1. Field of the Invention
The present invention relates to a radar detection method and apparatus, and more particularly to a radar detection method capable of detecting radar signals during normal operations.
2. Description of the Related Art
There is a widespread development in wireless communication devices using unauthorized frequency. For example, the Federal Communications Commission (FCC) released 255 MHz bandwidth from 5.470 GHz to 5.725GHz in 2003for unlicensed national information infrastructure (U-NII). However, the signals of U-NII devices at about 5GHz are easily interfered with by existing radar signals.
While DFS solves the problem of frequency conflict, the issue of effectively implementing the detection of conflicting radar signals remains without solution. 802.11h, the specification defined by the Institute of Electrical and Electronics Engineers (IEEE), proposes that the radio local area network (RLAN) around 5GHz should not only adopt DFS technology to avoid conflict with radar signals and to uniformly allocate bandwidth, but also should suspend current signal transmission in order to detect radar signal to reduce possible signal interference. However, the above suggestion will largely decrease throughput of signal transmission and does not meet the user's demand.
M. Wen, L. Hanwen, “Radar detection for 802.11a systems in 5GHz band,” International Conference on Wireless Communications, Networking and Mobile Computing, 2005,pp. 512-514presented an algorithm for detecting radar signals. The algorithm detects power variation whose position is close to sampling signals. However, it normally fails when RLAN and radar signals stay in the same power level.
U.S. Pat. No. 6,697,013discloses another algorithm of detecting radar signal, which achieves the detection based on signal correlation, pulse width and zero crossing. However, its hardware complexity is considerable because both real and imaginary parts of the frequency and time domains have to be compared.
The method for detecting radar signal in accordance with one embodiment of the present invention comprises the steps of: receiving a signal by a receiver, wherein the strength of the received signal is controlled within a range; sampling the received signal so as to obtain a plurality of sampling values; dividing the sampling values into a plurality of segments; summing up the absolute values of the sampling values in each segment; and determining that the received signal includes radar signals if at least one summation is greater than a threshold.
The method for detecting radar signal in accordance with another embodiment of the present invention comprises the steps of: receiving a signal by a receiver, wherein the strength of the received signal is controlled within a range; sampling the received signal so as to obtain a plurality of sampling values; dividing the sampling values into a plurality of segments; calculating a parameter in accordance with the sampling values in each segment; and determining that the received signal includes radar signals if at least one parameter is greater than a threshold.
The apparatus for detecting radar signal in accordance with one embodiment of the present invention comprises a first transceiver, a memory and a processor. The first transceiver is configured to receive a received signal, wherein the strength of the received signal is controlled within a range. The memory is configured to store the received signal. The processor is configured to segmentally capture the received signal stored in the memory and compare the received signal with a predetermined threshold so as to determine whether the received signal includes radar signal.
The invention will be described according to the appended drawings in which:
Generally, radar signals possess specific signal characteristics. As shown in
Because the FCC only regulates that all wireless communication devices should be capable of detecting radar signals above −62dBm, the present invention sets the transmitting power under −65dBm, which reserves 3dBm noise margin so as to differentiate non-radar signal.
In comparison with the prior art, the present invention need not stop transmitting signals upon detection of radar signals, and the throughput will not decrease. Under an interfering and high noise environment, the present invention can still detect the existence of radar signals. Furthermore, the present invention does not use any complex formula, and is easy to implement with software and hardware and thus applied in DFS technology.
The above-described embodiments of the present invention are intended to be illustrative only. Numerous alternative embodiments may be devised by persons skilled in the art without departing from the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
97109284 A | Mar 2008 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5451956 | Lochhead | Sep 1995 | A |
5856803 | Pevler | Jan 1999 | A |
6697013 | McFarland et al. | Feb 2004 | B2 |
7034738 | Wang et al. | Apr 2006 | B1 |
7155230 | Tsien | Dec 2006 | B2 |
7336736 | Leblond et al. | Feb 2008 | B2 |
7701382 | Hansen | Apr 2010 | B2 |
20100277362 | Wen et al. | Nov 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100277362 A1 | Nov 2010 | US |