The disclosure relates generally to the field of automobile sensors and relates more particularly to a radar-based automobile occupancy detector.
Occupancy detection systems are commonly employed in automobiles for determining whether seats in an automobile contain occupants. This information is used to facilitate or improve the operation of numerous systems within automobiles. For example, an occupancy detection system may output a signal to a seatbelt buckle system of an automobile indicting that a particular seat in the automobile contains an occupant, and the seatbelt buckle system may in-turn activate notification indicia (e.g., a “seatbelt unbuckled” status light and/or a chime) if a seatbelt associated with the occupied seat is unbuckled. In another example, the deployment of airbags associated with a particular seat in an automobile may be dictated according to whether or not an occupant is detected within the seat, and the force and/or size of airbag deployment may be varied according to the type of occupant (e.g., child or adult) that is detected in the seat. In another example, a climate control system of an automobile may direct cooled or heated air to particular spaces or zones within an automobile depending on whether or not occupants are detected in seats associated with such zones.
Traditionally, occupancy detection within automobiles has been achieved by implementing pressure sensors within the seats of automobiles. However, such sensors are associated with numerous shortcomings, including an inability to determine whether a seat is occupied by a human or an inanimate object, and an inability to determine whether an occupant of a seat is an adult or a child/infant. Additionally, implementing pressure sensors in the seats of automobiles is costly and complex. It is with respect to these and other considerations that the present improvements may be useful.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended as an aid in determining the scope of the claimed subject matter.
An exemplary embodiment of a radar-based occupancy detection system in accordance with the present disclosure may include a seatbelt buckle disposed adjacent a seat of a vehicle, and a radar module disposed within the seatbelt buckle, the radar module including an antenna configured to broadcast a radio frequency (RF) signal toward the seat.
Another exemplary embodiment of a radar-based occupancy detection system in accordance with the present disclosure may include a seatbelt buckle disposed adjacent a seat of a vehicle, and a radar module disposed within the seatbelt buckle, the radar module including an antenna configured to broadcast a RF signal toward the seat, a RF transmitter and a RF receiver coupled to the antenna, and a processor coupled to the receiver, wherein the processor is configured to derive signal information from output received from the receiver, the signal information including at least one of time of flight, frequency change, and amplitude ratio, wherein the processor is configured to characterize occupancy of the seat based on the signal information, and wherein the processor is configured to communicate information relating to occupancy of the seat to a system in the vehicle to influence operation of such system.
By way of example, various embodiments of the disclosed system will now be described, with reference to the accompanying drawings, wherein:
A radar-based occupancy detection system in accordance with the present disclosure will now be described more fully with reference to the accompanying drawings, in which a preferred embodiment of the radar-based occupancy detection system is presented. The radar-based occupancy detection system may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will convey certain exemplary aspects of the radar-based occupancy detection system to those skilled in the art.
The radar module 12 may include an antenna 16, a radio frequency (RF) transmitter 18, a RF receiver 20, a duplexer 22, and a processor 24. The RF transmitter 18 may be configured to produce a radio frequency (RF) signal (e.g., pulsed wave or continuous wave RF signal) that may be broadcasted by the antenna 16. In some embodiments, the RF transmitter 18 may produce RF signals in the millimeter wave frequency spectrum. The present disclose is not limited in this regard. The RF receiver 20 may amplify and demodulate RF signals that are received by the antenna 16 and may output the amplified and demodulated signals to the processor 24. The duplexer 22 may alternately switch the antenna 16 between the RF transmitter 18 and the RF receiver 20. Alternatively, it is contemplated that the radar module 12 may include separate transmitter and receiver antennas. The operation of the radar module 12 will be described in greater detail below.
While the above-described components of the radar module 12 are shown in
In addition to housing the radar modulel2, the seatbelt buckle 14 may house other electronic components that are conventional in modern automobiles. For example, as shown in
Referring now to
The antennas 16 of the radar modules 12 in the seatbelt buckles 100, 102 may be configured such that the RF signals 108, 110 are directed to spaces that would be occupied by persons or objects situated in the passenger seat 104 and the driver seat 106, respectively. Portions of the RF signals 108, 110 that are reflected off of the passenger seat 104 and the driver seat 106, and/or off of persons or objects in the passenger seat 104 and driver seat 106, may be received by the antennas 16. The signals may be delivered to the RF receivers 20, where the signals may be demodulated, amplified, and communicated to the processors 24 of the radar modules 12. Based on information derived from the signals, including, but not limited to, time of flight, frequency change, amplitude ratio, etc., the processors 24 may determine whether a person or object is present in the passenger seat 104 and/or in the driver seat 106 and may further characterize the person or object (e.g., as an adult, a child, a bag, a child seat, etc.).
The determinations made by the processors 24 of the radar modules 12 in the seatbelt buckles 100, 102 may be communicated to various systems within the vehicle via output lines 32 (see
While the exemplary implementation shown in
It will be appreciated by those of ordinary skill in the art that detection system 10 of the present disclosure can be implemented at a reduced cost and with less complexity relative to conventional pressure sensor-based occupancy detection systems, thereby increasing the feasibility of implementing occupancy detection in all seats of a vehicle (i.e., instead of only in a driver seat and a front passenger seat, for example). Additionally, the detection system 10 of the present disclosure provides an advantage over conventional pressure sensor-based occupancy detection systems in that it facilitates more detailed characterization of objects and occupants in the seats of a vehicle.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” will be understood as not excluding plural elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments incorporating the recited features.
The present disclosure is, not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Furthermore, while the present disclosure has been described herein in the context of a particular implementation in a particular environment for a particular purpose, those of ordinary skill in the art will recognize its usefulness is not limited thereto. Embodiments of the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below shall be construed in view of the full breadth and spirit of the present disclosure as described herein.
This application claims the benefit of U.S. Provisional Patent Application No. 62/772,698, filed Nov. 29, 2018, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
6529809 | Breed | Mar 2003 | B1 |
20020095980 | Breed | Jul 2002 | A1 |
20030217882 | Sakakida | Nov 2003 | A1 |
20040107550 | Lee | Jun 2004 | A1 |
20040111845 | Lee | Jun 2004 | A1 |
20050209755 | Sugiura | Sep 2005 | A1 |
20090093932 | McCall et al. | Apr 2009 | A1 |
20100283593 | Miller et al. | Nov 2010 | A1 |
20120089299 | Breed | Apr 2012 | A1 |
20140132056 | Yilma | May 2014 | A1 |
20140253314 | Rambadt | Sep 2014 | A1 |
20170158023 | Stevanovic | Jun 2017 | A1 |
20180300676 | Peterson | Oct 2018 | A1 |
20180334011 | Kumar | Nov 2018 | A1 |
20190084513 | Yamamoto | Mar 2019 | A1 |
20190339207 | Finn | Nov 2019 | A1 |
20200108811 | Wijffels | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
2454012 | Aug 2007 | CA |
102018108376 | Oct 2018 | DE |
WO-2009040711 | Apr 2009 | WO |
WO-2009049400 | Apr 2009 | WO |
WO-2015174963 | Nov 2015 | WO |
Entry |
---|
Extended European Search Report dated Mar. 24, 2020 for European Patent Application No. 19210967.6. |
Number | Date | Country | |
---|---|---|---|
20200172049 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62772698 | Nov 2018 | US |