especially in crowded locations. Threat devices, such as weapons, or threat materials, such as explosives, may be carried in hand baggage with little probability of detection by casual, or even skilled, observers. Therefore, it has become common practice to require travelers to divest themselves of their hand baggage when entering or passing through a critical facility such as an airport, train depot, or public building. The baggage is then searched either manually, or via X-ray scanning systems to produce images of the baggage being scanned. Currently, known technologies require a trained algorithm to analyze the shape of detected threat objects in the scanned images to determine if it is a threat or if it is innocuous. From the shape alone, however, it is difficult to assess the nature of many potential threats, or ascertain whether they are indeed innocuous items, and therefore false alarm rates tend to be significant.


In order to reduce baggage scan time and make the searching of baggage efficient, there is a need to separate personnel screening systems from baggage screening systems, so that successful baggage screening can be achieved with low cost, widely deployable, sensors that do not pose any health risk to the general population.


Hence, there is need for a low cost, zero health hazard, carry-on baggage scanning system for use with relatively untrained operators for directed search on a fraction of scanned bags, based on large potential threat items. There is also need for a baggage scanning system that may be deployed in potentially high threat areas such as, but not limited to, critical infrastructure, special events, crowded areas such as shopping malls and the aviation sector.


SUMMARY

The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, and not limiting in scope. The present application discloses numerous embodiments.


The present specification discloses a baggage scanning system comprising: an aperture defining a scanning tunnel; a conveyor configured to move baggage through the scanning tunnel; a radar array distributed around the aperture, the radar array comprising a plurality of radar sub-systems for providing radar scan data comprising location and dielectric properties of a threat object in the baggage; a metal detection system comprising: at least a plurality of magnetic field generators and a plurality of magnetic field detectors positioned respectively at least on two opposing sides of the aperture; and a processor configured to cause a magnetic field to be generated in the aperture via the magnetic field generators, configured to receive data from the plurality of magnetic field detectors and configured to determine values indicative of a magnetic field modified by the baggage passing through the aperture in order to generate metal detector scan data; and at least one processor configured to correlate the radar scan data and the metal detector scan data and to determine one or more regions of the baggage requiring further inspection.


Optionally, the baggage scanning system further comprises a video camera system positioned within the aperture and configured to generate surface profile data. Optionally, the at least one processor is configured to use the surface profile data, radar scan data and metal detector scan data to highlight the one or more regions over an image of the baggage being scanned.


Optionally, the metal detector scan data comprises localization and characterization data of objects present in the baggage.


Optionally, the plurality of magnetic field generators and the plurality of magnetic field detectors are positioned on a top of the aperture and on a bottom of the aperture.


Optionally, the plurality of magnetic field generators and the plurality of magnetic field detectors are positioned below the conveyor.


Optionally, the radar sub-system comprises at least a Vivaldi antenna coupled with an electronics drive circuit.


Optionally, the radar sub-system is operated in frequency modulated continuous wave mode (FMCW) with a center operating frequency ranging from 1 GHz to 3000 GHz and a bandwidth that is equal to or greater than 10 GHz.


Optionally, the radar sub-system can be selected to operate in either transmit mode or receive mode.


Optionally, each of the magnetic field generators comprises a magnetic field transmitter coil and each of the magnetic field detectors comprises a magnetic field receiver coil.


Optionally, the radar sub-system comprises a plurality of transmitter radar sub-systems configured in a vertical polarization plane and a plurality of receiver radar sub-systems configured in a horizontal polarization plane. Optionally, the plurality of transmitter radar sub-systems comprises a range of 30 to 60 transmitter radar sub-systems. Optionally, the plurality of receiver radar sub-systems comprises a range of 30 to 60 receiver radar sub-systems.


Optionally, the radar sub-system is configured to operate at a wavelength of 30 mm with a corresponding center frequency of 10 GHz.


Optionally, the at least one processor is configured to implement a tensor analysis method to analyze the scan data collected from the radar arrays and the metal detector scan data.


Optionally, the radar subsystem is operated in a Stepped Frequency Continuous Wave (SFCW) mode.


The present specification also discloses a method of scanning baggage moving on the conveyor through a scanning tunnel defined by an aperture of a baggage scanning system comprising an ultra-wide band radar array and a metal detector surrounding the aperture, wherein the ultra-wide band radar array comprises a plurality of ultra-wide band radar sub-systems and the metal detector comprises a plurality of magnetic field generators and a plurality of magnetic field detectors, the method comprising: obtaining radar scan data comprising location and dielectric properties of an object in the baggage from the ultra-wide band radar arrays; obtaining metal detector scan data comprising at least one of detection, localization or characterization data of the object present in the baggage from the plurality of magnetic field detectors, wherein the object modifies the magnetic field generated by the plurality of magnetic field generators; correlating the radar scan data and the metal detector scan data for determining a location of one or more regions requiring further inspection in the baggage; and highlighting the one or more regions in an image of the baggage being scanned.


Optionally, the method further comprises one of: marking the baggage as suspicious for further manual search if one or more threat objects are present in the baggage; and clearing the baggage automatically if no threat objects are present in the baggage.


Optionally, obtaining radar scan data comprises operating the ultra-wide band radar array in a Stepped Frequency Continuous Wave mode.


Optionally, obtaining radar scan data comprises operating at least one of the plurality of ultra-wide band radar sub-systems in a transmit mode and at least one of the plurality of ultra-wide band radar sub-systems in a receive mode.


Optionally, obtaining radar scan data comprises: obtaining frequency, amplitude, and phase scan data for one or more receiver-transmitter pairs of the ultra-wide band radar sub-systems; generating a time-amplitude plot for each of the one or more transmitter-receiver pairs; and determining a calibration point and range data to each point on the surface of the baggage from the time-amplitude plot for each of the one or more transmitter-receiver pairs.


Optionally, the plurality of magnetic field generators and the plurality of magnetic field detectors are positioned at a top of the aperture and at a bottom of the aperture.


Optionally, the plurality of magnetic field generators and the plurality of magnetic field detectors are positioned below the conveyor.


Optionally, each of the plurality of magnetic field generators comprises a linear array of magnetic field transmitter coils and each of the plurality of magnetic field detectors comprises a linear array of magnetic field receiver coils.


Optionally, the plurality of ultra-wide band radar sub-systems comprises a plurality of transmitter radar sub-systems configured in a vertical polarization plane and a plurality of receiver radar sub-systems configured in a horizontal polarization plane. Optionally, the plurality of transmitter radar sub-systems comprises a range of 30 to 60 transmitter radar sub-systems. Optionally, the plurality of receiver radar sub-systems comprises a range of 30 to 60 receiver radar sub-systems. Optionally, the plurality of ultra-wide band radar sub-systems is configured to operate at a wavelength of 30 mm with a corresponding center frequency of 10 GHz.


The present specification also discloses a baggage scanning system comprising: an aperture defining a scanning tunnel; a conveyor moving through the scanning tunnel, a baggage being scanned moving on the conveyor; a UWB radar array surrounding the aperture for providing radar scan data corresponding to the baggage; a metal detector positioned at a location around the baggage allowing obtaining of metal detector scan data corresponding to the baggage; and at least a processor for correlating the radar scan data and the metal detector scan data for providing one or more suspicious regions highlighted over a video image of the baggage being scanned.


Optionally, the UWB radar array comprises a plurality of UWB radar sub-systems. Optionally, the UWB radar subsystems are operated in a Stepped Frequency Continuous Wave (SFCW) mode. Optionally, at least one of the UWB radar sub-systems is operated in a transmit mode and at least one of the UWB radar sub-systems is operated in a receive mode.


Optionally, the radar scan data comprises location and dielectric properties of a threat object in the baggage.


Optionally, the metal detector comprises a plurality of magnetic field generators and magnetic field detectors positioned at least on two opposing sides of the aperture. Optionally, each of the magnetic field generators comprises a linear array of magnetic field transmitter coils and each of the magnetic field detectors comprises a linear array of magnetic field receiver coils. Optionally, the linear arrays of magnetic field generators and transmitter coils are positioned on the top and bottom of the aperture. Optionally, the linear arrays of magnetic field generators and transmitter coils are positioned below the conveyor.


Optionally, the metal detector scan data comprises detection, localization and characterization data of objects present in the baggage.


The present specification also discloses a baggage scanning system comprising: an aperture defining a scanning tunnel; a conveyor moving through the scanning tunnel, a baggage being scanned moving on the conveyor; an Ultra-Wide Band (UWB) radar array surrounding the aperture, the UWB radar array comprising a plurality of UWB radar sub-systems for providing radar scan data comprising location and dielectric properties of a threat object in the baggage; an X-ray detection system comprising at least a first and a second X-ray sources, wherein the X-ray sources are positioned in the scanning tunnel to project X-ray beams in up-shooter and side-shooter configurations; and at least a processor for correlating the radar scan data and the X-ray detection data for providing one or more suspicious regions highlighted over a video image of the baggage being scanned.


Optionally, the UWB radar sub-system comprises at least a Vivaldi antenna coupled with an electronics drive circuit.


Optionally, the UWB radar sub-system is operated in frequency modulated continuous wave mode (FMCW) with a 10 GHz bandwidth and operating frequency ranging from 5 GHz to 15 GHz.


Optionally, the UWB radar sub-system can be selected to operate in either transmit mode or receive mode.


The present specification also discloses a baggage scanning system comprising: an aperture defining a scanning tunnel; a conveyor moving through the scanning tunnel, a baggage being scanned moving on the conveyor; a UWB radar array surrounding the aperture, the UWB radar array comprising a plurality of UWB radar sub-systems for providing radar scan data comprising location and dielectric properties of a threat object in the baggage; a metal detection system comprising: at least a plurality of magnetic field generators and a plurality of magnetic field detectors positioned respectively at least on two opposing sides of the aperture; and a processor for enabling generation of a magnetic field via the magnetic field generators and measuring the magnetic field modified by the baggage by using the magnetic field detectors, for obtaining metal detector scan data; and at least a processor for correlating the radar scan data and the metal detector scan data for providing one or more suspicious regions highlighted over a video image of the baggage being scanned.


Optionally, the aperture is 640 mm wide and 420 mm high.


Optionally, a length of the scanning tunnel is 1200 mm.


Optionally, the metal detector scan data comprises localization and characterization data of objects present in the baggage.


Optionally, the plurality of magnetic field generators and the plurality of magnetic field detectors are positioned on the top and bottom of the aperture.


Optionally, the plurality of magnetic field generators and the plurality of magnetic field detectors are positioned below the conveyor.


Optionally, the UWB radar sub-system comprises at least a Vivaldi antenna coupled with an electronics drive circuit.


Optionally, the UWB radar sub-system is operated in frequency modulated continuous wave mode (FMCW) with a 10 GHz bandwidth and operating frequency ranging from 5 GHz to 15 GHz.


Optionally, the UWB radar sub-system can be selected to operate in either transmit mode or receive mode.


Optionally, each of the magnetic field generators comprises a magnetic field transmitter coil and each of the magnetic field detectors comprises a magnetic field receiver coil.


Optionally, the UWB radar sub-system comprises 44 transmitter UWB radar sub-systems configured in a vertical polarization plane and 40 receiver UWB radar sub-systems configured in a horizontal polarization plane, UWB radar sub-system operating at a wavelength of 30 mm with a corresponding center frequency of 10 GHz.


Optionally, the scan data collected from the UWB radar arrays and the metal detector scan data are analyzed by using tensor analysis method.


Optionally, the UWB radar subsystem is operated in a Stepped Frequency Continuous Wave (SFCW) mode.


The present specification also discloses a method of scanning baggage moving on the conveyor through a scanning tunnel defined by an aperture of a baggage scanning system comprising: a UWB radar array and a metal detector surrounding the aperture, the UWB radar array comprising a plurality of UWB radar sub-systems, the metal detector comprising a plurality of magnetic field generators and a plurality of magnetic field detectors, the method comprising: obtaining radar scan data comprising location and dielectric properties of a threat object in the baggage from the UWB radar arrays; obtaining metal detector scan data comprising detection, localization and characterization data of objects present in the baggage from the magnetic field detectors, the objects modifying the magnetic field generated by the magnetic field generators; and correlating the radar scan data and the metal detector scan data for providing one or more suspicious regions highlighted over a video image of the baggage being scanned.


Optionally the method further comprises one of: marking the baggage as suspicious for further manual search if one or more threat objects are present in the baggage; and clearing the baggage automatically if no threat objects are present in the baggage.


Optionally, the step of obtaining radar scan data comprises operating the UWB radar subsystem in a Stepped Frequency Continuous Wave (SFCW) mode.


Optionally, the step of obtaining radar scan data comprises operating at least one of the UWB radar sub-systems in a transmit mode and at least one of the UWB radar sub-systems in a receive mode.


Optionally, the step of obtaining radar scan data comprises: obtaining frequency/amplitude/phase scan data for each receiver-transmitter pair of a UWB radar sub-system; obtaining a time-amplitude plot for each transmitter-receiver pair by using a standard transformation on the obtained frequency/amplitude/phase scan data; and determining a calibration point and range data to each point on the surface of the baggage from the time-amplitude plot for each transmitter-receiver pair.


Optionally, the plurality of magnetic field generators and the plurality of magnetic field detectors are positioned on the top and bottom of the aperture.


Optionally, the plurality of magnetic field generators and the plurality of magnetic field detectors are positioned below the conveyor.


Optionally, each of the magnetic field generators comprises a linear array of magnetic field transmitter coil and each of the magnetic field detectors comprises a linear array of magnetic field receiver coil.


Optionally, the UWB radar sub-system comprises 44 transmitter UWB radar sub-systems configured in a vertical polarization plane and 40 receiver UWB radar sub-systems configured in a horizontal polarization plane, UWB radar sub-system operating at a wavelength of 30 mm with a corresponding center frequency of 10 GHz.


The present specification also discloses a baggage scanning system comprising: an aperture defining a scanning tunnel; a conveyor moving through the scanning tunnel, a baggage being scanned moving on the conveyor; a UWB radar array surrounding the aperture for providing radar scan data corresponding to the baggage; a metal detector positioned at a location around the baggage allowing obtaining of metal detector scan data corresponding to the baggage; and at least a processor for correlating the radar scan data and the metal detector scan data for providing one or more suspicious regions highlighted over a video image of the baggage being scanned.


Optionally, the UWB radar array comprises a plurality of UWB radar sub-systems. The UWB radar subsystems may be operated in a Stepped Frequency Continuous Wave (SFCW) mode. Optionally, at least one of the UWB radar sub-systems may be operated in a transmit mode and at least one of the UWB radar sub-systems may be operated in a receive mode.


Optionally, the radar scan data comprises location and dielectric properties of a threat object in the baggage.


Optionally, the metal detector comprises a plurality of magnetic field generators and magnetic field detectors positioned at least on two opposing sides of the aperture. Each of the magnetic field generators may comprise a linear array of magnetic field transmitter coil and each of the magnetic field detectors may comprise a linear array of magnetic field receiver coil.


Optionally, the metal detector scan data comprises detection, localization and characterization data of objects present in the baggage.


Optionally, the linear arrays of magnetic field generator and transmitter coils are positioned on the top and bottom of the aperture.


Optionally, the linear arrays of magnetic field generator and transmitter coils are positioned below the conveyor.


The aforementioned and other embodiments of the present specification shall be described in greater depth in the drawings and detailed description provided below.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present specification will be further appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings:



FIG. 1A illustrates a baggage scanning system comprising ultra wide band (UWB) radar sub-systems and localizing, characterizing, metal detectors (LCMD), in accordance with an embodiment of the present specification;



FIG. 1B is a side-view depiction of the baggage scanning system shown in FIG. 1A, in accordance with an embodiment of the present specification;



FIG. 1C is a schematic representation of an individual UWB radar component sub-system, in accordance with an embodiment of the present specification;



FIG. 1D is a diagram representative of an exemplary layout of a UWB radar array, in accordance with an embodiment of the present specification;



FIG. 2 shows a short Gaussian-like pulse of radiofrequency power in the time domain which maps to a broad wide band pulse of radiofrequency power in the frequency domain;



FIG. 3 illustrates a plurality of scanning nodes in communication with a server through a network, in accordance with an embodiment of the present specification;



FIG. 4A illustrates an exemplary frequency vs. time chart for a Stepped Frequency Continuous Wave (SFCW) radar system, in accordance with an embodiment of the present specification;



FIG. 4B is a flowchart describing a method for obtaining a 3D image of an object being inspected by using the baggage scanning system shown in FIG. 1A, in accordance with an embodiment of the present specification; and



FIG. 5 illustrates a cross-sectional view of an inspection tunnel of an integrated X-ray baggage scanner and radar based scanning system, in accordance with an embodiment of the present specification.





DETAILED DESCRIPTION

In embodiments, the present specification provides a baggage scanning system comprising ultra-wide band (UWB) radar inspection coupled with localizing, characterizing, metal detection (LCMD).


In embodiments, the present specification provides an X-ray baggage scanning system coupled with a radar or an ultra-wide band (UWB) radar inspection system.


The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.


In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.


As used herein, the indefinite articles “a” and “an” mean “at least one” or “one or more” unless the context clearly dictates otherwise.


In embodiments, the baggage scanning system of the present specification comprises an ultra-wide band (UWB) radar inspection having a radar transceiver system which includes a plurality of transmitting (Tx) and receiving (Rx) antenna elements. However, in other embodiments, the baggage scanning system comprises a plurality of antenna elements, wherein each antenna element is capable of producing and transmitting electromagnetic radiation and each is capable of receiving and capturing reflected radiation. Some embodiments may include implementation of a fully integrated, FCC compliant transceiver system including a plurality of transmitter elements Tx fully integrated with an array of power amplifiers and corresponding antenna arrays to form spatial power combining and narrow beam forming; and including a plurality of receiver elements Rx fully integrated with an array of low noise amplifiers and corresponding antenna arrays to form spatial power combining from a reflected signal. Various embodiments may include implementation of an array of polarized miniature antenna elements that enable system capabilities for analysis of scanned material and differentiation and classification of scanned material according to radar signature profiles, point cloud images or radar scan information.


In some embodiments, each transceiver of the radar transceiver system may be a UWB (Ultra Wide Band) radar transceiver operating at a center frequency, for example, of about 60 GHz, with a total bandwidth that is preferably greater than 20% of the center frequency. In some embodiments, the radar transceiver system may transmit a radar signal in X-band (for example, about 8-12 gigahertz (GHz)), V-band (for example, about 40-75 gigahertz (GHz)), E-band (for example, including two bands of about 71-76 and 81-86 GHz), W-band (for example, about 75-110 GHz), or terahertz (for example, about 300-3000 GHz) frequency bands. Some embodiments may employ 5 GHz ultra wideband (UWB) radar operating at 1-6 GHz, for example, or 3-6 GHz.


In various embodiments, the transceiver system may use one or more of the aforementioned bands of frequencies. For example, some embodiments may use radiation in the X-band for low resolution, high penetration imaging and E-band for high resolution, low penetration imaging. Accordingly, the UWB radar transceiver may operate with a center frequency in a range of 1 to 3000 GHz in one or more continuous or discontinuous bands. Optionally, the UWB radar transceiver may operate with a center frequency in a range of 1 to 3000 GHz with a total bandwidth that is preferably greater than 20% of the center frequency in one or more continuous or discontinuous bands. Optionally, the UWB radar transceiver may operate with a center frequency in a range of 1 to 3000 GHz with a total bandwidth that is preferably occupies more than 500 Hz of spectrum in one or more continuous or discontinuous bands.


In embodiments, the baggage scanning system of the present specification further includes at least one processor, computer-readable medium or memory and a display. The processor includes any hardware, software, firmware, or combination thereof for controlling the radar transceiver system and processing the received electromagnetic radiation reflected from the baggage being inspected. For example, the processor may include one or more microprocessors, microcontrollers, programmable logic devices, digital signal processors or other type of processing devices that are configured to execute instructions of a computer program, and one or more memories (for example, cache memory) that store the instructions and other data used by the processor. The memory includes any type of data storage device, including but not limited to, a hard drive, random access memory (RAM), read only memory (ROM), compact disc, floppy disc, ZIP.RTM. drive, tape drive, database or other type of storage device or storage medium.


In an embodiment, the present specification provides a baggage scanning system comprising an ultra-wide band (UWB) radar inspection sub-system coupled with a metal detector. In an embodiment the metal detector is a localizing, characterizing, metal detection (LCMD) sub-system, as illustrated in FIG. 1A. In embodiments, the Radar Transceiver System provides dielectric signature information (permittivity and reflectivity) to further localize and characterize presence of a dielectric threat substance. Since scanner 100, shown in FIG. 1A, does not have X-ray detection capability no radiation-based or magnetic field-based image is shown to the system operator. However, one or more suspicious regions and/or a probable threat type, determined by either one or both of the LCMD and UWB sensors, is automatically highlighted over a video image of a bag being inspected and is presented to the system operator in real-time. In various embodiments, an automatic detection algorithm based on the radar data is used to locate and identify threat objects. The results from these automatic detection algorithms is shown on a screen to the system operator as, for example, highlighted regions over a photograph of the baggage.


In various embodiments, scanner 100 provides a low cost, zero health hazard, carry-on baggage scanning system for use with relatively untrained operators for directed search on a fraction of scanned bags, based on large potential threat items. Scanner 100 may be deployed in potentially high threat areas such as, but not limited to, critical infrastructure, special events, crowded areas such as shopping malls and the aviation sector.


As shown, scanner 100 comprises an aperture 102 defining a scanning volume through which a conveyor 104 is configured to move. In an embodiment, the conveyor 104 is comprised of plastic material that is radio-transparent. A radar array formed from multiple individual radar sub-systems 106 is located around the perimeter of aperture 102. A metal detection subsystem comprising magnetic field sensor modules 110 is located on at least two opposing sides of the aperture 102 as shown in FIG. 1A. In various embodiments, the magnetic field sensor modules comprise at least a plurality of magnetic field generators and a plurality of magnetic field detectors positioned respectively at least on two opposing sides of the aperture 102 and is coupled with a processor (not shown in FIG. 1A) for enabling generation of a magnetic field via the magnetic field generators and measuring the magnetic field modified by the baggage by using the magnetic field detectors, for obtaining metal detector scan data. The magnetic field generators and detectors comprise linear arrays of magnetic field transmitter and receiver coils respectively. In other embodiments, magnetic field sensor modules 110 may be positioned at other locations such as, but not limited to, on the top and bottom of the aperture 102, and beneath the conveyor 104.


The linear arrays of magnetic field transmitter and receiver coils are positioned so that a long edge of one coil sits at the center of the adjacent coil, such that, if the total coil width is 10 cm, the individual coils would be positioned at a spacing of 5 cm. In embodiments the height of the coils ranges between 5 cm to 15 cm. However, in alternate embodiments, the magnetic field sensor modules may be randomly or quasi-randomly spaced from one another. The magnetic field sensor arrays enable detection, localization and characterization of conductive non-ferrous metallic targets as well as ferromagnetic objects present in the baggage moving on the conveyor 104 through the aperture 102.


In various embodiments, the radar array and the magnetic field sensor modules array are concealed within a housing. In an embodiment, the aperture 102 is 640 mm wide and 420 mm high and may range from a first dimension of 400 to 800 mm by a second dimension of 300 to 600 mm and every increment therein. In an embodiment, a maximum width 112 of the unit is 940 mm with a maximum height 114 of 1250 mm from floor level and conveyor height 116 of 100 mm from floor level. In various embodiments, the width 112 is approximately 100 mm and the height 114 is approximately 1000 mm above floor level. An interconnect panel 118 is provided on the body of scanner 100 for at least, but not limited to, the following connections: input power, a circuit breaker, USB data storage and an Ethernet connection.



FIG. 1B illustrates a side view of the baggage scanning system 100 comprising both a UWB radar sub-system and a localizing, characterizing, metal detectors (LCMD) sub-system, shown in FIG. 1A, in accordance with an embodiment of the present specification. Referring to FIGS. 1A and 1B, scanner 100 comprises a scanning tunnel (not visible in FIG. 1A, 1B) defined by the aperture 102. In an embodiment, a length 120 of the scanning tunnel is 1200 mm. In an embodiment, a length of the conveyor 104 on either side of the tunnel is 400 mm to facilitate bag positioning on the conveyor 104, making a total system length of 2000 mm. In an embodiment, the length of conveyor 104 is approximately 1200 mm.


In an embodiment, baggage being scanned is kept on the conveyor 104 and moves at a scanning speed of 250 mm/s. In an embodiment, the scanning speed ranges from 0.1 m/s to 0.5 m/s. The baggage passes through an imaging plane, and a three-dimensional radar scan of the baggage is collected via the radar array in real time. The radar data is analyzed for the presence of threat materials. In parallel, a set magnetic field data is collected via the magnetic field sensor arrays and this data is also analyzed for threat and innocuous items. In an embodiment, the baggage being scanned is either marked as suspicious for further manual search or is cleared automatically.


In various embodiments, no actual radar-based or magnetic field-based scanning image is shown to an operator operating the scanner 100. However, a suspicious region and probable threat type determined by either one or both of the sensors is highlighted automatically over a video image of the baggage that is also presented in real-time to the operator.



FIG. 1C is a diagrammatic representation of UWB radar sub-system, in accordance with an embodiment of the present specification. The UWB radar subsystem 106 comprises a Vivaldi antenna 130 on a first side and an electronics drive circuit 140 on a second side. In an embodiment, the radar sub-system 106 is operated in frequency modulated continuous wave mode (FMCW) with a 10 GHz bandwidth and operating frequency ranging from 5 GHz to 15 GHz. In an embodiment, the scan sequence is designed to capture 50 scans per second, each scan corresponding to approximately 250/50=5 mm width of a bag under inspection.


In an embodiment, as shown in FIG. 1A, the radar array is constructed from a set of individual UWB radar sub-systems/cards 106 that can be selected to operate in either transmit mode or receive mode. FIG. 1D is a diagram representative of an exemplary layout of a UWB radar array 150, in accordance with an embodiment of the present specification. Referring to FIGS. 1A, 1B, 1C and 1D simultaneously, the radar array 150 formed from multiple individual radar sub-systems 106 surrounds the aperture 102, and comprises forty-four (44) transmitters 152 (configured in a vertical polarization plane) and 40 receiver cards 154 (configured in a horizontal polarization plane) operating at a wavelength of 30 mm with a corresponding center frequency of 10 GHz. In an embodiment, a 90 degree polarization angle is maintained between the transmitter and receiver cards. As shown in FIG. 1D, the receivers and transmitters are each placed on 2λ centers (60 mm), offset such that the mean transceiver spacing is one wavelength (30 mm). In an embodiment, the transmitters are spaced at a distance that is twice the wavelength at a center frequency which may be approximately 10 GHz. In various embodiments, the number of transmitters employed is directly proportional to sampling quality of the scan data set obtained. In an embodiment, the scan data collected from the UWB radar arrays and the magnetic field sensor arrays are analyzed by using tensor analysis methods. In order to determine 3D shape information from the scan data set, various inverse problem solution techniques are adopted. For example, the scan data is arranged in matrix form for standard numerical matrix inversion. Alternatively, constrained iterative solver techniques may be employed which are generally more computationally efficient than basic matrix inversion.


In order to constrain the solver or matrix inversion problem, it is efficient to provide the algorithm with the three-dimensional shape of the baggage under inspection. This is efficiently achieved by using a video camera system in which a grid of infra-red beams is projected onto the surface of the baggage as it passes through the scanning/imaging system of the present specification and from the distortion of these beams which are observed by the video camera, a surface profile can be determined. Other mechanisms are known to those skilled in the art, such as projecting divergent infra-red pencil beams onto the baggage surface and measuring the distance between interacting spots from these beams.


The baggage is then described in terms of a suitable coordinate system, such as a 3D Cartesian matrix. Alternative systems, such as cylindrical coordinates, can also be useful.


Taking into account phase and frequency information, as well as spatial information, the tensor properties or dielectric signatures (such as the dielectric constant, conductivity, permittivity, permeability and/or reflectivity) of the baggage under inspection are determined. In embodiments, all properties of the items, which are real and imaginary components of the magnetic field may be determined. The tensor characteristics are different for every type of object, observed from different axes of symmetry. For example, a gun has two axes of symmetry, a knife has only one axis of symmetry, and a coin is a flat object with no axes of symmetry. In case of two objects, such as a knife and a gun lying close to each other, in an embodiment, the nearest neighbor in the library of tensor values is identified for characterizing the objects. In an embodiment, an alarm is generated based on one or more parameters, such as the location/position and/or the dielectric signature or said tensor properties, as the characteristic data for the baggage.


A classification method is applied to the characteristic data for this purpose. The classification method is used to determine the significance of the threat (whether the object is innocuous, benign, explosive, weapon, Improvised Explosive Device) and the category or type of the threat (mobile phone, passport, explosive material, and/or knife). Classification techniques that use tensor values, known to persons of ordinary skill in the art, may be used to determine the threat nature of the measured set of tensor properties/dielectric signatures and the residual error between the model and measurements can also be used to provide a confidence parameter on the classification.


In an embodiment, the scan data obtained from the UWB system is analyzed to determine the radar wavelength cross section of the various objects covered by the radar beam being used to scan a baggage item. In various embodiments, a complex object, such as an IED, is likely to be a mixture of dielectric material and metallic fragments and so have a very complex radar signature (such as the dielectric constant, conductivity, permittivity, permeability and/or reflectivity) and an associated tensor value. A simple dielectric material, such as a bottle of water or liquid explosive precursor, will have a less complex radar signature.


In various embodiments, by operating in the UWB frequency range, the radar wavelengths are of the same order of magnitude as the size of common threat objects (5 GHz=60 mm, 15 GHz=20 mm) and this ensure that at particular frequencies strong coupling will occur, and this information is used to determine material permittivity. In an embodiment, an image reconstruction algorithm is used for determining a size of each threat object (which depends on the frequency at which the radiation couples). The reconstruction algorithm then determines the slowing down of the radar signal which depends on the permittivity of a threat object, and uses a combination of these two effects measured from all directions for calculating both size and permittivity of the threat object. This information is used, along with the tensor data, to determine the material type under inspection (e.g. H2O or H2O2).


In an embodiment, the UWB radar subsystem is operated in a Stepped Frequency Continuous Wave (SFCW) mode. In radar-based microwave imaging, wideband pulses are synthetically created using a stepped frequency continuous wave (SFCW) varying over the entire wideband frequency range.



FIG. 2 shows a short Gaussian like pulse 205 of radiofrequency power in the time domain (left hand side) which maps to a broad wide band pulse 210 of radiofrequency power in the frequency domain (right hand side), of typical duration less than 1 ns. In frequency space, the pulse equates to a wide Gaussian extending out to many GHz in cut-off frequency. This stimulating pulse 205, when applied to a suitable antenna with broad frequency response, provides an ultra-wide band microwave beam (for use in the scanning/imaging system of the present specification) which interacts with the baggage being inspected. Since the pulse 205 is very narrow, the receiving antenna detects the arrival of the interacted beam pulse some time, ‘delta t’, later due to the time of flight of the pulse which travels at the speed of light (3×108 m/s in vacuum).


Since the velocity of propagation of a transmitted electromagnetic beam through a threat object is dependent on its dielectric property (the velocity of propagation is slowed as it passes through the object), the surface of the baggage appears to be indented behind the object in direct proportion to the relative permittivity/dielectric property of the threat object. This information is used in reconstructing the threat location, shape, size and type in subsequent signal analysis procedures. In accordance with an embodiment, a projection of ultra wide band radio frequencies from each transmitter element to the array of detection/receiver elements allows the physical location and dimensions of a potential threat object located in a pocket or on the surface of the body of the person to be determined using simple ray tracing methods known to persons of ordinary skill in the art. Alternately, in the frequency domain, it is known to persons skilled in the art that the strongest interaction of a radio frequency signal with a dielectric object occurs at an integer divisor of the wavelength of the electromagnetic beam. Therefore, in one embodiment, the dimension of an object is determined by spectral analysis of the reflected electromagnetic beam—wherein a plurality of notches due to object attenuation is characteristic of the dimensions of the object.


In accordance with various aspects, a plurality of radar based scanning and imaging systems, are networked together for communication through a centralized processing or server system.



FIG. 3 illustrates a plurality of scanning nodes 305 in communication with a master or centralized server or processing system 310 through a network 315, which may be a private secured network or a secured Cloud-based network, for example. In embodiments, scan data as well as alarm, threat or no-threat decisions from the plurality of scanning nodes 305 are communicated, stored and analyzed at the processing system 310. Networking of the scanning nodes 305 enables various advantages such as: ability to track a baggage through multiple scanning zones of the nodes 305 to (a) confirm the presence of a threat or otherwise clear an alarm, and (b) review potential threats against an evolving normal, innocuous, benign or no-threat data set from all the other scan data that has been collected from other scanning nodes. This enables implementation of deep learning algorithms to provide a second opinion on the threat result from an individual alarming scanning node.



FIG. 4A illustrates an exemplary frequency vs time graph for a SFCW radar system, in accordance with an embodiment of the present specification. Graph 400 shows frequency/time steps corresponding to incrementing frequency instances wherein, the duration of each frequency step is 2.25 microseconds with 0.05 GHz frequency increments, resulting in a scan rate of 50 Hz and equivalent inspection slice width of 5 mm. In an embodiment, the frequency increments may range from .01 to .05 GHz. In various embodiments, at the end of each frequency scan, the system is reset back to the base frequency creating a “sawtooth-like” waveform as shown in FIG. 4A.



FIG. 4B is a flowchart describing a method for obtaining a 3D image of an object being inspected by using the baggage scanning system shown in FIG. 1A, in accordance with an embodiment of the present specification. Referring to FIGS. 4A and 4B, at step 410, radar scan data at each frequency step for each transmitter (of the UWB radar array 150 shown in FIG. 1D) is recorded by each receiver in parallel, to build up frequency/amplitude/phase scan data for each receiver-transmitter pair of a UWB radar sub-system. At step 415, a time-amplitude plot for each transmitter-receiver pair is obtained by using a standard transformation, such as but not limited to, Fourier transform on the frequency/amplitude/phase scan data corresponding to each transmitter-receiver pair. At step 420 a calibration point (the time taken for the direct radar signal to reach each receiver from the transmitter) and range data to each point on the surface of the object being scanned is obtained from the time-amplitude plot for each transmitter-receiver pair. In an embodiment, the range data provides information regarding the location of a split on the surface of an object, which further enables identification of the location and size of each object in a baggage being scanned. The range data may be observed as a peak at a particular time in a time-amplitude plot.


At step 425 a 3D image of the object being scanned is determined by using the obtained calibration point and range data. In an embodiment, a range map using the UWB data recorded at each receiver from each transmitter at each frequency is constructed by using any back projection algorithm. It is known that, for a radar system, range resolution=(c/2.B) where ‘c’ denotes the speed of light and ‘B’ denotes bandwidth. In an embodiment, by using a UWB radar sub-system having a 10 GHz bandwidth, a 15 mm range resolution may be obtained. In an embodiment, the range data is oversampled by using multiple transmitters and multiple receivers. Hence, the net range error is less than 15 mm, and in an embodiment is 5 mm, resulting in a 5 mm×5 mm×5 mm voxel dimensions in the tomographic like 3D radar surface image. This allows determining the volume of any object, its 3D location within the inspection tunnel, and its dielectric and tensor properties. At step 430 scan data obtained from the metal detection magnetic field sensor arrays is spatially correlated with the 3D image obtained from the UWB radar arrays to reduce false alarms related to presence of threat items in the object being scanned. In an embodiment, metallic objects from the LCMD sub-system are locatable to approximately 10 mm accuracy and dielectric objects from the radar sub-system are locatable to approximately 5 mm accuracy. Hence, the two sets of data can be spatially co-related.


In accordance with another aspect, the non-ionizing radiation based scanning and imaging system 100 (FIG. 1A) of the present specification is integrated with an X-ray baggage scanner system that in some embodiments may be a dual view baggage scanner system.



FIG. 5 illustrates a cross-sectional view of an inspection tunnel 505 of an integrated X-ray baggage scanner and radar based scanning system (system 100 of FIG. 1A) wherein an object 502, such as a laptop for example, is being conveyed through the tunnel 505 for scanning. In some embodiments, first and second X-ray sources 510, 515 are positioned in the tunnel 505 to project X-ray beams 512, 517 in up-shooter and side-shooter configurations, respectively. The tunnel 505 also includes a radar transceiver system 520 similar to the system 120 of FIG. 1A to propagate non-ionizing electromagnetic radiation 518 downwards towards the object 502 being conveyed.


Embodiments of the figure, in accordance with the present specification, provide an ability to detect both dimensionality, through X-ray detection, and a combination of reflectivity, permittivity, and dielectric, through radar detection. During operation, the X-ray scan data enables determination of dimensions and radiographic images (from dual views) of suspicious items concealed within the object 502. The side-shooter configuration also enables determination of a thickness of items within the object 502 apart from revealing radiographic information. For example, X-ray scanning of a laptop may reveal two separate areas in the battery compartment of the laptop, thereby raising a red flag. In such a scenario, dielectric signature information (such as permittivity and reflectivity) generated using the radar transceiver system 520 is utilized to further localize and characterize presence of a dielectric threat substance, such as a liquid and/or plastic based explosive for example, is concealed in the battery compartment.


The above examples are merely illustrative of the many applications of the methods and systems of present specification. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.

Claims
  • 1. A scanning system adapted to inspect baggage, comprising: an aperture defining a scanning tunnel;a conveyor configured to move the baggage through the scanning tunnel;a radar array distributed around the aperture, the radar array comprising a plurality of radar sub-systems configured to provide radar scan data, wherein the radar scan data comprises location and dielectric properties of a threat object in the baggage;a metal detection system comprising: a plurality of magnetic field generators positioned on a first side of the aperture;a plurality of magnetic field detectors positioned on a second side of the aperture, wherein the second side opposes the first side; anda processor configured to cause a magnetic field to be generated in the aperture using at least some of the plurality of magnetic field generators, configured to receive data from at least some of the plurality of magnetic field detectors, and configured to generate metal detector scan data, wherein the metal detector scan data comprises values indicative of a magnetic field modified by the baggage passing through the aperture; andat least one processor configured to correlate the radar scan data and the metal detector scan data and to determine one or more regions of the baggage requiring further inspection.
  • 2. The scanning system of claim 1, further comprising a video camera system positioned within the aperture and configured to generate surface profile data of the baggage.
  • 3. The scanning system of claim 2, wherein the at least one processor is configured to use the surface profile data, radar scan data and metal detector scan data to highlight the one or more regions in an image of the baggage.
  • 4. The scanning system of claim 1 wherein, the metal detector scan data comprises localization and characterization data of objects present in the baggage.
  • 5. The scanning system of claim 1 wherein at least a portion of the plurality of magnetic field generators are positioned on a top of the aperture and at least a portion of the plurality of magnetic field detectors are positioned on a bottom of the aperture.
  • 6. The scanning system of claim 1 wherein the plurality of magnetic field generators and the plurality of magnetic field detectors are positioned below the conveyor.
  • 7. The scanning system of claim 1 wherein at least one of the plurality of radar sub-systems comprises at least one narrow beam forming antenna or at least one polarized antenna coupled with an electronics drive circuit.
  • 8. The scanning system of claim 1 wherein at least one of the plurality of radar sub-systems is operated in frequency modulated continuous wave mode (FMCW) with a center operating frequency ranging from 1 GHz to 3000 GHz and a bandwidth that is equal to or greater than 10 GHz.
  • 9. The scanning system of claim 1 wherein at least one of the plurality of radar sub-systems can be selected to operate in either transmit mode or receive mode.
  • 10. The scanning system of claim 1 wherein each of the plurality of magnetic field generators comprises a magnetic field transmitter coil and each of the plurality of magnetic field detectors comprises a magnetic field receiver coil.
  • 11. The scanning system of claim 1 wherein the plurality of radar sub-systems comprise a plurality of transmitter radar sub-systems configured in a vertical polarization plane and a plurality of receiver radar sub-systems configured in a horizontal polarization plane.
  • 12. The scanning system of claim 11 wherein the plurality of transmitter radar sub-systems comprises a number of transmitter radar sub-systems in a range of 30 to 60.
  • 13. The scanning system of claim 11 wherein the plurality of receiver radar sub-systems comprises a number of receiver radar sub-systems in a range of 30 to 60.
  • 14. The scanning system of claim 1, wherein at least one of the plurality of radar sub-systems is configured to operate at a wavelength of 30 mm with a corresponding center frequency of 10 GHz.
  • 15. The scanning system of claim 1 wherein the at least one processor is configured to implement a tensor analysis method to analyze the radar scan data and the metal detector scan data.
  • 16. The scanning system of claim 1 wherein at least one of the plurality of radar sub-systems is operated in a Stepped Frequency Continuous Wave (SFCW) mode.
  • 17. A method of scanning baggage moving on a conveyor positioned within, and extending through, a scanning tunnel defined by an aperture of a baggage scanning system, wherein the baggage scanning system comprises an ultra-wide band radar array and a metal detector positioned proximate the aperture, wherein the ultra-wide band radar array comprises a plurality of ultra-wide band radar sub-systems and wherein the metal detector comprises a plurality of magnetic field generators and a plurality of magnetic field detectors, the method comprising: obtaining radar scan data comprising location and dielectric properties of an object in the baggage from the ultra-wide band radar arrays;obtaining metal detector scan data comprising at least one of detection, localization or characterization data of the object present in the baggage from the metal detector;correlating the radar scan data and the metal detector scan data for determining a location of one or more regions requiring further inspection in the baggage;generating a visual image of the baggage; andhighlighting the one or more regions in said visual image.
  • 18. The method of scanning baggage of claim 17 wherein obtaining radar scan data comprises operating the ultra-wide band radar array in a Stepped Frequency Continuous Wave mode.
  • 19. The method of scanning baggage of claim 17 wherein obtaining radar scan data comprises operating at least one of the plurality of ultra-wide band radar sub-systems in a transmit mode and at least one of the plurality of ultra-wide band radar sub-systems in a receive mode.
  • 20. The method of scanning baggage of claim 17 wherein obtaining radar scan data comprises: obtaining frequency, amplitude, and phase scan data for one or more receiver-transmitter pairs of the ultra-wide band radar sub-systems;generating a time-amplitude plot for each of the one or more transmitter-receiver pairs; anddetermining a calibration point and range data to each point on a surface of the baggage from the time-amplitude plot for each of the one or more transmitter-receiver pairs.
  • 21. The method of scanning baggage of claim 17, wherein at least some of the plurality of magnetic field generators are positioned at a top of the aperture and at least some of the plurality of magnetic field detectors are positioned at a bottom of the aperture.
  • 22. The method of scanning baggage of claim 17 wherein the plurality of magnetic field generators and the plurality of magnetic field detectors are positioned below the conveyor.
  • 23. The method of scanning baggage of claim 17 wherein each of the plurality of magnetic field generators comprises a linear array of magnetic field transmitter coils and each of the plurality of magnetic field detectors comprises a linear array of magnetic field receiver coils.
  • 24. The method of scanning baggage of claim 17 wherein the plurality of ultra-wide band radar sub-systems comprises a plurality of transmitter radar sub-systems configured in a vertical polarization plane and a plurality of receiver radar sub-systems configured in a horizontal polarization plane.
  • 25. The method of scanning baggage of claim 24 wherein the plurality of transmitter radar sub-systems comprises a number of transmitter radar sub-systems in a range of 30 to 60.
  • 26. The method of scanning baggage of claim 24 wherein the plurality of receiver radar sub-systems comprises a number of receiver radar sub-systems in a range of 30 to 60.
  • 27. The method of scanning baggage of claim 24, wherein the plurality of ultra-wide band radar sub-systems is configured to operate at a wavelength of 30 mm with a corresponding center frequency of 10 GHz.
CROSS-REFERENCE

The present application relies on U.S. Patent Provisional Application No. 62/702,833, entitled “Passive, Walk-Through Metal Detection System” and filed on Jul. 24, 2018, for priority. The present application also relies on U.S. Patent Provisional Application No. 62/702,841 entitled “Radar-Based Inspection System” and filed on Jul. 24, 2018, for priority. The present application also relies on U.S. Patent Provisional Application No. 62/702,868 entitled “Radar-Based Baggage and Parcel Inspection Systems” and filed on Jul. 24, 2018, for priority. The present specification is also a continuation-in-part application of U.S. patent application Ser. No. 15/859,777, entitled “Ultra Wide Band Detectors”, filed on Jan. 2, 2018, which in turn, is a continuation application of U.S. patent application Ser. No. 14/639,956, entitled “Ultra Wide Band Detectors”, filed on Mar. 5, 2015, and issued as U.S. Pat. No. 9,891,314 on Feb. 13, 2018, which, in turn, relies on U.S. Patent Provisional No. 61/949,775, entitled “Ultra-Wide Band Detectors”, and filed on Mar. 7, 2014, for priority. The present application relates to U.S. patent application Ser. No. 15/625,925, entitled “Detector Systems”, filed on Jun. 16, 2017, and issued as U.S. Pat. No. 10,107,783 on Oct. 23, 2018, which is a continuation application of U.S. patent application Ser. No. 14/020,317, of the same title, filed on Sep. 6, 2013, and issued as U.S. Pat. No. 9,714,920 on Jul. 25, 2017, which is a continuation application of U.S. patent application Ser. No. 12/523,051, of the same title, filed on Jul. 13, 2009, and issued as U.S. Pat. No. 8,552,722 on Oct. 8, 2013, which is a national stage application of PCT Application No. PCT/GB2008/000116, filed on Jan. 15, 2008, which relies on Great Britain Patent Application Number 0703481.2, filed on Feb. 22, 2007 and Great Britain Patent Application Number 0700731.3, filed on Jan. 15, 2007, for priority. All of the above-mentioned patents and patent applications are herein incorporated by reference in their entirety.

US Referenced Citations (419)
Number Name Date Kind
745140 Fredrick Nov 1903 A
1552622 Leslie Sep 1925 A
3551675 Miller, Jr. Dec 1970 A
3655013 Weller Apr 1972 A
3655215 Becklin Apr 1972 A
3660663 Guildford May 1972 A
3678278 Peil Jul 1972 A
3780291 Stein Dec 1973 A
3790799 Stein Feb 1974 A
3843881 Barton Oct 1974 A
3884816 Takahashi May 1975 A
3919467 Peugeot Nov 1975 A
3924064 Nomura Dec 1975 A
3961186 Leunbach Jun 1976 A
3971948 Pfeiler Jul 1976 A
3990175 Conway Nov 1976 A
4008400 Brunnett Feb 1977 A
4020346 Dennis Apr 1977 A
4031545 Stein Jun 1977 A
4047035 Dennhoven Sep 1977 A
4064440 Roder Dec 1977 A
4070576 Cobb Jan 1978 A
4107532 Macovski Aug 1978 A
4112301 Annis Sep 1978 A
4139771 Dennhoven Feb 1979 A
4160165 Mccombs Jul 1979 A
4179100 Sashin Dec 1979 A
4196352 Berninger Apr 1980 A
4200800 Swift Apr 1980 A
4228353 Johnson Oct 1980 A
4228357 Annis Oct 1980 A
4242583 Annis Dec 1980 A
4242588 Huang Dec 1980 A
4260898 Annis Apr 1981 A
4298800 Goldman Nov 1981 A
4303830 Heinzelmann Dec 1981 A
4342914 Bjorkholm Aug 1982 A
4349739 Annis Sep 1982 A
4357535 Haas Nov 1982 A
4366382 Kotowski Dec 1982 A
4366576 Annis Dec 1982 A
4380817 Harding Apr 1983 A
4389729 Stein Jun 1983 A
4414682 Annis Nov 1983 A
4422177 Mastronardi Dec 1983 A
4426721 Wang Jan 1984 A
4454605 Delucia Jun 1984 A
4472822 Swift Sep 1984 A
4503332 Annis Mar 1985 A
4514691 De Apr 1985 A
4525854 Molbert Jun 1985 A
4535245 Zonneveld Aug 1985 A
4549307 Macovski Oct 1985 A
4578806 Grass Mar 1986 A
4586441 Zekich May 1986 A
4598415 Luccio Jul 1986 A
4605898 Savolainen Aug 1986 A
4672837 Cottrell Jun 1987 A
4692937 Sashin Sep 1987 A
4711994 Greenberg Dec 1987 A
4736401 Donges Apr 1988 A
4745631 Paolini May 1988 A
4756015 Doenges Jul 1988 A
4759047 Donges Jul 1988 A
4768214 Bjorkholm Aug 1988 A
4783794 Dietrich Nov 1988 A
4799247 Annis Jan 1989 A
4807637 Bjorkholm Feb 1989 A
4809312 Annis Feb 1989 A
4817121 Shimizu Mar 1989 A
4819256 Annis Apr 1989 A
4821023 Parks Apr 1989 A
4825454 Annis Apr 1989 A
4839913 Annis Jun 1989 A
4841555 Doi Jun 1989 A
4845769 Burstein Jul 1989 A
4864142 Gomberg Sep 1989 A
4870670 Geus Sep 1989 A
4884289 Glockmann Nov 1989 A
4890310 Umetani Dec 1989 A
4893015 Kubierschky Jan 1990 A
4894619 Leinonen Jan 1990 A
4899283 Annis Feb 1990 A
4906973 Karbowski Mar 1990 A
4961214 Van Oct 1990 A
4974247 Friddell Nov 1990 A
4979137 Gerstenfeld Dec 1990 A
4995066 Harding Feb 1991 A
5007072 Jenkins Apr 1991 A
5022062 Annis Jun 1991 A
5033073 Friddell Jul 1991 A
5038370 Harding Aug 1991 A
5039981 Rodriguez Aug 1991 A
5044002 Stein Aug 1991 A
5047718 Aittoniemi Sep 1991 A
5076993 Sawa Dec 1991 A
5084619 Pfeiler Jan 1992 A
5115459 Bertozzi May 1992 A
5120706 Weeks Jun 1992 A
5121105 Aittoniemi Jun 1992 A
5127030 Annis Jun 1992 A
5132995 Stein Jul 1992 A
5149114 Lewandowski Sep 1992 A
5156270 Kachel Oct 1992 A
5179581 Annis Jan 1993 A
5181234 Smith Jan 1993 A
5182764 Peschmann Jan 1993 A
5212720 Landi May 1993 A
5224144 Annis Jun 1993 A
5227800 Huguenin Jul 1993 A
5243693 Maron Sep 1993 A
5247561 Kotowski Sep 1993 A
5253283 Annis Oct 1993 A
5260982 Fujii Nov 1993 A
5313511 Annis May 1994 A
5367552 Peschmann Nov 1994 A
5394454 Harding Feb 1995 A
5397986 Conway Mar 1995 A
5414225 Garfinkle May 1995 A
5420905 Bertozzi May 1995 A
5430787 Norton Jul 1995 A
5463224 Burstein Oct 1995 A
5483569 Annis Jan 1996 A
5490196 Rudich Feb 1996 A
5490218 Krug Feb 1996 A
5493596 Annis Feb 1996 A
5503424 Agopian Apr 1996 A
5524133 Neale Jun 1996 A
5528656 Annis Jun 1996 A
5572121 Beswick Nov 1996 A
5579360 Abdel-Mottaleb Nov 1996 A
5590057 Fletcher Dec 1996 A
5600303 Husseiny Feb 1997 A
5600700 Krug Feb 1997 A
5602893 Harding Feb 1997 A
5638420 Armistead Jun 1997 A
5642393 Krug Jun 1997 A
5642394 Rothschild Jun 1997 A
5660549 Witt Aug 1997 A
5666393 Annis Sep 1997 A
5692028 Geus Nov 1997 A
5692029 Husseiny Nov 1997 A
5696806 Grodzins Dec 1997 A
5699400 Lee Dec 1997 A
5763886 Schulte Jun 1998 A
5764683 Swift Jun 1998 A
5790685 Sallee Aug 1998 A
5796110 An Aug 1998 A
5838758 Krug Nov 1998 A
5882206 Gillio Mar 1999 A
5892840 Jang Apr 1999 A
5910973 Grodzins Jun 1999 A
5930326 Rothschild Jul 1999 A
5940468 Huang Aug 1999 A
5966422 Dafni Oct 1999 A
5974111 Krug Oct 1999 A
6018562 Willson Jan 2000 A
6044353 Pugliese Mar 2000 A
6057761 Yukl May 2000 A
6081580 Grodzins Jun 2000 A
6094472 Smith Jul 2000 A
6137895 Al-Sheikh Oct 2000 A
6138815 Reiners Oct 2000 A
6151381 Grodzins Nov 2000 A
6192104 Adams Feb 2001 B1
6212251 Tomura Apr 2001 B1
6236709 Perry May 2001 B1
6249567 Rothschild Jun 2001 B1
6269142 Smith Jul 2001 B1
6272206 Bjorkholm Aug 2001 B1
6278115 Annis Aug 2001 B1
6282260 Grodzins Aug 2001 B1
6282264 Smith Aug 2001 B1
6292533 Swift Sep 2001 B1
6298603 Diaz Oct 2001 B1
6301326 Bjorkholm Oct 2001 B2
6301327 Martens Oct 2001 B1
6308644 Diaz Oct 2001 B1
6315308 Konopka Nov 2001 B1
RE37467 Brasch Dec 2001 E
6356620 Rothschild Mar 2002 B1
6366203 Burns Apr 2002 B1
6370222 Cornick Apr 2002 B1
6375697 Davies Apr 2002 B2
6393095 Robinson May 2002 B1
6418194 Mcpherson Jul 2002 B1
6421420 Grodzins Jul 2002 B1
6424695 Grodzins Jul 2002 B1
6434219 Rothschild Aug 2002 B1
6442233 Grodzins Aug 2002 B1
6453007 Adams Sep 2002 B2
6459761 Grodzins Oct 2002 B1
6459764 Chalmers Oct 2002 B1
6472984 Risi Oct 2002 B1
6473487 Le Oct 2002 B1
6484650 Stomski Nov 2002 B1
6507278 Brunetti Jan 2003 B1
6540064 Bodewes Apr 2003 B1
6542574 Grodzins Apr 2003 B2
6543599 Jasinetzky Apr 2003 B2
6546072 Chalmers Apr 2003 B1
6552346 Verbinski Apr 2003 B2
6553096 Zhou Apr 2003 B1
6556653 Hussein Apr 2003 B2
6567496 Sychev May 2003 B1
6597760 Beneke Jul 2003 B2
6610977 Megerle Aug 2003 B2
6621888 Grodzins Sep 2003 B2
6628745 Annis Sep 2003 B1
6634668 Urffer Oct 2003 B2
6653588 Gillard-Hickman Nov 2003 B1
6665373 Kotowski Dec 2003 B1
6674367 Sweatte Jan 2004 B2
6707879 Mcclelland Mar 2004 B2
6721391 Mcclelland Apr 2004 B2
6742301 Schwarz Jun 2004 B1
6745520 Puskaric Jun 2004 B2
6749207 Nadeau Jun 2004 B2
6754304 Kumakhov Jun 2004 B1
6777684 Volkov Aug 2004 B1
6785357 Bernardi Aug 2004 B2
6785360 Annis Aug 2004 B1
6819109 Sowers Nov 2004 B2
6819241 Turner Nov 2004 B2
6831603 Menache Dec 2004 B2
6839403 Kotowski Jan 2005 B1
6848826 Marie Feb 2005 B2
6856667 Ellenbogen Feb 2005 B2
6870791 Caulfield Mar 2005 B1
6876719 Ozaki Apr 2005 B2
6879657 Hoffman Apr 2005 B2
6891381 Bailey May 2005 B2
6899540 Neiderman May 2005 B1
6900727 Lee May 2005 B2
6901346 Tracy May 2005 B2
6911907 Kelliher Jun 2005 B2
6920197 Kang Jul 2005 B2
6952163 Huey Oct 2005 B2
6965340 Baharav Nov 2005 B1
6967612 Gorman Nov 2005 B1
6970086 Nelson Nov 2005 B2
6970087 Stis Nov 2005 B2
6980623 Dunham Dec 2005 B2
6990175 Nakashima Jan 2006 B2
7016459 Ellenbogen Mar 2006 B2
7016473 Linev Mar 2006 B1
7053785 Akins May 2006 B2
7092485 Kravis Aug 2006 B2
7099434 Adams Aug 2006 B2
7102512 Pendergraft Sep 2006 B2
7103137 Seppi Sep 2006 B2
7110493 Kotowski Sep 2006 B1
7110925 Pendergraft Sep 2006 B2
7114849 Atzinger Oct 2006 B2
7142638 Polichar Nov 2006 B2
7143004 Townsend Nov 2006 B2
7162005 Bjorkholm Jan 2007 B2
7164747 Ellenbogen Jan 2007 B2
7185206 Goldstein Feb 2007 B2
7203276 Arsenault Apr 2007 B2
7207713 Lowman Apr 2007 B2
7218704 Adams May 2007 B1
7257189 Modica Aug 2007 B2
7263409 Levasseur Aug 2007 B2
7265709 Fleisher Sep 2007 B2
7286634 Sommer Oct 2007 B2
7305062 Hambuechen Dec 2007 B2
7305063 Heuscher Dec 2007 B2
7317390 Huey Jan 2008 B2
7322745 Agrawal Jan 2008 B2
7330529 Kautzer Feb 2008 B2
7333587 De Feb 2008 B2
7356115 Ford Apr 2008 B2
7365672 Keller Apr 2008 B2
7400701 Cason Jul 2008 B1
7418077 Gray Aug 2008 B2
7460636 Ein-Gal Dec 2008 B2
7471764 Kaval Dec 2008 B2
7476023 Canfield Jan 2009 B1
7505556 Chalmers Mar 2009 B2
7505557 Modica Mar 2009 B2
7505562 Dinca Mar 2009 B2
7551709 Schlomka Jun 2009 B2
7551715 Rothschild Jun 2009 B2
7555099 Rothschild Jun 2009 B2
7558370 Sommer Jul 2009 B2
7561666 Annis Jul 2009 B2
7577234 Knoespel Aug 2009 B2
7593506 Cason Sep 2009 B2
7593510 Rothschild Sep 2009 B2
7595638 Crowley Sep 2009 B2
7633518 Beevor Dec 2009 B2
7639866 Pomero Dec 2009 B2
7659851 Dejean Feb 2010 B2
7660388 Gray Feb 2010 B2
7671784 Steinway Mar 2010 B2
7684544 Wilson Mar 2010 B2
7783004 Kotowski Aug 2010 B2
7796394 Wang Sep 2010 B2
7796733 Hughes Sep 2010 B2
7796734 Mastronardi Sep 2010 B2
7806589 Tashman Oct 2010 B2
7809109 Mastronardi Oct 2010 B2
7817776 Agrawal Oct 2010 B2
7826589 Kotowski Nov 2010 B2
7984940 Chen Jul 2011 B2
8003949 Ryge Aug 2011 B2
8023726 Sundaresan Sep 2011 B2
8054938 Kaval Nov 2011 B2
8061599 Daly Nov 2011 B2
8113071 Sagi-Dolev Feb 2012 B2
8116575 Saisan Feb 2012 B1
8135112 Hughes Mar 2012 B2
8194822 Rothschild Jun 2012 B2
8199996 Hughes Jun 2012 B2
8275092 Zhang Sep 2012 B1
8275093 Rothschild Sep 2012 B2
8325871 Grodzins Dec 2012 B2
8442186 Rothschild May 2013 B2
8552722 Lionheart Oct 2013 B2
8576982 Gray Nov 2013 B2
8576989 Kaminski Nov 2013 B2
8605859 Mastronardi Dec 2013 B2
8638904 Gray Jan 2014 B2
8654922 Bendahan Feb 2014 B2
8731137 Arroyo May 2014 B2
8995619 Gray Mar 2015 B2
9020100 Mastronardi Apr 2015 B2
9282258 Kuznetsov Mar 2016 B2
9535019 Rothschild Jan 2017 B1
9714920 Lionheart Jul 2017 B2
9891314 Morton Feb 2018 B2
10107783 Lionheart Oct 2018 B2
20010021241 Swift Sep 2001 A1
20020045152 Viscardi Apr 2002 A1
20020136353 Kang Sep 2002 A1
20030012338 Lienard Jan 2003 A1
20030025302 Urffer Feb 2003 A1
20030080868 Nelson May 2003 A1
20030171939 Yagesh Sep 2003 A1
20030204361 Townsend Oct 2003 A1
20030214407 Sweatte Nov 2003 A1
20030225612 Desimone Dec 2003 A1
20030229506 Scott Dec 2003 A1
20040000999 Turner Jan 2004 A1
20040012494 Lee Jan 2004 A1
20040017313 Menache Jan 2004 A1
20040051265 Nadeau Mar 2004 A1
20040080315 Beevor Apr 2004 A1
20040088584 Shachar May 2004 A1
20040090359 Mcmakin May 2004 A1
20040109532 Ford Jun 2004 A1
20040120454 Ellenbogen Jun 2004 A1
20040125914 Kang Jul 2004 A1
20040175018 Macarthur Sep 2004 A1
20040252024 Huey Dec 2004 A1
20050024199 Huey Feb 2005 A1
20050031069 Kaucic Feb 2005 A1
20050074086 Pendergraft Apr 2005 A1
20050100135 Lowman May 2005 A1
20050276379 Polichar Dec 2005 A1
20060109174 Baharav May 2006 A1
20060182223 Heuscher Aug 2006 A1
20060214835 Lee Sep 2006 A1
20060262902 Wattenburg Nov 2006 A1
20070009088 Edic Jan 2007 A1
20070058037 Bergeron Mar 2007 A1
20070086564 Bruder Apr 2007 A1
20070098142 Rothschild May 2007 A1
20070139248 Baharav Jun 2007 A1
20070159400 Dejean Jul 2007 A1
20070172026 Schlomka Jul 2007 A1
20070235652 Smith Oct 2007 A1
20080054893 Humphreys Mar 2008 A1
20080088345 Whetsel Apr 2008 A1
20080144777 Wilson Jun 2008 A1
20080212742 Hughes Sep 2008 A1
20080303708 Daly Dec 2008 A1
20090041186 Gray Feb 2009 A1
20090073023 Ammar Mar 2009 A1
20090074138 Knoespel Mar 2009 A1
20090075325 Das Mar 2009 A1
20090082762 Ormsby Mar 2009 A1
20090103686 Rothschild Apr 2009 A1
20090116614 Kotowski May 2009 A1
20090116617 Mastronardi May 2009 A1
20090167042 Chen Jul 2009 A1
20090232353 Sundaresan Sep 2009 A1
20090245462 Agrawal Oct 2009 A1
20090252295 Foland Oct 2009 A1
20090257555 Chalmers Oct 2009 A1
20090278683 Carter Nov 2009 A1
20100034451 Hughes Feb 2010 A1
20100067654 Kotowski Mar 2010 A1
20100158191 Gray Jun 2010 A1
20110017917 Mastronardi Jan 2011 A1
20110080999 Kaval Apr 2011 A1
20110081099 Hughes Apr 2011 A1
20110096901 Kotowski Apr 2011 A1
20110102235 Abdillah May 2011 A1
20110129063 Bendahan Jun 2011 A1
20110164726 Mastronardi Jul 2011 A1
20110234783 Uemura Sep 2011 A1
20110273320 Nogueira-Nine Nov 2011 A1
20110274249 Gray Nov 2011 A1
20110274250 Gray Nov 2011 A1
20110293072 Kaminski Dec 2011 A1
20110299659 Gray Dec 2011 A1
20120038666 Evers Feb 2012 A1
20120103061 Nacson May 2012 A1
20120311939 Barragan Olaya Dec 2012 A1
20130006552 Peyton Jan 2013 A1
20140028457 Reinpoldt Jan 2014 A1
20140063239 Furness Mar 2014 A1
20140185755 Bendahan Jul 2014 A1
20140339430 Hillis Nov 2014 A1
20150186732 Perron Jul 2015 A1
20160116581 Mohamadi Apr 2016 A1
20190004170 Morton Jan 2019 A1
Foreign Referenced Citations (71)
Number Date Country
1245295 Feb 2000 CN
1352919 Jun 2002 CN
1490616 Apr 2004 CN
1674204 Sep 2005 CN
1715895 Jan 2006 CN
1715895 Jan 2006 CN
1732850 Feb 2006 CN
1764987 Apr 2006 CN
1764987 Apr 2006 CN
1779442 May 2006 CN
1802676 Jul 2006 CN
1846151 Oct 2006 CN
100593732 Nov 2006 CN
101083757 Dec 2007 CN
101379415 Mar 2009 CN
101644687 Feb 2010 CN
101644687 Feb 2010 CN
101071109 May 2010 CN
101467071 Jun 2012 CN
101185006 Jan 2013 CN
3141755 Jul 1982 DE
19907758 Aug 1999 DE
0261984 Mar 1988 EP
0533316 Mar 1993 EP
1635169 Mar 2006 EP
1772874 Apr 2007 EP
2520927 Nov 2012 EP
2548011 Jan 2013 EP
2548012 Jan 2013 EP
3114464 Jan 2017 EP
1283915 Aug 1972 GB
S61190877 Aug 1986 JP
H4313052 Nov 1992 JP
H6265485 Sep 1994 JP
H10185842 Jul 1998 JP
2004150822 May 2004 JP
2004251624 Sep 2004 JP
2005501262 Jan 2005 JP
2007163474 Jun 2007 JP
2007517275 Jun 2007 JP
2007532876 Nov 2007 JP
2010008272 Jan 2010 JP
2012524921 Oct 2012 JP
2014029663 Feb 2014 JP
1988000698 Jan 1988 WO
9202937 Feb 1992 WO
1992002937 Feb 1992 WO
9701771 Jan 1997 WO
1999021148 Apr 1999 WO
0105685 Jan 2001 WO
03048808 Jun 2003 WO
03048815 Jun 2003 WO
2004097456 Nov 2004 WO
2004111963 Dec 2004 WO
2005098400 Oct 2005 WO
2006027122 Mar 2006 WO
2009006044 Jan 2009 WO
2009082762 Jul 2009 WO
2009148637 Dec 2009 WO
2010032003 Mar 2010 WO
2011063059 May 2011 WO
2011106745 Sep 2011 WO
2011115923 Sep 2011 WO
2011115930 Sep 2011 WO
2011115934 Sep 2011 WO
2011115935 Sep 2011 WO
2013006373 Jan 2013 WO
2013011282 Jan 2013 WO
2014058495 Apr 2014 WO
2015134802 Sep 2015 WO
2020023603 Jan 2020 WO
Non-Patent Literature Citations (26)
Entry
International Search Report for PCT/US2019/043184, dated Oct. 31, 2019.
Written Opinion of the International Searching Authority for PCT/US2019/043184, dated Oct. 31, 2019.
International Search Report for PCT/US2008/067619, Rapiscan Security Products., dated Aug. 20, 2008.
International Search Report for PCT/US2008/088345, Rapiscan Security Products., dated Apr. 3, 2009.
Gerald J. Smith, ‘Bodysearch Technology Uses X-ray Imaging to Remove Hazards and Humiliation from Personnel Searches’, IEEE, 1995.
ANSI, Radiation Safety for Personnel Security Screening Systems Using X-Rays, Apr. 3, 2002.
Murray et al., ‘Exploitation of X-Ray Technology for the Detection of Contraband-Aviation Security Applications’, European Conference on Security and Detection, Apr. 28-30, 1997.
International Search Report, PCT/US11/28411, dated Sep. 27, 2011, Rapiscan Systems Inc.
International Search Report, PCT/US11/28393, dated Jul. 8, 2011, Rapiscan Systems Inc.
International Search Report, PCT/US11/28413, dated Jul. 22, 2011, Rapiscan Systems Inc.
CRS Report for Congress, Aviation Security Technologies and Procedures: Screening Passengers and Baggage, Oct. 26, 2001, pp. 1-12.
International Search Report, PCT/US11/28403, dated Oct. 11, 2011, Rapiscan Systems Inc.
International Search Report for PCT/US06/00623, dated Feb. 27, 2008, International Search Authority, pp. 12-13 of the report analyzes the materiality of certain references.
Rapiscan Security Products, Secure 1000 Concealed Object Detection System, Nov. 1998.
Rapiscan Security Products, Secure 1000 Brochure, 2002.
Daniel Strom, “Screening Individuals with Backscatter X-Ray Systems”, Health Physics Society, Feb. 3, 2005.
Rapiscan Systems Secure 1000 Case Study, London Heathrow Terminal 4, Fall 2004.
MSNBC, “Airports Seek Hi-Tech Security”, Apr. 3, 2002.
St. Bartholomew's Hospital, Radiation Safety Report on the Rapiscan Secure 1000 X-Ray System, Nov. 4, 2004.
International Search Report, PCT/US2008/067619, dated Aug. 20, 2008, Rapiscan Security Products.
International Search Report for PCT/US15/19049, dated Jun. 17, 2015.
International Search Report for PCT/US13/50559, dated Mar. 27, 2014.
International Search Report PCT/GB2008/000116, dated Nov. 17, 2009.
International Search Report for PCT/US2011/026382, dated Jun. 30, 2011, Rapiscan Systems.
Interational Search Report for PCT/US2012/044632, dated Oct. 26, 2012, Rapiscan Systems.
International Search Report for PCT/US2010/057123, dated Mar. 22, 2011, Rapiscan Systems.
Related Publications (1)
Number Date Country
20200158860 A1 May 2020 US
Provisional Applications (4)
Number Date Country
62702841 Jul 2018 US
62702868 Jul 2018 US
62702833 Jul 2018 US
61949775 Mar 2014 US
Continuations (1)
Number Date Country
Parent 14639956 Mar 2015 US
Child 15859777 US
Continuation in Parts (1)
Number Date Country
Parent 15859777 Jan 2018 US
Child 16520786 US