This background description is provided for the purpose of generally presenting the context of the disclosure. Unless otherwise indicated herein, material described in this section is neither expressly nor impliedly admitted to be prior art to the present disclosure or the appended claims.
Vehicles, such as automobiles, boats, or aircrafts, can be dangerous when the driver of the vehicle fails to pay attention to driving. This may also be the case in autonomous driving experiences, where the driver may be relied upon as a fallback mechanism in the event that the autonomous driving system fails or is unable to handle a particular type of navigation.
This document describes techniques and devices for radar-based object detection for vehicles. The techniques describe a radar-based object detection component implemented in a vehicle that is configured to detect characteristics of persons within the vehicle, such as a driver or other passengers. Then, based on the detected characteristics, an activity of the person can be determined and various operations can be initiated based on the activity, such as initiating a warning when the driver is not paying attention to driving, automatically slowing down the vehicle, and so forth. In some cases, the radar-based object detection component can also be implemented to detect characteristics of objects positioned external to the vehicle, such as pedestrians, other vehicles, foreign objects in the road, and so forth. The radar-based object detection component may also be implemented to authenticate a driver of the vehicle, such as by detecting biometric characteristics of the driver or recognizing a series of gestures corresponding to an authentication sequence. This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter.
Various aspects of radar-based object detection for vehicles are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:
Overview
This document describes techniques and devices for radar-based object detection for vehicles. The techniques describe a radar-based object detection component for a vehicle (e.g., an automobile, boat, or plane) that is configured to detect various characteristics of persons with the vehicle (e.g., a driver and passengers), as well as characteristics of objects external to the vehicle (e.g., pedestrians, other vehicles, or foreign objects in the road).
For example, the radar-based object detection component can monitor a presence and attention level of a driver of the vehicle while the vehicle is moving by initiating transmission of an outgoing RF signal via a radar-emitting element of a radar sensor, receiving, via an antenna of the radar sensor, an incoming RF signal generated by the outgoing RF signal reflecting off the driver of the vehicle, and analyzing the incoming RF signal to detect one or more characteristics of the driver. Such characteristics, for example, can include a position and movement of the driver's body or a specific body part, such as the driver's hands, mouth, eyes, and so forth.
Then, based on the detected characteristics, the radar-based object detection component can determine an activity of the driver. As described herein, an activity of the driver corresponds to an activity currently being performed by the driver, such as driving with one or both hands on the steering wheel, being awake, drowsy, or asleep, interacting with a mobile device (e.g., texting), looking straight ahead, sideways, or backwards, talking (e.g., to a passenger in the vehicle or during a phone call), sitting somewhere other than the driver's seat (e.g., in an autonomous driving experience), looking in the glove compartment, and so forth. Based on the determined activity, one or more operations can be initiated. Generally, the operations improve the driving experience, increase the safety of the driving experience, provide security for the vehicle, or control navigation of the vehicle.
For example, in some cases, the radar-based object detection component determines an attention level of the driver, based on the activity, and then initiates the one or more operations based on the determined attention level. For example, activities such as texting, looking backwards, or being drowsy or sleepy, may be indicative of a low attention level. In contrast, activities such as driving with both hands on the wheel are indicative of a high attention level. Thus, in some cases, a warning (e.g., audible, visual, or tactile) may be initiated, in response to determining that the driver has a low attention level, in order to alert the driver to pay attention to driving. In this way, the radar-based object detection component monitors the driver without requiring the driver's deliberate or conscious interaction with the system.
In one or more implementations, the radar-based object detection component monitors the presence and attention level of the driver in an autonomous or semi-autonomous vehicle system. Autonomous vehicles are developed to navigate and operate either unmanned or to assist a vehicle operator, and can utilize many different types of sensors, automation, robotics, and other computer-controlled systems and mechanisms. However, in many cases, the driver must still act as a “fallback mechanism” in order to handle driving duties in certain instances where the autonomous system fails or is unable to control navigation. In these cases, the radar-based object detection component may monitor the driver's presence and attention level to ensure that the driver is a suitable backup in the event that the autonomous system needs to switch over to the manual system. In the event that the driver's attention is low, or the driver is not present in the driver's seat, the component may initiate various warnings to ensure that the driver is reminded that he may be needed as a fallback mechanism. Furthermore, in some cases, the radar-based object detection component may prevent a transition from an autonomous driving mode to a manual driving mode if the attention level of the driver is below a threshold indicating that the driver is not paying attention or is not present in the driver's seat. As another example, if the system is in autonomous driving mode or cruise control mode, the component may detect if the driver has a low attention level, and in response, cause the vehicle to slow down while at the same time alerting the driver.
Similar techniques may also be applied to passengers within the vehicle. For example, radar-emitting elements and antennas may be positioned in the rear of the vehicle to monitor a toddler or baby, and may provide status updates to the driver, such as to let the driver know that the baby is sleeping, waking up, or choking on a piece of food.
In one or more implementations, the radar-based object detection system may also include radar-emitting elements and antennas positioned on the exterior of the vehicle in order to sense and detect various external objects, such as pedestrians, other vehicles, debris or foreign objects in the road, objects on the side of the road, and so forth. The detection of such external objects may be used as part of the autonomous driving experience, as part of a “cruise control” experience, or in order to provide a warning (or automatic braking) when objects are detected in close proximity to the driving path (e.g., when a pedestrian steps into the road in front of the vehicle).
In one or more implementations, the radar-based object detection component is further configured to augment a keyless entry systems to verify that a person is actually present, or as part of an authentication procedure to authenticate the driver as a known person permitted to drive the vehicle. For example, the component may prevent the car from being driven unless the driver is authenticated as a known person permitted to drive the vehicle. In order to authenticate the driver, the component may detect biometric characteristics of the driver (e.g., a height or skeletal structure) and/or a series of “in air” gestures corresponding to a specific authentication sequence.
Example Environment
As used herein, the term “automobile” refers to a passenger vehicle designed for operation on roads and having one or more engines used rotate to wheels causing the automobile to be propelled. Examples of automobiles include cars, trucks, sport utility vehicles, vans, and the like. In one or more implementations, vehicle 110 is “autonomous” or at least “partially autonomous”. Autonomous vehicles are developed to navigate and operate either unmanned or to assist a vehicle operator, and can utilize many different types of sensors, automation, robotics, and other computer-controlled systems and mechanisms.
In this example, radar-based object detection component 104 is a hardware component of vehicle computing system 102. The radar-based object detection component 104 is configurable to detect objects in three dimensions, such as to identify the object, an orientation of the object, and/or movement of the object.
In order to detect object characteristics, radar-based object detection system 104 includes one or more radar sensors 112. Generally, radar sensors 112 include one or more antennas that are configured to transmit one or more RF signals. As a transmitted signal reaches an object (e.g., the driver of vehicle 110), at least a portion reflects back to the radar sensor 112 and is processed, as further described below, in order to detect characteristics of the object. In some cases, each radar sensor 112 includes a radar-emitting element configured to transmit the RF signal, and an antenna configured to capture the reflections of the RF signal. However, the radar sensor can include different combinations of radar-emitting elements and antennas. For instance, a single antenna could be utilized to capture reflections from three different radar-emitting elements, or vice versa. The RF signals can have any suitable combination of energy level, carrier frequency, burst periodicity, pulse width, modulation type, waveform, phase relationship, and so forth. In some cases, some or all of the respective signals transmitted in the RF signals differs from one another to create a specific diversity scheme, such as a time diversity scheme that transmits multiple versions of a same signal at different points in time, a frequency diversity scheme that transmits signals using several different frequency channels, a space diversity scheme that transmits signals over different propagation paths, etc.
Radar-based object detection component 104 can be implemented with just one, or multiple radar sensors 112. For example, in some cases, a single radar sensor 112 can be positioned proximate the driver's seat of the vehicle 110 (e.g., on the steering wheel or dashboard) in order to capture characteristics of the driver of vehicle 110. In other cases, multiple radar sensors 112 can be positioned throughout the interior of vehicle 110 in order to detect characteristics of the driver, as well as other passengers within the vehicle. In this example, radar sensors 112 are also shown as being positioned on the exterior of vehicle 110 in order to detect characteristics of objects external to vehicle 110, such as pedestrians, other vehicles, or foreign objects (e.g., trees, buildings, or debris in the road). For example, radar sensors 112 could be positioned on the front of the exterior of the vehicle in order to detect characteristics of objects within the path of the moving vehicle, as well as on the sides and rear of the exterior of vehicle 110.
The radar module 106 is representative of functionality to detect the presence or activity of persons within the vehicle 110, or objects external to the vehicle 110, and to initiate various operations based on the detection. For example, the radar module 106 may receive inputs from the radar sensors 112 that are usable to detect characteristics or attributes to identify an object (e.g., the driver of vehicle 110, a passenger, or objects located outside of the vehicle), orientation of the object, and/or movement of the object. Based on recognition of a combination of one or more of the characteristics or attributes, the radar module 106 may initiate an operation.
When radar sensors 112 are positioned proximate to the driver of vehicle 110, the radar-based object detection component 104 can monitor a presence and attention level of a driver of vehicle 110 while the vehicle is moving by initiating transmission of an outgoing RF signal via the radar sensors 112 (e.g., via a radar-emitting element), and receiving, via the radar sensor 112 (e.g., via an antenna), an incoming RF signal generated by the outgoing RF signal reflecting off the driver of the vehicle 110. Radar-based object detection component 104 can then analyze the incoming RF signal to detect one or more characteristics of the driver. Such characteristics, for example, can include a position and movement of the driver's body or a specific body part, such as the driver's hands, mouth, eyes, and so forth.
Then, based on the detected characteristics, the radar module 106 can determine an activity of the driver. As described herein, an activity of the driver corresponds to an activity currently being performed by the driver, such as driving with one or both hands on the steering wheel, being awake, drowsy, or asleep, interacting with a mobile device (e.g., texting), looking straight ahead, sideways, or backwards, talking (e.g., talking with a passenger in the vehicle or talking during a phone call), sitting somewhere other than the driver's seat (e.g., in an autonomous driving experience), or looking in the glove compartment, to name just a few.
Based on the determined activity, the radar module 106 initiates one or more operations. In some cases, the one or more operations may be initiated by sending control signals to the vehicle controller 108, in order to cause the vehicle controller 108 to control the vehicle 110 to output audible warnings, visual notifications, control navigation of the vehicle (e.g., causing the vehicle to slow down or speed up), and so forth. For example, the vehicle controller can control the audio system of the vehicle 100 to output an audible warning, such as a loud beep, or voice narration that instructs the driver to “pay attention” or “wake up”, or notifies the driver that “the baby is asleep”. As another example, the vehicle controller 108 can control the navigation system of the vehicle (e.g., the cruise control system of autonomous driving system) based on the driver's activity, such as by slowing down when the driver is not paying attention.
In some cases, the radar module 106 determines an attention level of the driver, based on the activity, and then initiates the one or more operations based on the determined attention level. For example, activities such as texting, looking backwards, or being drowsy or sleepy, may be indicative of a low attention level. In contrast, activities such as driving with both hands on the wheel are indicative of a high attention level. Thus, in some cases, a warning (e.g., audible, visual, or tactile) may be initiated, in response to determining that the driver has a low attention level, in order to alert the driver to pay attention to driving. In this way, the radar module 106 monitors the driver without requiring the driver's deliberate or conscious interaction with the system.
In one or more implementations, in order to determine whether the driver is paying attention, the attention level is first determined as a score, based on the various detected characteristics of the driver. Then, the attention level is compared to a threshold. If the attention level of the driver is above the threshold, then radar module 106 determines that the driver is paying attention to driving vehicle 110. Alternately, if the attention level of the driver is below the threshold, then radar module 106 determines that the driver is not paying attention.
In one or more implementations, the radar-based object detection component 104 monitors the presences and attention level of the driver in an autonomous or semi-autonomous vehicle system. Autonomous vehicles are developed to navigate and operate either unmanned or to assist a vehicle operator, and can utilize many different types of sensors, automation, robotics, and other computer-controlled systems and mechanisms. However, in many cases, the driver must still act as a “fallback mechanism” in order to handle driving duties in certain instances where the autonomous system fails or is unable to control navigation. In these cases, the radar-based object detection component 104 may monitor the driver's presence and attention level to ensure that the driver is a suitable backup in the event that the autonomous system needs to switch over to the manual system. In the event that the driver's attention is low, or the driver is not present in the driver's seat, the component may initiate various warnings to ensure that the driver is reminded that he may be needed as a fallback mechanism. Furthermore, in some cases, the radar-based object detection component may prevent a transition from an autonomous driving mode to a manual driving mode if the attention level of the driver is below the threshold indicating that the driver is not paying attention or is not present in the driver's seat.
Similar techniques may also be applied to passengers within the vehicle. For example, radar sensors 112 may be positioned in the rear of the vehicle 110 to monitor a toddler or baby in order to determine an activity of the passenger, such as sleeping, waking up, choking on a piece of food, and so forth. Then, an operation may be initiated, based on the activity of the passenger, such as by alerting the driver that the baby is asleep, waking up, or choking on a piece of food.
In one or more implementations, the radar-based object detection component 104 is further configured to augment a keyless entry system for the vehicle to verify that a person is actually present, or as part of an authentication procedure to authenticate the driver as a known person permitted to drive the vehicle 110. For example, the radar sensor 112 can detect one or more biometric characteristics of the driver, such as height, skeletal structure, and so forth. Then, radar module 106 can compare the detected biometric characteristics of the driver to stored biometric characteristics of known persons that are permitted to drive the vehicle. If the detected biometric characteristics of the driver match the stored biometric characteristics, then radar module 106 authenticates the driver as a known person permitted to drive vehicle 110. Alternately or additionally, the radar sensor 112 can detect one or more gestures performed by the driver. Then, radar module 106 can compare the detected one or more gestures to stored gestures corresponding to an authentication sequence. If the detected gestures performed by the driver match the stored gestures, then radar module 106 authenticates the drive as a known person permitted to drive vehicle 110. In some cases, a two-stage authentication process may be applied, whereby the driver is authenticated based on biometric characteristics as well as detection of one or more recognized gestures performed by the driver. Once the driver is authenticated, the driver is then permitted to drive the vehicle. Alternately, if the driver is not authenticated, the driver may be prevented from driving the vehicle.
As described herein, biometric characteristics correspond to distinctive, measurable characteristics that can be used to identify a particular known person, or a particular “type” of person (e.g., an adult versus a child). Biometric characteristics are often categorized as physiological versus behavioral characteristics. Physiological characteristics are related to the shape of the body and may include, by way of example and not limitation, height, skeletal structure, fingerprint, palm veins, face recognition, DNA, palm print, hand geometry, iris recognition, retina scent, heart conditions, and so forth. Behavioral characteristics are related to the pattern of behavior of a person, including but not limited to a walking gait, typing rhythm, and so forth.
When radar sensors 112 are implemented on the exterior of vehicle 110, the radar module 106 can be implemented to detect characteristics of various external objects, such as pedestrians, other vehicles, debris or foreign objects in the road, objects on the side of the road, and so forth. Vehicle controller 108 may then control navigation of the vehicle based on the detected characteristics of external objects. The detection of such external objects may be used as part of the autonomous driving experience, as part of a “cruise control” experience, or in order to provide a warning (or automatic braking) when objects are detected in close proximity to the driving path (e.g., when a pedestrian steps into the road in front of the vehicle). For example, radar module 106 can recognize the detected characteristics as certain objects, such as a pedestrian or a vehicle. Vehicle controller 108 may then control navigation of vehicle 110 based on the recognized objects, such as by slowing down when a pedestrian steps in front of the vehicle, speeding up when a vehicle approaches quickly from the rear, or swerving when a vehicle approaches from the side.
Having generally described an environment in which radar-based object detection for vehicles may be implemented, now consider
Vehicle computing system 102 includes processor(s) 202 and computer-readable media 204. Radar module 106 and vehicle controller 108 from
APIs 206 provide programming access into various routines and functionality incorporated into radar-based object detection component 104. For instance, radar-based object detection component 104 can have a programmatic interface (socket connection, shared memory, read/write registers, hardware interrupts, etc.) that can be used in concert with APIs 206 to allow applications external to radar-based object detection component 104 a way to communicate or configure the component. In some embodiments, APIs 206 provide high-level access into radar-based object detection component 104 in order to abstract implementation details and/or hardware access from a calling program, request notifications related to identified events, query for results, and so forth. APIs 206 can also provide low-level access to radar-based object detection component 104, where a calling program can control direct or partial hardware configuration of radar-based object detection component 104. In some cases, APIs 206 provide programmatic access to input configuration parameters that configure transmit signals and/or select object recognition algorithms. These APIs enable programs, such as radar module 106, to incorporate the functionality provided by radar-based object detection component 104 into executable code. For instance, radar module 106 can call or invoke APIs 206 to register for, or request, an event notification when a particular object characteristic has been detected, enable or disable wireless gesture recognition in vehicle computing system 102, and so forth. At times, APIs 206 can access and/or include low level hardware drivers that interface with hardware implementations of radar-based object detection component 104. Alternately or additionally, APIs 206 can be used to access various algorithms that reside on radar-based object detection component 104 to configure algorithms, extract additional information (such as 3D tracking information, angular extent, reflectivity profiles from different aspects, correlations between transforms/features from different channels, etc.), change an operating mode of radar-based object detection component 104, and so forth.
Radar-based object detection component 104 represents functionality that wirelessly detects objects, such as a driver or passenger within vehicle 110, or objects external to vehicle 110. Radar-based object detection component 104 can be implemented as a chip embedded within vehicle computing system 102, such as a System-on-Chip (SoC). However, it is to be appreciated that radar-based object detection component 104 can be implemented in any other suitable manner, such as one or more Integrated Circuits (ICs), as a processor with embedded processor instructions or configured to access processor instructions stored in memory, as hardware with embedded firmware, a printed circuit board with various hardware components, or any combination thereof. Here, radar-based object detection component 104 includes radar-emitting element 208, antenna(s) 210, digital signal processing component 212, machine-learning component 214, and an object characteristics library 216, which can be used in concert to detect object characteristics using radar techniques.
Generally, radar-emitting element 208 is configured to provide a radar field. In some cases, the radar field is configured to at least partially reflect off a target object, such as a driver of vehicle 110, other passengers within vehicle 110, or objects external to vehicle 110. The radar field can also be configured to penetrate fabric or other obstructions and reflect from human tissue. These fabrics or obstructions can include wood, glass, plastic, cotton, wool, nylon and similar fibers, and so forth, while reflecting from human tissues, such as a person's body, or a part of the person's body, such as a hand, face, and so forth.
A radar field can be a small size, such as 0 or 1 millimeters to 1.5 meters, or an intermediate size, such as 1 to 30 meters. It is to be appreciated that these sizes are merely for discussion purposes, and that any other suitable range can be used. When the radar field has an intermediate size, radar-based object detection component 104 is configured to receive and process reflections of the radar field to detect large-body movements based on reflections from human tissue caused by body, arm, or leg movements. In this way, user actions, such as texting, reaching into a glove compartment, or talking with other passengers, may be detected. In other cases, the radar field can be configured to enable radar-based object detection component 104 to detect smaller and more precise movements, such as movement of the eyes of the driver or passenger in vehicle 110, or micro-gestures used to authenticate the driver. Radar-emitting element 208 can be configured to emit continuously modulated radiation, ultra-wideband radiation, or sub-millimeter-frequency radiation.
Antenna(s) 210 transmit and receive RF signals. In some cases, radar-emitting element 208 couples with antenna(s) 210 to transmit a radar field. As one skilled in the art will appreciate, this is achieved by converting electrical signals into electromagnetic waves for transmission, and vice versa for reception. Radar-based object detection component 104 can include any suitable number of antennas in any suitable configuration. For instance, any of the antennas can be configured as a dipole antenna, a parabolic antenna, a helical antenna, a monopole antenna, and so forth. In some embodiments, antenna(s) 210 are constructed on-chip (e.g., as part of an SoC), while in other embodiments, antenna(s) 210 are separate components, metal, hardware, etc. that attach to, or are included within, radar-based object detection component 104. An antenna can be single-purpose (e.g., a first antenna directed towards transmitting signals, a second antenna directed towards receiving signals, etc.), or multi-purpose (e.g., an antenna is directed towards transmitting and receiving signals). Thus, some embodiments utilize varying combinations of antennas, such as an embodiment that utilizes two single-purpose antennas directed towards transmission in combination with four single-purpose antennas directed towards reception. The placement, size, and/or shape of antenna(s) 210 can be chosen to enhance a specific transmission pattern or diversity scheme, such as a pattern or scheme designed to capture information about a micro-gesture performed by the hand. In some cases, the antennas can be physically separated from one another by a distance that allows radar-based object detection component 104 to collectively transmit and receive signals directed to a target object over different channels, different radio frequencies, and different distances. In some cases, antenna(s) 210 are spatially distributed to support triangulation techniques, while in others the antennas are collocated to support beamforming techniques. While not illustrated, each antenna can correspond to a respective transceiver path that physically routes and manages the outgoing signals for transmission and the incoming signals for capture and analysis.
Digital signal processing component 212 generally represents digitally capturing and processing a signal. For instance, digital signal processing component 212 samples analog RF signals received by antenna(s) 210 to generate digital samples that represents the RF signals, and then processes these samples to extract information about the target object. Alternately or additionally, digital signal processing component 212 controls the configuration of signals generated and transmitted by radar-emitting element 208 and/or antenna(s) 210, such as configuring a plurality of signals to form a specific diversity scheme like a beamforming diversity scheme. In some cases, digital signal processing component 212 receives input configuration parameters that control an RF signal's transmission parameters (e.g., frequency channel, power level, etc.), such as through APIs 206. In turn, digital signal processing component 212 modifies the RF signal based upon the input configuration parameter. At times, the signal processing functions of digital signal processing component 212 are included in a library of signal processing functions or algorithms that are also accessible and/or configurable via APIs 206. Thus, digital signal processing component 212 can be programmed or configured via APIs 206 (and a corresponding programmatic interface of radar-based gesture detection component 104) to dynamically select algorithms and/or dynamically reconfigure. Digital signal processing component 212 can be implemented in hardware, software, firmware, or any combination thereof.
Among other things, machine-learning component 214 receives information processed or extracted by digital signal processing component 212, and uses that information to classify or recognize various aspects of the target object. In some cases, machine-learning component 214 applies one or more algorithms to probabilistically determine an action of a driver or passenger based on an input signal and previously learned object characteristic features corresponding to the action. As in the case of digital signal processing component 212, machine-learning component 214 can include a library of multiple machine-learning algorithms, such as a Random Forrest algorithm, deep learning algorithms (i.e. artificial neural network algorithms, convolutional neural net algorithms, etc.), clustering algorithms, Bayesian algorithms, and so forth. Machine-learning component 214 can be trained on how to identify various object characteristics corresponding to user action using input data that consists of example user actions to learn. In turn, machine-learning component 214 uses the input data to learn what features can be attributed to a specific action. These features are then used to identify when the specific action occurs. In some embodiments, APIs 206 can be used to configure machine-learning component 214 and/or its corresponding algorithms. Thus, machine-learning component 214 can be configured via APIs 206 (and a corresponding programmatic interface of radar-based object detection component 104) to dynamically select algorithms and/or dynamically reconfigure.
Object characteristics library 216 represents data used by digital signal processing component 212 and/or machine-learning component 214 to identify a target object and/or detect known actions or gestures performed by the driver or passenger, or known external objects. For instance, object characteristics library 216 can store signal characteristics, characteristics about a target object that are discernable from a signal, or a customized machine-learning model that can be used to identify a user action, unique in-the-air gesture, a user identity, user presence, and so forth. In addition, certain data stored in object characteristics library 216 may be treated in one or more ways before it is stored or used, so that personally identifiable information is removed. For example, a user's identity may be treated so that no personally identifiable information can be determined for the user, or a user's geographic location may be generalized where location information is obtained (such as to a city, ZIP code, or state level), so that a particular location of a user cannot be determined. Thus, the user may have control over what information is collected about the user, how that information is used, and what information is provided to the user.
Environment 300a includes source device 302 and object 304. Object 304, for example, could be a driver or passenger in vehicle 110, or an external object (e.g., a pedestrian, other vehicle, or foreign object). Source device 302 includes antenna 306, which generally represents functionality configured to transmit and receive electromagnetic waves in the form of an RF signal. It is to be appreciated that antenna 306 can be coupled to a source, such as a radar-emitting element, to achieve transmission of a signal. In this example, source device 302 transmits a series of RF pulses, illustrated here as RF pulse 308a, RF pulse 308b, and RF pulse 308c. As indicated by their ordering and distance from source device 302, RF pulse 308a is transmitted first in time, followed by RF pulse 308b, and then RF pulse 308c. For discussion purposes, these RF pulses have the same pulse width, power level, and transmission periodicity between pulses, but any other suitable type of signal with alternate configurations can be transmitted without departing from the scope of the claimed subject matter.
Generally speaking, electromagnetic waves can be characterized by the frequency or wavelength of their corresponding oscillations. Being a form of electromagnetic radiation, RF signals adhere to various wave and particle properties, such as reflection. When an RF signal reaches an object, it will undergo some form of transition. Specifically, there will be some reflection off the object. Environment 300b illustrates the reflection of RF pulses 308a-308c reflecting off of object 304, where RF pulse 310a corresponds to a reflection originating from RF pulse 308a reflecting off of object 304, RF pulse 310b corresponds to a reflection originating from RF pulse 310b, and so forth. In this simple case, source device 302 and object 304 are stationary, and RF pulses 308a-308c are transmitted via a single antenna (antenna 306) over a same RF channel, and are transmitted directly towards object 304 with a perpendicular impact angle. Similarly, RF pulses 310a-310c are shown as reflecting directly back to source device 302, rather than with some angular deviation. However, as one skilled in the art will appreciate, these signals can alternately be transmitted or reflected with variations in their transmission and reflection directions based upon the configuration of source device 302, object 304, transmission parameters, variations in real-world factors, and so forth. Upon receiving and capturing RF pulses 310a-310c, source device 302 can then analyze the pulses, either individually or in combination, to identify characteristics related to object 304. For example, source device 302 can analyze all of the received RF pulses to obtain temporal information and/or spatial information about object 304. Accordingly, source device 302 can use knowledge about a transmission signal's configuration (such as pulse widths, spacing between pulses, pulse power levels, phase relationships, and so forth), and further analyze a reflected RF pulse to identify various characteristics about object 304, such as size, shape, movement speed, movement direction, surface smoothness, material composition, and so forth.
Now consider
When RF signals 408a-408d reach hand 404, they generate reflected RF signals 410a-410d. Similar to the discussion of
As in the case of
Example Procedures
Transmission of an outgoing RF signal is initiated via a radar-emitting element of a radar sensor implemented in a vehicle (block 902). For example, radar module 106 initiates transmission of an outgoing RF signal via radar-emitting element 208 of radar sensor 112 implemented in vehicle 110.
An incoming RF signal generated by the outgoing RF signal reflecting off an object is received by an antenna of the radar sensor (block 904). For example, antenna 210 of radar sensor 112 receives an incoming RF signal generated by the outgoing RF signal reflecting off an object, such as a driver or passenger within vehicle 110, or an object external to the vehicle 110.
The incoming RF signal is analyzed to detect one or more characteristics of the object (block 906). For example, radar module 106 may analyze the incoming RF signal to detect one or more characteristics of the driver, passenger, or external object.
Based on the detected one or more characteristics of the object, an operation is initiated (block 908). For example, the radar module 106 may determine an activity of the driver of the vehicle 110, based on the detected characteristics, and then initiate an operation based on the activity of the driver. Other examples include providing operations based on detected characteristics of passengers in the vehicle, authenticating the driver based on detected biometric characteristics or gestures, and controlling the vehicle based on the detection of external objects.
Example Vehicle Computing System
Vehicle computing system 600 includes communication devices 602 that enable wired and/or wireless communication of device data 604 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). The device data 604 or other device content can include configuration settings of the device and/or information associated with a user of the device.
Vehicle computing system 600 also includes communication interfaces 606 that can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. The communication interfaces 606 provide a connection and/or communication links between vehicle computing system 600 and a communication network by which other electronic, computing, and communication devices communicate data with vehicle computing system 600.
Vehicle computing system 600 includes one or more processors 608 (e.g., any of microprocessors, controllers, and the like) which process various computer-executable instructions to control the operation of vehicle computing system 600 and to implement embodiments of the techniques described herein. Alternatively or in addition, vehicle computing system 600 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits which are generally identified at 610. Although not shown, vehicle computing system 600 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.
Vehicle computing system 600 also includes computer-readable media 612, such as one or more memory components, examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like.
Computer-readable media 612 provides data storage mechanisms to store the device data 604, as well as various applications 614 and any other types of information and/or data related to operational aspects of vehicle computing system 600. The applications 614 can include a device manager (e.g., a control application, software application, signal processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, etc.). Computer-readable media 612 also includes APIs 616.
APIs 616 provide programmatic access to an authentication component, examples of which are provided above. The programmatic access can range from high-level program access that obscures underlying details of how a function is implemented, to low-level programmatic access that enables access to hardware. In some cases, APIs can be used to send input configuration parameters associated with modifying how signals are transmitted, received, and/or processed by an authentication component.
Vehicle computing system 600 also includes audio and/or video processing system 618 that processes audio data and/or passes through the audio and video data to audio system 620 and/or to display system 622 (e.g., a screen of a smart phone or camera). Audio system 620 and/or display system 622 may include any devices that process, display, and/or otherwise render audio, video, display, and/or image data. Display data and audio signals can be communicated to an audio component and/or to a display component via an RF link, S-video link, HDMI, composite video link, component video link, DVI, analog audio connection, or other similar communication link, such as media data port 624. In some implementations, audio system 620 and/or display system 622 are external components to vehicle computing system 600. Alternatively or additionally, display system 622 can be an integrated component of the example electronic device, such as part of an integrated touch interface.
Vehicle computing system 600 also includes a radar-based object detection component 626 that wirelessly identifies one or more features of a target object, such as a micro-gesture performed by a hand as further described above. Radar-based object detection component 626 can be implemented as any suitable combination of hardware, software, firmware, and so forth. In some embodiments, authentication component 626 is implemented as an SoC. Among other things, radar-based object detection component 626 includes radar-emitting element 628, antennas 630, digital signal processing component 632, machine-learning component 634, and object characteristics library 636.
Radar-emitting element 628 is configured to provide a radar field. In some cases, the radar field is configured to at least partially reflect off a target object. The radar field can also be configured to penetrate fabric or other obstructions and reflect from human tissue. These fabrics or obstructions can include wood, glass, plastic, cotton, wool, nylon and similar fibers, and so forth, while reflecting from human tissues, such as a person's hand. Radar-emitting element 628 works in concert with antennas 630 to provide the radar field.
Antenna(s) 630 transmit and receive RF signals under the control of authentication component 626. Each respective antenna of antennas 630 can correspond to a respective transceiver path internal to authentication component 626 that physical routes and manages outgoing signals for transmission and the incoming signals for capture and analysis as further described above.
Digital signal processing component 632 digitally processes RF signals received via antennas 630 to extract information about the target object. This can be high-level information that simply identifies a target object, or lower level information that identifies a particular micro-gesture performed by a hand. In some embodiments, digital signal processing component 632 additionally configures outgoing RF signals for transmission on antennas 630. Some of the information extracted by digital signal processing component 632 is used by machine-learning component 634. Digital signal processing component 632 at times includes multiple digital signal processing algorithms that can be selected or deselected for an analysis, examples of which are provided above. Thus, digital signal processing component 632 can generate key information from RF signals that can be used to determine what gesture might be occurring at any given moment. At times, an application, such those illustrated by applications 614, can configure the operating behavior of digital signal processing component 632 via APIs 616.
Machine-learning component 634 receives input data, such as a transformed raw signal or high-level information about a target object, and analyzes the input date to identify or classify various features contained within the data. As in the case above, machine-learning component 634 can include multiple machine-learning algorithms that can be selected or deselected for an analysis. Among other things, machine-learning component 634 can use the key information generated by digital signal processing component 632 to detect relationships and/or correlations between the generated key information and previously learned gestures to probabilistically decide which gesture is being performed. At times, an application, such those illustrated by applications 614, can configure the operating behavior of machine-learning component 632 via APIs 616.
Object characteristics library 636 represents data used by radar-based object detection component 626 to identify a target object and/or gestures performed by the target object. For instance, object characteristics library 216 can store signal characteristics, or characteristics about a target object that are discernable from a signal, that can be used to identify a user action, a unique in-the-air gesture, biometric characteristics, a user identity, user presence, and so forth. In addition, certain data stored in object characteristics library 636 may be treated in one or more ways before it is stored or used, so that personally identifiable information is removed. For example, a user's identity may be treated so that no personally identifiable information can be determined for the user, or a user's geographic location may be generalized where location information is obtained (such as to a city, ZIP code, or state level), so that a particular location of a user cannot be determined. Thus, the user may have control over what information is collected about the user, how that information is used, and what information is provided to the user.
Although the embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that the various embodiments defined in the appended claims are not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the various embodiments.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/237,975 filed on Oct. 6, 2015, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3610874 | Gagliano | Oct 1971 | A |
3752017 | Lloyd et al. | Aug 1973 | A |
3953706 | Harris et al. | Apr 1976 | A |
4104012 | Ferrante | Aug 1978 | A |
4654967 | Thenner | Apr 1987 | A |
4700044 | Hokanson et al. | Oct 1987 | A |
4795998 | Dunbar et al. | Jan 1989 | A |
4838797 | Dodier | Jun 1989 | A |
5016500 | Conrad et al. | May 1991 | A |
5121124 | Spivey et al. | Jun 1992 | A |
5298715 | Chalco et al. | Mar 1994 | A |
5341979 | Gupta | Aug 1994 | A |
5410471 | Alyfuku et al. | Apr 1995 | A |
5468917 | Brodsky et al. | Nov 1995 | A |
5564571 | Zanotti | Oct 1996 | A |
5656798 | Kubo et al. | Aug 1997 | A |
5724707 | Kirk et al. | Mar 1998 | A |
5798798 | Rector et al. | Aug 1998 | A |
6032450 | Blum | Mar 2000 | A |
6037893 | Lipman | Mar 2000 | A |
6080690 | Lebby et al. | Jun 2000 | A |
6101431 | Niwa et al. | Aug 2000 | A |
6210771 | Post et al. | Apr 2001 | B1 |
6254544 | Hayashi | Jul 2001 | B1 |
6313825 | Gilbert | Nov 2001 | B1 |
6340979 | Beaton et al. | Jan 2002 | B1 |
6386757 | Konno | May 2002 | B1 |
6440593 | Ellison et al. | Aug 2002 | B2 |
6492980 | Sandbach | Dec 2002 | B2 |
6493933 | Post et al. | Dec 2002 | B1 |
6513833 | Breed | Feb 2003 | B2 |
6513970 | Tabata et al. | Feb 2003 | B1 |
6524239 | Reed et al. | Feb 2003 | B1 |
6543668 | Fujii et al. | Apr 2003 | B1 |
6616613 | Goodman | Sep 2003 | B1 |
6711354 | Kameyama | Mar 2004 | B2 |
6717065 | Hosaka et al. | Apr 2004 | B2 |
6802720 | Weiss et al. | Oct 2004 | B2 |
6833807 | Flacke et al. | Dec 2004 | B2 |
6835898 | Eldridge et al. | Dec 2004 | B2 |
6854985 | Weiss | Feb 2005 | B1 |
6929484 | Weiss et al. | Aug 2005 | B2 |
6970128 | Dwelly et al. | Nov 2005 | B1 |
6997882 | Parker et al. | Feb 2006 | B1 |
7019682 | Louberg et al. | Mar 2006 | B1 |
7134879 | Sugimoto et al. | Nov 2006 | B2 |
7158076 | Fiore et al. | Jan 2007 | B2 |
7164820 | Eves et al. | Jan 2007 | B2 |
7194371 | McBride et al. | Mar 2007 | B1 |
7205932 | Fiore | Apr 2007 | B2 |
7223105 | Weiss et al. | May 2007 | B2 |
7230610 | Jung et al. | Jun 2007 | B2 |
7249954 | Weiss | Jul 2007 | B2 |
7266532 | Sutton et al. | Sep 2007 | B2 |
7299964 | Jayaraman et al. | Nov 2007 | B2 |
7310236 | Takahashi et al. | Dec 2007 | B2 |
7317416 | Flom et al. | Jan 2008 | B2 |
7348285 | Dhawan et al. | Mar 2008 | B2 |
7365031 | Swallow et al. | Apr 2008 | B2 |
7421061 | Boese et al. | Sep 2008 | B2 |
7462035 | Lee et al. | Dec 2008 | B2 |
7528082 | Krans et al. | May 2009 | B2 |
7544627 | Tao et al. | Jun 2009 | B2 |
7578195 | DeAngelis et al. | Aug 2009 | B2 |
7644488 | Aisenbrey | Jan 2010 | B2 |
7647093 | Bojovic et al. | Jan 2010 | B2 |
7670144 | Ito et al. | Mar 2010 | B2 |
7677729 | Vilser et al. | Mar 2010 | B2 |
7691067 | Westbrook et al. | Apr 2010 | B2 |
7698154 | Marchosky | Apr 2010 | B2 |
7791700 | Bellamy | Sep 2010 | B2 |
7834276 | Chou et al. | Nov 2010 | B2 |
7845023 | Swatee | Dec 2010 | B2 |
7941676 | Glaser | May 2011 | B2 |
7952512 | Delker et al. | May 2011 | B1 |
7999722 | Beeri et al. | Aug 2011 | B2 |
8062220 | Kurtz et al. | Nov 2011 | B2 |
8063815 | Valo et al. | Nov 2011 | B2 |
8169404 | Boillot | May 2012 | B1 |
8179604 | Prada Gomez et al. | May 2012 | B1 |
8193929 | Siu et al. | Jun 2012 | B1 |
8199104 | Park et al. | Jun 2012 | B2 |
8282232 | Hsu et al. | Oct 2012 | B2 |
8289185 | Alonso | Oct 2012 | B2 |
8301232 | Albert et al. | Oct 2012 | B2 |
8314732 | Oswald et al. | Nov 2012 | B2 |
8334226 | Nhan et al. | Dec 2012 | B2 |
8341762 | Balzano | Jan 2013 | B2 |
8344949 | Moshfeghi | Jan 2013 | B2 |
8367942 | Howell et al. | Feb 2013 | B2 |
8475367 | Yuen et al. | Jul 2013 | B1 |
8505474 | Kang et al. | Aug 2013 | B2 |
8509882 | Albert et al. | Aug 2013 | B2 |
8514221 | King et al. | Aug 2013 | B2 |
8527146 | Jackson et al. | Sep 2013 | B1 |
8549829 | Song et al. | Oct 2013 | B2 |
8560972 | Wilson | Oct 2013 | B2 |
8562526 | Heneghan et al. | Oct 2013 | B2 |
8569189 | Bhattacharya et al. | Oct 2013 | B2 |
8614689 | Nishikawa et al. | Dec 2013 | B2 |
8655004 | Prest et al. | Feb 2014 | B2 |
8700137 | Albert | Apr 2014 | B2 |
8758020 | Burdea et al. | Jun 2014 | B2 |
8759713 | Sheats | Jun 2014 | B2 |
8764651 | Tran | Jul 2014 | B2 |
8785778 | Streeter et al. | Jul 2014 | B2 |
8790257 | Libbus et al. | Jul 2014 | B2 |
8814574 | Selby et al. | Aug 2014 | B2 |
8819812 | Weber et al. | Aug 2014 | B1 |
8854433 | Rafii | Oct 2014 | B1 |
8860602 | Nohara et al. | Oct 2014 | B2 |
8921473 | Hyman | Dec 2014 | B1 |
8948839 | Longinotti-Buitoni et al. | Feb 2015 | B1 |
9055879 | Selby et al. | Jun 2015 | B2 |
9093289 | Vicard et al. | Jul 2015 | B2 |
9125456 | Chow | Sep 2015 | B2 |
9141194 | Keyes et al. | Sep 2015 | B1 |
9148949 | Guofu et al. | Sep 2015 | B2 |
9223494 | Desalvo et al. | Dec 2015 | B1 |
9229102 | Wright et al. | Jan 2016 | B1 |
9230160 | Kanter | Jan 2016 | B1 |
9235241 | Newham et al. | Jan 2016 | B2 |
9316727 | Sentelle et al. | Apr 2016 | B2 |
9331422 | Nazzaro et al. | May 2016 | B2 |
9335825 | Rautianinen et al. | May 2016 | B2 |
9346167 | O'Connor et al. | May 2016 | B2 |
9354709 | Heller et al. | May 2016 | B1 |
9508141 | Khachaturian et al. | Nov 2016 | B2 |
9569001 | Mistry et al. | Feb 2017 | B2 |
9575560 | Poupyrev et al. | Feb 2017 | B2 |
9588625 | Poupyrev | Mar 2017 | B2 |
9594443 | VanBlon et al. | Mar 2017 | B2 |
9600080 | Poupyrev | Mar 2017 | B2 |
9693592 | Robinson et al. | Jul 2017 | B2 |
9746551 | Scholten et al. | Aug 2017 | B2 |
9766742 | Papakostas | Sep 2017 | B2 |
9778749 | Poupyrev | Oct 2017 | B2 |
9811164 | Poupyrev | Nov 2017 | B2 |
9817109 | Saboo et al. | Nov 2017 | B2 |
9837760 | Karagozler et al. | Dec 2017 | B2 |
9848780 | DeBusschere et al. | Dec 2017 | B1 |
9921660 | Poupyrev | Mar 2018 | B2 |
9933908 | Poupyrev | Apr 2018 | B2 |
9947080 | Nguyen et al. | Apr 2018 | B2 |
9971414 | Gollakota et al. | May 2018 | B2 |
9971415 | Poupyrev et al. | May 2018 | B2 |
9983747 | Poupyrev | May 2018 | B2 |
9994233 | Diaz-Jimenez | Jun 2018 | B2 |
10016162 | Rogers et al. | Jul 2018 | B1 |
10034630 | Lee | Jul 2018 | B2 |
10073590 | Dascola et al. | Sep 2018 | B2 |
10080528 | DeBusschere et al. | Sep 2018 | B2 |
10082950 | Lapp | Sep 2018 | B2 |
10088908 | Poupyrev et al. | Oct 2018 | B1 |
10139916 | Poupyrev | Nov 2018 | B2 |
10155274 | Robinson et al. | Dec 2018 | B2 |
10175781 | Karagozler et al. | Jan 2019 | B2 |
10203763 | Poupyrev et al. | Feb 2019 | B1 |
10222469 | Gillian et al. | Mar 2019 | B1 |
10241581 | Lien et al. | Mar 2019 | B2 |
10268321 | Poupyrev | Apr 2019 | B2 |
10285456 | Poupyrev et al. | May 2019 | B2 |
10300370 | Amihood et al. | May 2019 | B1 |
10310620 | Lien et al. | Jun 2019 | B2 |
10310621 | Lien et al. | Jun 2019 | B1 |
10379621 | Schwesig et al. | Aug 2019 | B2 |
10401490 | Gillian et al. | Sep 2019 | B2 |
10409385 | Poupyrev | Sep 2019 | B2 |
20010035836 | Miceli et al. | Nov 2001 | A1 |
20020009972 | Amento et al. | Jan 2002 | A1 |
20020080156 | Abbott et al. | Jun 2002 | A1 |
20020170897 | Hall | Nov 2002 | A1 |
20030005030 | Sutton et al. | Jan 2003 | A1 |
20030071750 | Benitz | Apr 2003 | A1 |
20030093000 | Nishio et al. | May 2003 | A1 |
20030100228 | Bungo et al. | May 2003 | A1 |
20030119391 | Swallow et al. | Jun 2003 | A1 |
20030122677 | Kail | Jul 2003 | A1 |
20040009729 | Hill et al. | Jan 2004 | A1 |
20040102693 | Jenkins | May 2004 | A1 |
20040249250 | McGee et al. | Dec 2004 | A1 |
20040259391 | Jung et al. | Dec 2004 | A1 |
20050069695 | Jung et al. | Mar 2005 | A1 |
20050128124 | Greneker et al. | Jun 2005 | A1 |
20050148876 | Endoh et al. | Jul 2005 | A1 |
20050231419 | Mitchell | Oct 2005 | A1 |
20050267366 | Murashita et al. | Dec 2005 | A1 |
20060035554 | Glaser et al. | Feb 2006 | A1 |
20060040739 | Wells | Feb 2006 | A1 |
20060047386 | Kanevsky et al. | Mar 2006 | A1 |
20060061504 | Leach, Jr. et al. | Mar 2006 | A1 |
20060125803 | Westerman et al. | Jun 2006 | A1 |
20060136997 | Telek et al. | Jun 2006 | A1 |
20060139162 | Flynn | Jun 2006 | A1 |
20060139314 | Bell | Jun 2006 | A1 |
20060148351 | Tao et al. | Jul 2006 | A1 |
20060157734 | Onodero et al. | Jul 2006 | A1 |
20060166620 | Sorensen | Jul 2006 | A1 |
20060170584 | Romero et al. | Aug 2006 | A1 |
20060209021 | Yoo et al. | Sep 2006 | A1 |
20060258205 | Locher et al. | Nov 2006 | A1 |
20060284757 | Zemany | Dec 2006 | A1 |
20070024488 | Zemany et al. | Feb 2007 | A1 |
20070026695 | Lee et al. | Feb 2007 | A1 |
20070027369 | Pagnacco et al. | Feb 2007 | A1 |
20070118043 | Oliver et al. | May 2007 | A1 |
20070161921 | Rausch | Jul 2007 | A1 |
20070164896 | Suzuki et al. | Jul 2007 | A1 |
20070176821 | Flom et al. | Aug 2007 | A1 |
20070192647 | Glaser | Aug 2007 | A1 |
20070197115 | Eves et al. | Aug 2007 | A1 |
20070197878 | Shklarski | Aug 2007 | A1 |
20070210074 | Maurer et al. | Sep 2007 | A1 |
20070237423 | Tico et al. | Oct 2007 | A1 |
20080001735 | Tran | Jan 2008 | A1 |
20080002027 | Kondo et al. | Jan 2008 | A1 |
20080015422 | Wessel | Jan 2008 | A1 |
20080024438 | Collins et al. | Jan 2008 | A1 |
20080039731 | McCombie et al. | Feb 2008 | A1 |
20080059578 | Albertson et al. | Mar 2008 | A1 |
20080065291 | Breed | Mar 2008 | A1 |
20080134102 | Movold et al. | Jun 2008 | A1 |
20080136775 | Conant | Jun 2008 | A1 |
20080168396 | Matas et al. | Jul 2008 | A1 |
20080194204 | Duet et al. | Aug 2008 | A1 |
20080194975 | MacQuarrie et al. | Aug 2008 | A1 |
20080211766 | Westerman et al. | Sep 2008 | A1 |
20080233822 | Swallow et al. | Sep 2008 | A1 |
20080278450 | Lashina | Nov 2008 | A1 |
20080282665 | Speleers | Nov 2008 | A1 |
20080291158 | Park et al. | Nov 2008 | A1 |
20080303800 | Elwell | Dec 2008 | A1 |
20080316085 | Rofougaran et al. | Dec 2008 | A1 |
20080320419 | Matas et al. | Dec 2008 | A1 |
20090018408 | Ouchi et al. | Jan 2009 | A1 |
20090018428 | Dias et al. | Jan 2009 | A1 |
20090033585 | Lang | Feb 2009 | A1 |
20090053950 | Surve | Feb 2009 | A1 |
20090056300 | Chung et al. | Mar 2009 | A1 |
20090058820 | Hinckley | Mar 2009 | A1 |
20090113298 | Jung et al. | Apr 2009 | A1 |
20090115617 | Sano et al. | May 2009 | A1 |
20090118648 | Kandori et al. | May 2009 | A1 |
20090149036 | Lee et al. | Jun 2009 | A1 |
20090177068 | Stivoric et al. | Jul 2009 | A1 |
20090203244 | Toonder | Aug 2009 | A1 |
20090226043 | Angell et al. | Sep 2009 | A1 |
20090253585 | Diatchenko et al. | Oct 2009 | A1 |
20090270690 | Roos et al. | Oct 2009 | A1 |
20090278915 | Kramer et al. | Nov 2009 | A1 |
20090288762 | Wolfel | Nov 2009 | A1 |
20090295712 | Ritzau | Dec 2009 | A1 |
20090319181 | Khosravy et al. | Dec 2009 | A1 |
20100045513 | Pett et al. | Feb 2010 | A1 |
20100050133 | Nishihara et al. | Feb 2010 | A1 |
20100053151 | Marti et al. | Mar 2010 | A1 |
20100060570 | Underkoffler et al. | Mar 2010 | A1 |
20100065320 | Urano | Mar 2010 | A1 |
20100069730 | Bergstrom et al. | Mar 2010 | A1 |
20100071205 | Graumann et al. | Mar 2010 | A1 |
20100094141 | Puswella | Apr 2010 | A1 |
20100109938 | Oswald et al. | May 2010 | A1 |
20100152600 | Droitcour et al. | Jun 2010 | A1 |
20100179820 | Harrison et al. | Jul 2010 | A1 |
20100198067 | Mahfouz et al. | Aug 2010 | A1 |
20100201586 | Michalk | Aug 2010 | A1 |
20100204550 | Heneghan et al. | Aug 2010 | A1 |
20100205667 | Anderson et al. | Aug 2010 | A1 |
20100208035 | Pinault et al. | Aug 2010 | A1 |
20100225562 | Smith | Sep 2010 | A1 |
20100234094 | Gagner et al. | Sep 2010 | A1 |
20100241009 | Petkie | Sep 2010 | A1 |
20100002912 | Solinsky | Oct 2010 | A1 |
20100281438 | Latta et al. | Nov 2010 | A1 |
20100292549 | Schuler | Nov 2010 | A1 |
20100306713 | Geisner et al. | Dec 2010 | A1 |
20100313414 | Sheats | Dec 2010 | A1 |
20100324384 | Moon et al. | Dec 2010 | A1 |
20100325770 | Chung et al. | Dec 2010 | A1 |
20110003664 | Richard | Jan 2011 | A1 |
20110010014 | Oexman et al. | Jan 2011 | A1 |
20110018795 | Jang | Jan 2011 | A1 |
20110029038 | Hyde et al. | Feb 2011 | A1 |
20110073353 | Lee et al. | Mar 2011 | A1 |
20110083111 | Forutanpour et al. | Apr 2011 | A1 |
20110093820 | Zhang et al. | Apr 2011 | A1 |
20110118564 | Sankai | May 2011 | A1 |
20110119640 | Berkes et al. | May 2011 | A1 |
20110166940 | Bangera et al. | Jul 2011 | A1 |
20110181509 | Rautiainen et al. | Jul 2011 | A1 |
20110181510 | Hakala et al. | Jul 2011 | A1 |
20110193939 | Vassigh et al. | Aug 2011 | A1 |
20110197263 | Stinson, III | Aug 2011 | A1 |
20110202404 | van der Riet | Aug 2011 | A1 |
20110213218 | Weiner et al. | Sep 2011 | A1 |
20110221666 | Newton et al. | Sep 2011 | A1 |
20110234492 | Ajmera et al. | Sep 2011 | A1 |
20110239118 | Yamaoka et al. | Sep 2011 | A1 |
20110245688 | Arora et al. | Oct 2011 | A1 |
20110279303 | Smith et al. | Nov 2011 | A1 |
20110286585 | Hodge | Nov 2011 | A1 |
20110303341 | Meiss et al. | Dec 2011 | A1 |
20110307842 | Chiang et al. | Dec 2011 | A1 |
20110316888 | Sachs et al. | Dec 2011 | A1 |
20110318985 | McDermid | Dec 2011 | A1 |
20120001875 | Li et al. | Jan 2012 | A1 |
20120019168 | Noda et al. | Jan 2012 | A1 |
20120029369 | Icove et al. | Feb 2012 | A1 |
20120047468 | Santos et al. | Feb 2012 | A1 |
20120068876 | Bangera et al. | Mar 2012 | A1 |
20120092284 | Rofougaran et al. | Apr 2012 | A1 |
20120123232 | Najarian et al. | May 2012 | A1 |
20120127082 | Kushler et al. | May 2012 | A1 |
20120144934 | Russell et al. | Jun 2012 | A1 |
20120150493 | Casey et al. | Jun 2012 | A1 |
20120154313 | Au et al. | Jun 2012 | A1 |
20120156926 | Kato et al. | Jun 2012 | A1 |
20120174299 | Balzano | Jul 2012 | A1 |
20120174736 | Wang et al. | Jul 2012 | A1 |
20120182222 | Moloney | Jul 2012 | A1 |
20120193801 | Gross et al. | Aug 2012 | A1 |
20120220835 | Chung | Aug 2012 | A1 |
20120248093 | Ulrich et al. | Oct 2012 | A1 |
20120254810 | Heck et al. | Oct 2012 | A1 |
20120268416 | Pirogov et al. | Oct 2012 | A1 |
20120280900 | Wang et al. | Nov 2012 | A1 |
20120298748 | Factor et al. | Nov 2012 | A1 |
20120310665 | Xu et al. | Dec 2012 | A1 |
20130016070 | Starner et al. | Jan 2013 | A1 |
20130027218 | Schwarz et al. | Jan 2013 | A1 |
20130035563 | Angelides | Feb 2013 | A1 |
20130046544 | Kay et al. | Feb 2013 | A1 |
20130053653 | Cuddihy et al. | Feb 2013 | A1 |
20130078624 | Holmes et al. | Mar 2013 | A1 |
20130082922 | Miller | Apr 2013 | A1 |
20130083173 | Geisner et al. | Apr 2013 | A1 |
20130086533 | Stienstra | Apr 2013 | A1 |
20130096439 | Lee et al. | Apr 2013 | A1 |
20130102217 | Jeon | Apr 2013 | A1 |
20130104084 | Mlyniec et al. | Apr 2013 | A1 |
20130113647 | Sentelle et al. | May 2013 | A1 |
20130113830 | Suzuki | May 2013 | A1 |
20130117377 | Miller | May 2013 | A1 |
20130132931 | Bruns et al. | May 2013 | A1 |
20130147833 | Aubauer et al. | Jun 2013 | A1 |
20130150735 | Cheng | Jun 2013 | A1 |
20130161078 | Li | Jun 2013 | A1 |
20130169471 | Lynch | Jul 2013 | A1 |
20130176161 | Derham et al. | Jul 2013 | A1 |
20130194173 | Zhu et al. | Aug 2013 | A1 |
20130195330 | Kim et al. | Aug 2013 | A1 |
20130196716 | Muhammad | Aug 2013 | A1 |
20130207962 | Oberdorfer et al. | Aug 2013 | A1 |
20130229508 | Li et al. | Sep 2013 | A1 |
20130241765 | Kozma et al. | Sep 2013 | A1 |
20130245986 | Grokop et al. | Sep 2013 | A1 |
20130253029 | Jain et al. | Sep 2013 | A1 |
20130260630 | Ito et al. | Oct 2013 | A1 |
20130278499 | Anderson | Oct 2013 | A1 |
20130278501 | Bulzacki | Oct 2013 | A1 |
20130281024 | Rofougaran et al. | Oct 2013 | A1 |
20130283203 | Batraski et al. | Oct 2013 | A1 |
20130322729 | Mestha et al. | Dec 2013 | A1 |
20130332438 | Li et al. | Dec 2013 | A1 |
20130345569 | Mestha et al. | Dec 2013 | A1 |
20140005809 | Frei et al. | Jan 2014 | A1 |
20140022108 | Alberth et al. | Jan 2014 | A1 |
20140028539 | Newham et al. | Jan 2014 | A1 |
20140049487 | Konertz et al. | Feb 2014 | A1 |
20140050354 | Heim et al. | Feb 2014 | A1 |
20140051941 | Messerschmidt | Feb 2014 | A1 |
20140070957 | Longinotti-Buitoni et al. | Mar 2014 | A1 |
20140072190 | Wu et al. | Mar 2014 | A1 |
20140073486 | Ahmed et al. | Mar 2014 | A1 |
20140073969 | Zou et al. | Mar 2014 | A1 |
20140081100 | Muhsin et al. | Mar 2014 | A1 |
20140095480 | Marantz et al. | Apr 2014 | A1 |
20140097979 | Nohara et al. | Apr 2014 | A1 |
20140121540 | Raskin | May 2014 | A1 |
20140135631 | Brumback et al. | May 2014 | A1 |
20140139422 | Mistry et al. | May 2014 | A1 |
20140139616 | Pinter et al. | May 2014 | A1 |
20140143678 | Mistry et al. | May 2014 | A1 |
20140149859 | Van Dyken et al. | May 2014 | A1 |
20140184496 | Gribetz et al. | Jul 2014 | A1 |
20140184499 | Kim | Jul 2014 | A1 |
20140191939 | Penn et al. | Jul 2014 | A1 |
20140200416 | Kashef et al. | Jul 2014 | A1 |
20140201690 | Holz | Jul 2014 | A1 |
20140208275 | Mongia et al. | Jul 2014 | A1 |
20140215389 | Ivalsh et al. | Jul 2014 | A1 |
20140239065 | Zhou et al. | Aug 2014 | A1 |
20140244277 | Krishna Rao et al. | Aug 2014 | A1 |
20140246415 | Wittkowski | Sep 2014 | A1 |
20140247212 | Kim et al. | Sep 2014 | A1 |
20140250515 | Jakobsson | Sep 2014 | A1 |
20140253431 | Gossweiler et al. | Sep 2014 | A1 |
20140253709 | Bresch et al. | Sep 2014 | A1 |
20140262478 | Harris et al. | Sep 2014 | A1 |
20140275854 | Venkatraman et al. | Sep 2014 | A1 |
20140280295 | Kurochikin et al. | Sep 2014 | A1 |
20140281975 | Anderson et al. | Sep 2014 | A1 |
20140282877 | Mahaffey et al. | Sep 2014 | A1 |
20140297006 | Sadhu | Oct 2014 | A1 |
20140298266 | Lapp | Oct 2014 | A1 |
20140300506 | Alton et al. | Oct 2014 | A1 |
20140306936 | Dahl et al. | Oct 2014 | A1 |
20140309855 | Tran | Oct 2014 | A1 |
20140316261 | Lux et al. | Oct 2014 | A1 |
20140318699 | Longinotti-Buitoni et al. | Oct 2014 | A1 |
20140324888 | Xie et al. | Oct 2014 | A1 |
20140329567 | Chan et al. | Nov 2014 | A1 |
20140333467 | Inomata | Nov 2014 | A1 |
20140343392 | Yang | Nov 2014 | A1 |
20140347295 | Kim et al. | Nov 2014 | A1 |
20140357369 | Callens et al. | Dec 2014 | A1 |
20140368378 | Crain et al. | Dec 2014 | A1 |
20140368441 | Touloumtzis | Dec 2014 | A1 |
20140376788 | Xu et al. | Dec 2014 | A1 |
20150002391 | Chen | Jan 2015 | A1 |
20150009096 | Lee et al. | Jan 2015 | A1 |
20150026815 | Barrett | Jan 2015 | A1 |
20150029050 | Driscoll et al. | Jan 2015 | A1 |
20150030256 | Brady et al. | Jan 2015 | A1 |
20150040040 | Balan et al. | Feb 2015 | A1 |
20150046183 | Cireddu | Feb 2015 | A1 |
20150062033 | Ishihara | Mar 2015 | A1 |
20150068069 | Tran et al. | Mar 2015 | A1 |
20150077282 | Mohamadi | Mar 2015 | A1 |
20150085060 | Fish et al. | Mar 2015 | A1 |
20150091820 | Rosenberg et al. | Apr 2015 | A1 |
20150091858 | Rosenberg et al. | Apr 2015 | A1 |
20150091859 | Rosenberg et al. | Apr 2015 | A1 |
20150091903 | Costello et al. | Apr 2015 | A1 |
20150095987 | Potash et al. | Apr 2015 | A1 |
20150099941 | Tran | Apr 2015 | A1 |
20150100328 | Kress et al. | Apr 2015 | A1 |
20150106770 | Shah et al. | Apr 2015 | A1 |
20150109164 | Takaki | Apr 2015 | A1 |
20150112606 | He et al. | Apr 2015 | A1 |
20150133017 | Liao et al. | May 2015 | A1 |
20150143601 | Longinotti-Buitoni et al. | May 2015 | A1 |
20150145805 | Liu | May 2015 | A1 |
20150162729 | Reversat et al. | Jun 2015 | A1 |
20150177866 | Hwang et al. | Jun 2015 | A1 |
20150185314 | Corcos et al. | Jul 2015 | A1 |
20150199045 | Robucci et al. | Jul 2015 | A1 |
20150205358 | Lyren | Jul 2015 | A1 |
20150223733 | Al-Alusi | Aug 2015 | A1 |
20150226004 | Thompson | Aug 2015 | A1 |
20150229885 | Offenhaeuser | Aug 2015 | A1 |
20150256763 | Niemi | Sep 2015 | A1 |
20150261320 | Leto | Sep 2015 | A1 |
20150268027 | Gerdes | Sep 2015 | A1 |
20150268799 | Starner et al. | Sep 2015 | A1 |
20150277569 | Sprenger et al. | Oct 2015 | A1 |
20150280102 | Tajitsu et al. | Oct 2015 | A1 |
20150285906 | Hooper et al. | Oct 2015 | A1 |
20150287187 | Redtel | Oct 2015 | A1 |
20150301167 | Sentelle et al. | Oct 2015 | A1 |
20150312041 | Choi | Oct 2015 | A1 |
20150314780 | Stenneth | Nov 2015 | A1 |
20150317518 | Fujimaki et al. | Nov 2015 | A1 |
20150323993 | Levesque et al. | Nov 2015 | A1 |
20150332075 | Burch | Nov 2015 | A1 |
20150341550 | Lay | Nov 2015 | A1 |
20150346820 | Poupyrev et al. | Dec 2015 | A1 |
20150350902 | Baxley et al. | Dec 2015 | A1 |
20150351703 | Phillips et al. | Dec 2015 | A1 |
20150375339 | Sterling et al. | Dec 2015 | A1 |
20160018948 | Parvarandeh et al. | Jan 2016 | A1 |
20160026253 | Bradski et al. | Jan 2016 | A1 |
20160038083 | Ding et al. | Feb 2016 | A1 |
20160041617 | Poupyrev | Feb 2016 | A1 |
20160041618 | Poupyrev | Feb 2016 | A1 |
20160042169 | Polehn | Feb 2016 | A1 |
20160048235 | Poupyrev | Feb 2016 | A1 |
20160048236 | Poupyrev | Feb 2016 | A1 |
20160048672 | Lux et al. | Feb 2016 | A1 |
20160054792 | Poupyrev | Feb 2016 | A1 |
20160054803 | Poupyrev | Feb 2016 | A1 |
20160054804 | Gollakata et al. | Feb 2016 | A1 |
20160055201 | Poupyrev et al. | Feb 2016 | A1 |
20160090839 | Stolarcyzk | Mar 2016 | A1 |
20160098089 | Poupyrev | Apr 2016 | A1 |
20160100166 | Dragne et al. | Apr 2016 | A1 |
20160103500 | Hussey et al. | Apr 2016 | A1 |
20160106328 | Mestha et al. | Apr 2016 | A1 |
20160131741 | Park | May 2016 | A1 |
20160140872 | Palmer et al. | May 2016 | A1 |
20160145776 | Roh | May 2016 | A1 |
20160146931 | Rao et al. | May 2016 | A1 |
20160170491 | Jung | Jun 2016 | A1 |
20160171293 | Li et al. | Jun 2016 | A1 |
20160186366 | McMaster | Jun 2016 | A1 |
20160206244 | Rogers | Jul 2016 | A1 |
20160213331 | Gil et al. | Jul 2016 | A1 |
20160216825 | Forutanpour | Jul 2016 | A1 |
20160220152 | Meriheina et al. | Aug 2016 | A1 |
20160249698 | Berzowska et al. | Sep 2016 | A1 |
20160252607 | Saboo et al. | Sep 2016 | A1 |
20160252965 | Mandella et al. | Sep 2016 | A1 |
20160253044 | Katz | Sep 2016 | A1 |
20160259037 | Molchanov et al. | Sep 2016 | A1 |
20160262685 | Wagner et al. | Sep 2016 | A1 |
20160282988 | Poupyrev | Sep 2016 | A1 |
20160283101 | Schwesig et al. | Sep 2016 | A1 |
20160284436 | Fukuhara et al. | Sep 2016 | A1 |
20160287172 | Morris et al. | Oct 2016 | A1 |
20160299526 | Inagaki et al. | Oct 2016 | A1 |
20160320852 | Poupyrev | Nov 2016 | A1 |
20160320853 | Lien et al. | Nov 2016 | A1 |
20160320854 | Lien et al. | Nov 2016 | A1 |
20160321428 | Rogers | Nov 2016 | A1 |
20160338599 | DeBusschere et al. | Nov 2016 | A1 |
20160345638 | Robinson et al. | Dec 2016 | A1 |
20160349790 | Connor | Dec 2016 | A1 |
20160349845 | Poupyrev et al. | Dec 2016 | A1 |
20160377712 | Wu et al. | Dec 2016 | A1 |
20170029985 | Tajitsu et al. | Feb 2017 | A1 |
20170052618 | Lee | Feb 2017 | A1 |
20170060254 | Molchanov et al. | Mar 2017 | A1 |
20170060298 | Hwang et al. | Mar 2017 | A1 |
20170075481 | Chou et al. | Mar 2017 | A1 |
20170075496 | Rosenberg et al. | Mar 2017 | A1 |
20170097413 | Gillian et al. | Apr 2017 | A1 |
20170097684 | Lien | Apr 2017 | A1 |
20170115777 | Poupyrev | Apr 2017 | A1 |
20170124407 | Micks | May 2017 | A1 |
20170125940 | Karagozler et al. | May 2017 | A1 |
20170192523 | Poupyrev | Jul 2017 | A1 |
20170192629 | Takada et al. | Jul 2017 | A1 |
20170196513 | Longinotti-Buitoni et al. | Jul 2017 | A1 |
20170232538 | Robinson et al. | Aug 2017 | A1 |
20170233903 | Jeon | Aug 2017 | A1 |
20170249033 | Podhajny et al. | Aug 2017 | A1 |
20170322633 | Shen et al. | Nov 2017 | A1 |
20170325337 | Karagozler et al. | Nov 2017 | A1 |
20170325518 | Poupyrev et al. | Nov 2017 | A1 |
20170329412 | Schwesig et al. | Nov 2017 | A1 |
20170329425 | Karagozler et al. | Nov 2017 | A1 |
20180000354 | DeBusschere et al. | Jan 2018 | A1 |
20180000355 | DeBusschere et al. | Jan 2018 | A1 |
20180004301 | Poupyrev | Jan 2018 | A1 |
20180005766 | Fairbanks et al. | Jan 2018 | A1 |
20180046258 | Poupyrev | Feb 2018 | A1 |
20180095541 | Gribetz et al. | Apr 2018 | A1 |
20180106897 | Shouldice et al. | Apr 2018 | A1 |
20180113032 | Dickey et al. | Apr 2018 | A1 |
20180157330 | Gu et al. | Jun 2018 | A1 |
20180160943 | Fyfe et al. | Jun 2018 | A1 |
20180177464 | DeBusschere et al. | Jun 2018 | A1 |
20180196527 | Poupyrev et al. | Jul 2018 | A1 |
20180256106 | Rogers et al. | Sep 2018 | A1 |
20180296163 | DeBusschere et al. | Oct 2018 | A1 |
20180321841 | Lapp | Nov 2018 | A1 |
20190033981 | Poupyrev | Jan 2019 | A1 |
20190138109 | Poupyrev et al. | May 2019 | A1 |
20190155396 | Lien et al. | May 2019 | A1 |
20190208837 | Poupyrev et al. | Jul 2019 | A1 |
20190232156 | Amihood et al. | Aug 2019 | A1 |
20190243464 | Lien et al. | Aug 2019 | A1 |
20190257939 | Schwesig et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
1462382 | Dec 2003 | CN |
101751126 | Jun 2010 | CN |
102414641 | Apr 2012 | CN |
102782612 | Nov 2012 | CN |
102893327 | Jan 2013 | CN |
202887794 | Apr 2013 | CN |
103076911 | May 2013 | CN |
103502911 | Jan 2014 | CN |
102660988 | Mar 2014 | CN |
104035552 | Sep 2014 | CN |
103355860 | Jan 2016 | CN |
102011075725 | Nov 2012 | DE |
102013201359 | Jul 2014 | DE |
0161895 | Nov 1985 | EP |
1785744 | May 2007 | EP |
1815788 | Aug 2007 | EP |
2417908 | Feb 2012 | EP |
2637081 | Sep 2013 | EP |
2770408 | Aug 2014 | EP |
2953007 | Dec 2015 | EP |
3201726 | Aug 2017 | EP |
3017722 | Aug 2015 | FR |
2070469 | Sep 1981 | GB |
2443208 | Apr 2008 | GB |
113860 | Apr 1999 | JP |
11168268 | Jun 1999 | JP |
2003280049 | Oct 2003 | JP |
2006234716 | Sep 2006 | JP |
2007011873 | Jan 2007 | JP |
2007132768 | May 2007 | JP |
2008287714 | Nov 2008 | JP |
2009037434 | Feb 2009 | JP |
2011102457 | May 2011 | JP |
201218583 | Sep 2012 | JP |
2012198916 | Oct 2012 | JP |
2013196047 | Sep 2013 | JP |
2014532332 | Dec 2014 | JP |
1020080102516 | Nov 2008 | KR |
100987650 | Oct 2010 | KR |
1020140055985 | May 2014 | KR |
101914850 | Oct 2018 | KR |
201425974 | Jul 2014 | TW |
9001895 | Mar 1990 | WO |
WO-0130123 | Apr 2001 | WO |
WO-2001027855 | Apr 2001 | WO |
WO-0175778 | Oct 2001 | WO |
WO-2002082999 | Oct 2002 | WO |
2004004557 | Jan 2004 | WO |
WO-2005033387 | Apr 2005 | WO |
2007125298 | Nov 2007 | WO |
WO-2008061385 | May 2008 | WO |
WO-2009032073 | Mar 2009 | WO |
2009083467 | Jul 2009 | WO |
WO-2010032173 | Mar 2010 | WO |
2010101697 | Sep 2010 | WO |
WO-2012026013 | Mar 2012 | WO |
2012064847 | May 2012 | WO |
WO-2012152476 | Nov 2012 | WO |
WO-2013082806 | Jun 2013 | WO |
WO-2013084108 | Jun 2013 | WO |
2013192166 | Dec 2013 | WO |
WO-2013186696 | Dec 2013 | WO |
WO-2013191657 | Dec 2013 | WO |
WO-2014019085 | Feb 2014 | WO |
2014085369 | Jun 2014 | WO |
WO-2014116968 | Jul 2014 | WO |
2014124520 | Aug 2014 | WO |
WO-2014136027 | Sep 2014 | WO |
WO-2014138280 | Sep 2014 | WO |
WO-2014160893 | Oct 2014 | WO |
WO-2014165476 | Oct 2014 | WO |
WO-2014204323 | Dec 2014 | WO |
WO-2015017931 | Feb 2015 | WO |
WO-2015022671 | Feb 2015 | WO |
2016053624 | Apr 2016 | WO |
2016118534 | Jul 2016 | WO |
2016176471 | Nov 2016 | WO |
2016178797 | Nov 2016 | WO |
2017019299 | Feb 2017 | WO |
2017062566 | Apr 2017 | WO |
2017200571 | Nov 2017 | WO |
20170200949 | Nov 2017 | WO |
2018106306 | Jun 2018 | WO |
Entry |
---|
“Final Office Action”, U.S. Appl. No. 14/518,863, dated Apr. 5, 2018, 21 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,139, dated May 1, 2018, 14 pages. |
“Final Office Action”, U.S. Appl. No. 15/595,649, dated May 23, 2018, 13 pages. |
“Final Office Action”, U.S. Appl. No. 15/142,689, dated Jun. 1, 2018, 16 pages. |
“Final Office Action”, U.S. Appl. No. 14/874,955, dated Jun. 11, 2018, 9 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,901, dated Jun. 15, 2018, 21 pages. |
“Final Office Action”, U.S. Appl. No. 15/286,152, dated Jun. 26, 2018, 25 pages. |
“Final Office Action”, U.S. Appl. No. 15/267,181, dated Jun. 7, 2018, 31 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/166,198, dated Apr. 25, 2018, 8 pages. |
“Foreign Office Action”, European Application No. 16784352.3, dated May 16, 2018, 3 pages. |
“Foreign Office Action”, Chinese Application No. 201721290290.3, dated Jun. 6, 2018, 3 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,253, dated Apr. 5, 2018, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/586,174, dated Jun. 18, 2018, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/862,409, dated Jun. 6, 2018, 7 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/362,359, dated May 17,2018, 4 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/055671, dated Apr. 10, 2018, 9 pages. |
“Written Opinion”, PCT Application No. PCT/US2017/032733, dated Jul. 24, 2017, 5 pages. |
“Advisory Action”, U.S. Appl. No. 14/504,139, dated Aug. 28, 2017, 3 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,901, dated Aug. 25, 2017, 19 pages. |
“Final Office Action”, U.S. Appl. No. 15/403,066, dated Oct. 5, 2017, 31 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/093,533, dated Aug. 24, 2017, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/142,619, dated Aug. 25, 2017, 16 pages. |
Non-Final Office Action, U.S. Appl. No. 14/959,799, dated Sep. 8, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/398,147, dated Sep. 8, 2017, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/518,863, dated Sep. 29, 2017, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/142,689, dated Oct. 4, 2017, 18 pages. |
“Pre-Interview Office Action”, U.S. Appl. No. 14/862,409, dated Sep. 15, 2017, 16 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/055671, dated Apr. 13, 2017, 8 pages. |
“Written Opinion”, PCT Application No. PCT/US2017/032733, dated Jul. 26, 2017, 5 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,061, dated Mar. 9, 2016, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/044774, dated Nov. 3, 2015, 12 pages. |
“Extended European Search Report”, EP Application No. 15170577.9, dated Nov. 5, 2015, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/024267, dated Jun. 20, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/024273, dated Jun. 20, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/032307, dated Aug. 25, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/029820, dated Jul. 15, 2016, 14 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/030177, dated Aug. 2, 2016, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/930,220, dated Sep. 14, 2016, 15 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/043963, dated Nov. 24, 2015, 16 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/050903, dated Feb. 19, 2016, 18 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/030115, dated Aug. 8, 2016, 18 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/043949, dated Dec. 1, 2015, 18 pages. |
“Frogpad Introduces Wearable Fabric Keyboard with Bluetooth Technology”, Retrieved From: <http://www.geekzone.co.nz/content.asp?contentid=3898> Mar. 16, 2015, Jan. 7, 2005, 2 pages. |
“Philips Vital Signs Camera”, Retrieved From: <http://www.vitalsignscamera.com/> Apr. 15, 2015, Jul. 17, 2013, 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,038, dated Feb. 26, 2016, 22 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,038, dated Sep. 27, 2016, 23 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/312,486, dated Oct. 23, 2015, 25 pages. |
“Final Office Action”, U.S. Appl. No. 14/312,486, dated Jun. 3, 2016, 32 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/666,155, dated Jul. 22, 2016, 5 pages. |
“The Instant Blood Pressure app estimates blood pressure with your smartphone and our algorithm”, Retrieved at: http://www.instantbloodpressure.com/—on Jun. 23, 2016, 6 pages. |
“Cardiio”, Retrieved From: <http://www.cardiio.com/> Apr. 15, 2015 App Information Retrieved From: <https://itunes.apple.com/us/app/cardiio-touchless-camera-pulse/id542891434?ls=1&mt=8> Apr. 15, 2015, Feb. 24, 2015, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,061, dated Sep. 12, 2016, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,061, dated Nov. 4, 2015, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/582,896, dated Jun. 29, 2016, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/681,625, dated Aug. 12, 2016, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/666,155, dated Aug. 24, 2016, 9 pages. |
Arbabian,“A 94GHz mm-Wave to Baseband Pulsed-Radar for Imaging and Gesture Recognition”, 2012 IEEE, 2012 Symposium on VLSI Circuits Digest of Technical Papers, 2012, 2 pages. |
Balakrishnan,“Detecting Pulse from Head Motions in Video”, In Proceedings: CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Available at: <http://people.csail.mitedu/mrub/vidmag/papers/Balakrishnan_Detecting_Pulse_from_2013_CVPR_paper.pdf>, Jun. 23, 2013, 8 pages. |
Couderc,“Detection of Atrial Fibrillation using Contactless Facial Video Monitoring”, In Proceedings: Heart Rhythm Society, vol. 12, Issue 1 Available at: <http://www.heartrhythmjournal.com/article/S1547-5271(14)00924-2/pdf>, Jan. 2015, 7 pages. |
Espina,“Wireless Body Sensor Network for Continuous Cuff-less Blood Pressure Monitoring”, International Summer School on Medical Devices and Biosensors, 2006, Sep. 2006, 5 pages. |
Godana,“Human Movement Characterization in Indoor Environment using GNU Radio Based Radar”, Retrieved at: http://repository.tudelft.nl/islandora/object/uuid:414e1868-dd00-4113-9989-4c213f1f7094?collection=education, Nov. 30, 2009, 100 pages. |
He,“A Continuous, Wearable, and Wireless Heart Monitor Using Head Ballistocardiogram (BCG) and Head Electrocardiogram (EEC) with a Nanowatt ECG Heartbeat Detection Circuit”, In Proceedings: Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Available at: <http://dspace.mit.edu/handle/1721.1/79221>, Feb. 2013, 137 pages. |
Holleis,“Evaluating Capacitive Touch Input on Clothes”, Proceedings of the 10th International Conference on Human Computer Interaction, Jan. 1, 2008, 10 pages. |
Nakajima,“Development of Real-Time Image Sequence Analysis for Evaluating Posture Change and Respiratory Rate of a Subject in Bed”, In Proceedings: Physiological Measurement, vol. 22, No. 3 Retrieved From: <http://iopscience.iop.org/0967-3334/22/3/401/pdf/0967-3334_22_3 _401.pdf> Feb. 27, 2015, Aug. 2001, 8 pages. |
Patel,“Applications of Electrically Conductive Yarns in Technical Textiles”, International Conference on Power System Technology (POWECON), Oct. 30, 2012, 6 pages. |
Poh,“A Medical Mirror for Non-contact Health Monitoring”, In Proceedings: ACM SIGGRPH Emerging Technologies Available at: <http://affect.media.mit.edu/pdfs/11.Poh-etal-SIGGRAPH.pdf>, 2011, 1 page. |
Poh,“Non-contact, Automated Cardiac Pulse Measurements Using Video Imaging and Blind Source Separation.”, In Proceedings: Optics Express, vol. 18, No. 10 Available at: <http://www.opticsinfobase.org/view_article.cfm?gotourl=http%3A%2F%2Fwww%2Eopticsinfobase%2Eorg%2FDirectPDFAccess%2F77B04D55%2DBC95%2D6937%2D5BAC49A426378C02%5F199381%2Foe%2D18%2D10%2D10762%2EP, May 7, 2010, 13 pages. |
Pu,“Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom '13 Proceedings of the 19th annual international conference on Mobile computing & networking, Aug. 27, 2013, 12 pages. |
Wang,“Exploiting Spatial Redundancy of Image Sensor for Motion Robust rPPG”, In Proceedings: IEEE Transactions on Biomedical Engineering, vol. 62, Issue 2, Jan. 19, 2015, 11 pages. |
Wang,“Micro-Doppler Signatures for Intelligent Human Gait Recognition Using a UWB Impulse Radar”, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Jul. 3, 2011, pp. 2103-2106. |
Wijesiriwardana,“Capacitive Fibre-Meshed Transducer for Touch & Proximity Sensing Applications”, IEEE Sensors Journal, IEEE Service Center, Oct. 1, 2005, 5 pages. |
Zhadobov,“Millimeter-wave Interactions with the Human Body: State of Knowledge and Recent Advances”, International Journal of Microwave and Wireless Technologies, Mar. 1, 2011, 11 pages. |
Zhang,“Study of the Structural Design and Capacitance Characteristics of Fabric Sensor”, Advanced Materials Research (vols. 194-196), Feb. 21, 2011, 8 pages. |
“Combined Search and Examination Report”, GB Application No. 1620892.8, dated Apr. 6, 2017, 5 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/930,220, dated Mar. 20, 2017, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/930,220, dated May 11, 2017, 2 pages. |
“Final Office Action”, U.S. Appl. No. 14/518,863, dated May 5, 2017, 18 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 14/959,901, dated Apr. 14, 2017, 3 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/050903, dated Apr. 13, 2017, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/060399, dated Jan. 30, 2017, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,038, dated Mar. 22, 2017, 33 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/398,147, dated Mar. 9, 2017, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/403,066, dated May 4, 2017, 31 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/494,863, dated May 30, 2017, 7 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/343,067, dated Apr. 19, 2017, 3 pages. |
“Textile Wire Brochure”, Retrieved at: http://www.textile-wire.ch/en/home.html, Aug. 7, 2004, 17 pages. |
Stoppa,“Wearable Electronics and Smart Textiles: A Critical Review”, In Proceedings of Sensors, vol. 14, Issue 7, Jul. 7, 2014, pp. 11957-11992. |
“Combined Search and Examination Report”, GB Application No. 1620891.0, dated May 31, 2017, 9 pages. |
“Final Office Action”, U.S. Appl. No. 15/398,147, dated Jun. 30, 2017, 11 pages. |
“Final Office Action”, U.S. Appl. No. 14/874,955, dated Jun. 30, 2017, 9 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,799, dated Jul. 19, 2017, 12 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,121, dated Aug. 8, 2017, 16 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/063874, dated May 11, 2017, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/862,409, dated Jun. 22, 2017, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,730, dated Jun. 23, 2017, 14 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/513,875, dated Jun. 28, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/343,067, dated Jul. 27, 2017, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,038, dated Aug. 7, 2017, 17 pages. |
“Final Office Action”, U.S. Appl. No. 15/142,619, dated Feb. 8, 2018, 15 pages. |
“Final Office Action”, U.S. Appl. No. 15/093,533, dated Mar. 21, 2018, 19 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/286,152, dated Mar. 1, 2018, 5 pages. |
“Foreign Office Action”, Chinese Application No. 201721290290.3, dated Mar. 9, 2018, 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/267,181, dated Feb. 8, 2018, 29 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/874,955, dated Feb. 8, 2018, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/959,730, dated Feb. 22, 2018, 8 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/166,198, dated Mar. 8, 2018, 8 pages. |
“Pre-Interview First Office Action”, U.S. Appl. No. 15/286,152, dated Feb. 8, 2018, 4 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/504,061, dated Dec. 27, 2016, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Dec. 19, 2016, 2 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/024289, dated Aug. 25, 2016, 17 pages. |
Cheng,“Smart Textiles: From Niche to Mainstream”, IEEE Pervasive Computing, Jul. 2013, pp. 81-84. |
Farringdon,“Wearable Sensor Badge & Sensor Jacket for Context Awareness”, Third International Symposium on Wearable Computers, Oct. 1999, 7 pages. |
Schneegass,“Towards a Garment OS: Supporting Application Development for Smart Garments”, Wearable Computers, ACM, Sep. 2014, 6 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Jan. 23, 2017, 4 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Feb. 6, 2017, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Feb. 23, 2017, 2 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/043963, dated Feb. 16, 2017, 12 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/030388, dated Dec. 15, 2016, 12 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/043949, dated Feb. 16, 2017, 13 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/044774, dated Mar. 2, 2017, 8 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/062082, dated Feb. 23, 2017, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/055671, dated Dec. 1, 2016, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,121, dated Jan. 9, 2017, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Jan. 27, 2017, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/513,875, dated Feb. 21, 2017, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/874,955, dated Feb. 27, 2017, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,799, dated Jan. 27, 2017, 10 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/930,220, dated Feb. 2, 2017, 8 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/494,863, dated Jan. 27, 2017, 5 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/959,730, dated Feb. 15, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/959,901, dated Feb. 10, 2017, 3 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,799, dated Jan. 4, 2018, 17 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,730, dated Nov. 22, 2017, 16 pages. |
“International Search Report and Written Opinion”, PCT/US20171047691, dated Nov. 16, 2017, 13. |
“International Search Report and Written Opinion”, PCT Application No. PCT/US2017/051663, dated Nov. 29, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,121, dated Jan. 2, 2018, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,901, dated Jan. 8, 2018, 21 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Oct. 18, 2017, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/595,649, dated Oct. 31, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/862,409, dated Dec. 14, 2017, 17 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/403,066, dated Jan. 8, 2018, 18 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/874,955, dated Oct. 20. 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/398,147, dated Nov. 15, 2017, 8 pages. |
“Notice of Publication”, U.S. Appl. No. 15/703,511, dated Jan. 4, 2018, 1 page. |
“Restriction Requirement”, U.S. Appl. No. 15/362,359, dated Jan. 8, 2018, 5 pages. |
Bondade, et al., “A linear-assisted DC-DC hybrid power converter for envelope tracking RF power amplifiers”, 2014 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, Sep. 14, 2014, pp. 5769-5773, XP032680873, DOI: 10.1109/ECCE.2014.6954193, Sep. 14, 2014, 5 pages. |
Fan, et al., “Wireless Hand Gesture Recognition Based on Continuous-Wave Doppler Radar Sensors”, IEEE Transactions on Microwave Theory and Techniques, Plenum, USA, vol. 64, No. 11, Nov. 1, 2016 (Nov. 1, 2016), pp. 4012-4012, XP011633246, ISSN: 0018-9480, DOI: 101109/TMTT.2016.2610427, Nov. 1, 2016, 9 pages. |
Lien, et al., “Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar”, ACM Transactions on Graphics (TOG), ACM, Us, vol. 35, No. 4, Jul. 11, 2016 (Jul. 11, 2016), pp. 1-19, XP058275791, ISSN: 0730-0301, DOI: 10.1145/2897824.2925953, Jul. 11, 2016, 19 pages. |
Martinez-Garcia, et al., “Four-quadrant linear-assisted DC/DC voltage regulator”, Analog Integrated Circuits and Signal Processing, Springer New York LLC, US, vol. 88, No. 1, Apr. 23, 2016 (Apr. 23, 2016) , pp. 151-160, XP035898949, ISSN: 0925-1030, DOI: 10.1007/S10470-016-0747-8, Apr. 23, 2016, 10 pages. |
Skolnik, “CW and Frequency-Modulated Radar”, In: “Introduction to Radar Systems”, Jan. 1, 1981 (Jan. 1, 1981), McGraw Hill, XP055047545, ISBN: 978-0-07-057909-5 pp. 68-100, p. 95-p. 97, Jan. 1, 1981, 18 pages. |
Zheng, et al., “Doppler Bio-Signal Detection Based Time-Domain Hand Gesture Recognition”, 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), IEEE, Dec. 9, 2013 (Dec. 9, 2013), p. 3, XP032574214, DOI: 10.1109/IMWS-BIO.2013.6756200, Dec. 9, 2013, 3 Pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Oct. 28, 2016, 4 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/518,863, dated Oct. 14, 2016, 16 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Oct. 7, 2016, 15 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Nov. 7, 2016, 5 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/513,875, dated Oct. 21, 2016, 3 pages. |
Pu,“Gesture Recognition Using Wireless Signals”, Oct. 2014, pp. 15-18. |
“Corrected Notice of Allowance”, U.S. Appl. No. 15/362,359, dated Sep. 17, 2018, 10 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,121, dated Jul. 9, 2018, 23 pages. |
“Final Office Action”, U.S. Appl. No. 15/166,198, dated Sep. 27, 2018, 33 pages. |
“Foreign Office Action”, Japanese Application No. 2018-501256, dated Jul. 24, 2018, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,253, dated Jul. 7, 2018, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Oct. 5, 2018, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,512, dated Jul. 19, 2018, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/142,829, dated Aug. 16, 2018, 15 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/362,359, dated Aug. 3, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/874,955, dated Oct. 4, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,619, dated Aug. 13, 2018, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/595,649, dated Sep. 14, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/586,174, dated Sep. 24, 2018, 5 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/286,495, dated Sep. 10, 2018, 4 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/287,359, dated Jul. 24, 2018, 2 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/286,537, dated Aug. 27, 2018, 8 pages. |
“Apple Watch Used Four Sensors to Detect your Pulse”, retrieved from http://www.theverge.com/2014/9/9/6126991 / apple-watch-four-back-sensors-detect-activity on Sep. 23, 2017 as cited in PCT search report for PCT Application No. PCT/US2016/026756 dated Nov. 10, 2017; the Verge, paragraph 1, Sep. 9, 2014, 4 pages. |
“Clever Toilet Checks on Your Health”, CNN.Com; Technology, Jun. 28, 2005, 2 pages. |
“Final Office Action”, U.S. Appl. No. 14/681,625, dated Dec. 7, 2016, 10 pages. |
“Final Office Action”, U.S. Appl. No. 14/731,195, dated Oct. 11, 2018, 12 pages. |
“Final Office Action”, U.S. Appl. No. 14/715,454, dated Sep. 7, 2017, 14 pages. |
“Final Office Action”, U.S. Appl. No. 15/286,512, dated Dec. 26, 2018, 15 pages. |
“Final Office Action”, U.S. Appl. No. 14/720,632, dated Jan. 9, 2018, 18 pages. |
“Final Office Action”, U.S. Appl. No. 14/715,454, dated Apr. 17, 2018, 19 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,308, dated Feb. 8, 2019, 23 pages. |
“Final Office Action”, U.S. Appl. No. 14/599,954, dared Aug. 10, 2016, 23 pages. |
“Final Office Action”, U.S. Appl. No. 14/699,181, dated May 4, 2018, 41 pages. |
“Final Office Action”, U.S. Appl. No. 14/715,793, dated Sep. 12, 2017, 7 pages. |
“Final Office Action”, U.S. Appl. No. 14/809,901, dated Dec. 13, 2018, 7 pages. |
“First Action Interview OA”, U.S. Appl. No. 14/715,793, dated Jun. 21, 2017, 3 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/142,471, dated Feb. 5, 2019, 29 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 14/731,195, dated Jun. 21, 2018, 4 pages. |
“First Action Interview Pilot Program Pre-Interview Communication”, U.S. Appl. No. 14/731,195, dated Aug. 1, 2017, 3 pages. |
“First Examination Report”, GB Application No. 1621332.4, dated May 16, 2017, 7 pages. |
“Foreign Office Action”, Chinese Application No. 201580034536.8, dated Oct. 9, 2018. |
“Foreign Office Action”, KR Application No. 10-2016-7036023, dated Aug. 11, 2017, 10 pages. |
“Foreign Office Action”, Chinese Application No. 201580036075.8, dated Jul. 4, 2018, 14 page. |
“Foreign Office Action”, CN Application No. 201580034908.7, dated Jul. 3, 2018, 17 pages. |
“Foreign Office Action”, JP App. No. 2016-567813, dated Jan. 16, 2018, 3 pages. |
“Foreign Office Action”, Korean Application No. 10-2016-7036015, dated Oct. 15, 2018, 3 pages. |
“Foreign Office Action”, Japanese Application No. 2016-567839, dated Apr. 3, 2018, 3 pages. |
“Foreign Office Action”, KR Application No. 10-2016-7035397, dated Sep. 20, 2017, 5 pages. |
“Foreign Office Action”, Korean Application No. 1020187012629, dated May 24, 2018, 6 pages. |
“Foreign Office Action”, EP Application No. 15170577.9, dated May 30, 2017, 7 pages. |
“Foreign Office Action”, Korean Application No. 10-2016-7036396, dated Jan. 3, 2018, 7 pages. |
“Foreign Office Action”, JP Application No. 2016567813, dated Sep. 22, 2017, 8 pages. |
“Foreign Office Action”, Japanese Application No. 2018021296, dated Dec. 25, 2018, 8 pages. |
“Foreign Office Action”, EP Application No. 15754323.2, dated Mar. 9, 2018, 8 pages. |
“Foreign Office Action—Needs Translation”, Japanese Application No. 2018501256, dated Feb. 26, 2019, 3 pages. |
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2017/032733, dated Nov. 29, 2018, 7 pages. |
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2016/026756, dated Oct. 19, 2017, 8 pages. |
“International Search Report and Written Opinion”, PCT Application No. PCT/US2016/065295, dated Mar. 14, 2017, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/042013, dated Oct. 26, 2016, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/034366, dated Nov. 17, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/033342, dated Oct. 27, 2016, 20 pages. |
“Life:X Lifestyle eXplorer”, Retrieved from <https://web.archive.org/web/20150318093841/http://research.microsoft.com/en-us/projects/lifex >, Feb. 3, 2017, 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/596,702, dated Jan. 4, 2019, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,837, dated Oct. 26, 2018, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/666,155, dated Feb. 3, 2017, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/809,901, dated May 24, 2018, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/720,632, dated Jun. 14, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/715,454, dated Jan. 11, 2018, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/599,954, dated Jan. 26, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/599,954, dated Feb. 2, 2016, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,308, dated Oct. 15, 2018, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,537, dated Nov. 19, 2018, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/720,632, dated May 18, 2018, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,901, dated Oct. 11, 2018, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,152, dated Oct. 19, 2018, 27 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/699,181, dated Oct. 18, 2017, 33 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/166,198, dated Feb. 21, 2019, 48 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/681,625, dated Mar. 6, 2017, 7 pages. |
“Non-Invasive Quantification of Peripheral Arterial Volume Distensibilitiy and its Non-Lineaer Relationship with Arterial Pressure”, Journal of Biomechanics, Pergamon Press, vol. 42, No. 8; as cited in the search report for PCT/US2016/013968 citing the whole document, but in particular the abstract, dated May 29, 2009, 2 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/599,954, dated May 24, 2017, 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,200, dated Nov. 6, 2018, 19 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,152, dated Mar. 5, 2019, 23 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/715,793, dated Jul. 6, 2018, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,495, dated Jan. 17, 2019, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/595,649, dated Jan. 3, 2019, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/715,793, dated Dec. 18, 2017, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/666,155, dated Feb. 20, 2018, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/666,155, dated Jul. 10, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/681,625, dated Jun. 7, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/681,625, dated Oct. 23, 2017, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,829, dated Feb. 6, 2019, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,689, dated Oct. 30, 2018, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,137, dated Feb. 6, 2019, 9 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/142,471, dated Dec. 12, 2018, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/715,793, dated Mar. 20, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/715,454, dated Apr. 14, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/703,511, dated Feb. 22, 2019, 5 pages. |
“Pre-Interview Office Action”, U.S. Appl. No. 14/731,195, dated Dec. 20, 2017, 4 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/065295, dated Jul. 24, 2018, 18 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/042013, dated Jan. 30, 2018, 7 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/032307, dated Dec. 7, 2017, 9 pages. |
“Pressure-Volume Loop Analysis in Cardiology”, retrieved from https://en.wikipedia.org/w/index.php?t itle=Pressure-volume loop analysis in card iology&oldid=636928657 on Sep. 23, 2017; Obtained per link provided in search report from PCT/US2016/01398 dated Jul. 28, 2016, Dec. 6, 2014, 10 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/462,957, dated Jan. 4, 2019, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/352,194, dated Feb. 6, 2019, 8 pages. |
“The Dash smart earbuds play back music, and monitor your workout”, Retrieved from < http://newatlas.com/bragi-dash-tracking-earbuds/30808/>, Feb. 13, 2014, 3 pages. |
“Thermofocus No Touch Forehead Thermometer”, Technimed, Internet Archive. Dec. 24, 2014. https://web.archive.org/web/20141224070848/http://www.tecnimed.it:80/thermofocus-forehead-thermometer-H1N1-swine-flu.html, Dec. 24, 2018, 4 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/042013, dated Feb. 2, 2017, 6 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/026756, dated Nov. 10, 2016, 7 pages. |
“Written Opinion”, PCT Application No. PCT/US2017/051663, dated Oct. 12, 2018, 8 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/065295, dated Apr. 13, 2018, 8 pages. |
“Written Opinion”, PCT Application PCT/US2016/013968, dated Jul. 28, 2016, 9 pages. |
Antonimuthu, “Google's Project Soli brings Gesture Control to Wearables using Radar”, YouTube[online], Available from https://www.youtube.com/watch?v=czJfcgvQcNA as accessed on May 9, 2017; See whole video, especially 6:05-6:35. |
Duncan, David P., “Motion Compensation of Synthetic Aperture Radar”, Microwave Earth Remote Sensing Laboratory, Brigham Young University, Apr. 15, 2003, 5 pages. |
Garmatyuk, Dmitriy S. et al., “Ultra-Wideband Continuous-Wave Random Noise Arc-SAR”, IEEE Transaction on Geoscience and Remote Sensing, vol. 40, No. 12, Dec. 2002, Dec. 2002, 10 pages. |
Geisheimer, Jonathan L. et al., “A Continuous-Wave (CW) Radar for Gait Analysis”, IEEE 2001, 2001, 5 pages. |
GürbüZ, Sevgi Z. et al., “Detection and Identification of Human Targets in Radar Data”, Proc. SPIE 6567, Signal Processing, Sensor Fusion, and Target Recognition XVI, 656701, May 7, 2007, 12 pages. |
Ishijima, Masa, “Unobtrusive Approaches to Monitoring Vital Signs at Home”, Medical & Biological Engineering and Computing, Springer, Berlin, DE, vol. 45, No. 11 as cited in search report for PCT/US2016/013968 dated Jul. 28, 2016, Sep. 25, 2007, 3 pages. |
Klabunde, Richard E., “Ventricular Pressure-Volume Loop Changes in Valve Disease”, Retrieved From <https://web.archive.org/web/20101201185256/http://cvphysiology.com/Heart%20Disease/HD009.htm>, Dec. 1, 2010, 8 pages. |
Kubota, Yusuke et al., “A Gesture Recognition Approach by using Microwave Doppler Sensors”, IPSJ SIG Technical Report, 2009 (6), Information Processing Society of Japan, Apr. 15, 2010, pp. 1-8, Apr. 15, 2010, 13 pages. |
Matthews, Robert J., “Venous Pulse”, Retrieved at: http://www.rjmatthewsmd.com/Definitions/venous_pulse.htm—on Nov. 30, 2016, Apr. 13, 2013, 7 pages. |
Otto, Chris et al., “System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring”, Journal of Mobile Multimedia; vol. 1, No. 4, Jan. 10, 2006, 20 pages. |
Palese, et al., “The Effects of Earphones and Music on the Temperature Measured by Infrared Tympanic Thermometer: Preliminary Results”, ORL—head neck nursing: official journal of the Society of Otorhinolaryngology and Head-Neck Nurses 32.2, Jan. 1, 2013, p. 8-12. |
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom'13, Sep. 30-Oct. 4, Miami, FL, USA, 2013, 12 pages. |
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, Proceedings of the 19th annual international conference on Mobile computing & networking (MobiCom'13), US, ACM, Sep. 30, 2013, pp. 27-38, Dec. 30, 2013, 12 pages. |
Zhadobov, Maxim et al., “Millimeter-Wave Interactions with the Human Body: State of Knowledge and Recent Advances”, International Journal of Microwave and Wireless Technologies, p. 1 of 11. # Cambridge University Press and the European Microwave Association, 2011 doi:10.1017/S1759078711000122, 2011. |
“Final Office Action”, U.S. Appl. No. 15/286,537, dated Apr. 19, 2019, 21 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,253, dated Apr. 2, 2019, 10 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,901, dated May 30, 2019, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,394, dated Mar. 22, 2019, 39 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/238,464, dated Mar. 7, 2019, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/424,263, dated May 23, 2019, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/462,957, dated May 24, 2019, 14 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,837, dated Mar. 6, 2019, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/703,511, dated Apr. 16, 2019, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,512, dated Apr. 9, 2019, 14 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/917,238, dated May 1, 2019, 6 pages. |
“Final Office Action”, U.S. Appl. No. 15/142,471, dated Jun. 20, 2019, 26 pages. |
“Final Office Action”, U.S. Appl. No. 16/238,464, dated Jul. 25, 2019, 15 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/917,238, dated Jun. 6, 2019, 6 pages. |
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2017/051663, dated Jun. 20, 2019, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,537, dated Sep. 3, 2019, 28 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,308, dated Jul. 17, 2019, 17 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/917,238, dated Aug. 21, 2019, 13 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/389,402, dated Aug. 21, 2019, 7 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,253, dated Aug. 26, 2019, 13 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/352,194, dated Jun. 26, 2019, 8 pages. |
Number | Date | Country | |
---|---|---|---|
62237975 | Oct 2015 | US |