Many computing devices and electronic devices include sensors to provide a seamless and intuitive user experience based on a device's surroundings. For example, a device may exit a sleep state responsive to an accelerometer indicating device movement or a touch screen of the device can be disabled responsive to a proximity sensor that indicates proximity with the user's face. Most of these sensors, however, have limited accuracy, range, or functionality, and are only able to sense a coarse or drastic change of the device's surroundings. Thus, without accurate sensor input, the device is often left to infer different types of user interaction or whether the user is even present, which results in incorrect user input, false or non-detection of the user, and user frustration.
Examples of sensor inaccuracy in the above context include a device that incorrectly exits the sleep state responsive to an accelerometer sensing non-user-related movement (e.g., a moving vehicle) and disabling a touch screen in response to a user holding a device incorrectly and partially obstructing the proximity sensor. In such cases, a device's battery can be run down due to inadvertent power state transitions and user input through the touch screen is disrupted until the user moves his hand. These are just a few examples of sensor inaccuracy that can disrupt the user's interactive experience with the device.
This disclosure describes apparatuses and techniques for radar-enabled sensor fusion. In some embodiments, a radar field is provided and reflection signals that correspond to a target in the radar field are received. The reflection signals are transformed to provide radar data, from which a radar feature indicating a physical characteristic of the target is extracted. Based on the radar features, a sensor is activated to provide supplemental sensor data associated with the physical characteristic. The radar feature is then augmented with the supplemental sensor data to enhance the radar feature, such as by increasing an accuracy or resolution of the radar feature. By so doing, performance of sensor-based applications, which rely on the enhanced radar features, can be improved
In other aspects, a radar sensor of a device is activated to obtain radar data for a space of interest. Three-dimensional (3D) radar features are extracted from the radar data and positional data is received from sensors. Based on the positional data, spatial relation of the 3D radar features is determined to generate a set of 3D landmarks for the space. This set of 3D landmarks is compared with known 3D context models to identify a 3D context model that matches the 3D landmarks. Based on the matching 3D context model, a context for the space is retrieved and used to configure contextual settings of the device.
This summary is provided to introduce simplified concepts concerning radar-enabled sensor fusion, which is further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.
Embodiments of radar-enabled sensor fusion are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:
Overview
Conventional sensor techniques are often limited and inaccurate due to inherent weaknesses associated with a given type of sensor. For example, motion can be sensed through data provided by an accelerometer, yet the accelerometer data may not be useful to determine a source of the motion. In other cases, a proximity sensor may provide data sufficient to detect proximity with an object, but an identity of the object may not be determinable from the proximity data. As such, conventional sensors have weaknesses or blind spots that can result in inaccurate or incomplete sensing of a device's surrounding, including the device's relation to a user.
Apparatuses and techniques are described herein that implement radar-enabled sensor fusion. In some embodiments, respective strengths of sensors are combined with a radar to mitigate a respective weakness of each sensor. For example, a surface radar feature of a user's face can be combined with imagery of a red-green-blue (RGB) camera to improve accuracy of facial recognition application. In other cases, a radar motion feature, which is able to track fast motion, is combined with imagery of an RGB sensor, which excels at capturing spatial information, to provide an application that is capable of detecting fast spatial movements.
In yet other cases, radar surface features can be augmented with orientation or directional information from an accelerometer to enable mapping of a device's environment (e.g., rooms or spaces). In such cases, the device may learn or detect contexts in which the device is operating thereby enabling various contextual features and settings of the device. These are but a few examples of ways in which radar can be leveraged for sensor fusion or contextual sensing, which are described herein. The following discussion first describes an operating environment, followed by techniques that may be employed in this environment, and ends with example systems.
Operating Environment
The computing device 102 includes one or more computer processors 104 and computer-readable media 106, which includes memory media and storage media. Applications and/or an operating system (not shown) embodied as computer-readable instructions on computer-readable media 106 can be executed by processors 104 to provide some of the functionalities described herein. The computer-readable media 106 also includes sensor-based applications 108, a sensor fusion engine 110, and a context manager 112, which are described below.
The computing device 102 may also include one or more network interfaces 114 for communicating data over wired, wireless, or optical networks and a display 116. The network interface 114 may communicate data over a local-area-network (LAN), a wireless local-area-network (WLAN), a personal-area-network (PAN), a wide-area-network (WAN), an intranet, the Internet, a peer-to-peer network, point-to-point network, a mesh network, and the like. The display 116 can be integral with the computing device 102 or associated with it, such as with the gaming system 102-6.
The computing device 102 includes one or more sensors 118, which enable the computing device 102 to sense various properties, variances, stimuli, or characteristics of an environment in which computing device 102 operates. For example, the sensors 118 may include various motion sensors, light sensors, acoustic sensors, and magnetic sensors. Alternately or additionally, sensors 118 enable interaction with, or receive input from, a user of computing device 102. The use and implementation of the sensors 118 varies and is described below.
The computing device 102 may also be associated with or include a radar sensor 120. The radar sensor 120 represents functionality that wirelessly detects targets through the transmission and reception of radio frequency (RF) or radar signals. The radar sensor 120 can be implemented as a system and/or radar-enabled component embedded within the computing device 102, such as a System-on-Chip (SoC) or sensor-on-chip. It is to be appreciated, however, that the radar sensor 120 can be implemented in any other suitable manner, such as one or more Integrated Circuits (ICs), as a processor with embedded processor instructions or configured to access a memory having processor instructions stored thereon, as hardware with embedded firmware, a printed circuit board assembly with various hardware components, or any combination thereof. Here, the radar sensor 120 includes radar-emitting element 122, antenna(s) 124, and digital signal processor 126, which can be used in concert to wirelessly detect various types of targets in the environment of the computing device 102.
Generally, radar-emitting element 122 is configured to provide a radar field. In some cases, the radar field is configured to at least partially reflect off one or more target objects. In some cases, the target objects include device users or other people present in the environment of the computing device 102. In other cases, the target objects include physical features of the user, such as hand motion, breathing rates, or other physiological features. The radar field can also be configured to penetrate fabric or other obstructions and reflect from human tissue. These fabrics or obstructions can include wood, glass, plastic, cotton, wool, nylon and similar fibers, and so forth, while reflecting from human tissues, such as a person's hand.
A radar field provided by the radar-emitting element 122 can be a small size, such as zero or one millimeters to 1.5 meters, or an intermediate size, such as one to 30 meters. It is to be appreciated that these sizes are merely for discussion purposes, and that any other suitable size or range of radar field can be used. For example, when the radar field has an intermediate size, the radar sensor 120 can be configured to receive and process reflections of the radar field to provide large-body gestures based on reflections from human tissue caused by body, arm, or leg movements.
In some aspects, the radar field can be configured to enable the radar sensor 120 to detect smaller and more-precise gestures, such as micro-gestures. Example intermediate-sized radar fields include those in which a user makes gestures to control a television from a couch, change a song or volume from a stereo across a room, turn off an oven or oven timer (a near field would also be useful here), turn lights on or off in a room, and so forth. The radar sensor 120, or emitter thereof, can be configured to emit continuously modulated radiation, ultra-wideband radiation, or sub-millimeter-frequency radiation.
The antenna(s) 124 transmit and receive RF signals of the radar sensor 120. In some cases, the radar-emitting element 122 is coupled with the antennas 124 to transmit a radar field. As one skilled in the art will appreciate, this is achieved by converting electrical signals into electromagnetic waves for transmission, and vice versa for reception. The radar sensor 120 can include one or an array of any suitable number of antennas in any suitable configuration. For instance, any of the antennas 124 can be configured as a dipole antenna, a parabolic antenna, a helical antenna, a planar antenna, an inverted-F antenna, a monopole antenna, and so forth. In some embodiments, the antennas 124 are constructed or formed on-chip (e.g., as part of a SoC), while in other embodiments, the antennas 124 are separate components, metal, dielectrics, hardware, etc. that attach to, or are included within, radar sensor 120.
A first antenna 124 can be single-purpose (e.g., a first antenna can be directed towards transmitting signals, and a second antenna 124 can be directed towards receiving signals), or multi-purpose (e.g., an antenna is directed towards transmitting and receiving signals). Thus, some embodiments utilized varying combinations of antennas, such as an embodiment that utilizes two single-purpose antennas configured for transmission in combination with four single-purpose antennas configured for reception. The placement, size, and/or shape of the antennas 124 can be chosen to enhance a specific transmission pattern or diversity scheme, such as a pattern or scheme designed to capture information about the environment, as further described herein.
In some cases, the antennas 124 can be physically separated from one another by a distance that allows the radar sensor 120 to collectively transmit and receive signals directed to a target object over different channels, different radio frequencies, and different distances. In some cases, the antennas 124 are spatially distributed to support triangulation techniques, while in others the antennas are collocated to support beamforming techniques. While not illustrated, each antenna can correspond to a respective transceiver path that physically routes and manages the outgoing signals for transmission and the incoming signals for capture and analysis.
The digital signal processor 126 ((DSP) or digital signal processing component) generally represents operations related to digitally capturing and processing a signal. For instance, the digital signal processor 126 samples analog RF signals received by the antenna(s) 124 to generate radar data (e.g., digital samples) that represents the RF signals, and then processes this radar data to extract information about the target object. In some cases, the digital signal processor 126 performs a transform on the radar data to provide a radar feature that describes target characteristics, position, or dynamics. Alternately or additionally, the digital signal processor 126 controls the configuration of signals generated and transmitted by the radar-emitting element 122 and/or antennas 124, such as configuring a plurality of signals to form a specific diversity or beamforming scheme.
In some cases, the digital signal processor 126 receives input configuration parameters that control an RF signal's transmission parameters (e.g., frequency channel, power level, etc.), such as through the sensor-based applications 108, sensor fusion engine 110, or context manager 112. In turn, the digital signal processor 126 modifies the RF signal based upon the input configuration parameter. At times, the signal processing functions of the digital signal processor 126 are included in a library of signal processing functions or algorithms that are also accessible and/or configurable via the sensor-based applications 108 or application programming interfaces (APIs). The digital signal processor 126 can be implemented in hardware, software, firmware, or any combination thereof.
In this particular example, the sensors 118 include an accelerometer 202 and gyroscope 204. These and other motion and positional sensors, such as motion sensitive MEMS or global positioning systems (GPSs) (not shown), are configured to sense movement or orientation of the computing device 102. The accelerometer 202 or gyroscope 204 can sense movement or orientation of the device in any suitable aspect, such as in one-dimension, two-dimensions, three-dimensions, multi-axis, combined multi-axis, and the like. Alternately or additionally, positional sensor, such as a GPS, may indicate a distance traveled, rate of travel, or an absolute or relative position of the computing device 102. In some embodiments, the accelerometer 202 or gyroscope 204 enable computing device 102 to sense gesture inputs (e.g., a series of position and/or orientation changes) made when a user moves the computing device 102 in a particular way.
The computing device 102 also includes a hall effect sensor 206 and magnetometer 208. Although not shown, the computing device 102 may also include a magneto-diode, magneto-transistor, magnetic sensitive MEMS, and the like. These magnetic field-based sensors are configured to sense magnetic field characteristics around computing device 102. For example, the magnetometer 208 may sense a change in magnetic field strength, magnetic field direction, or magnetic field orientation. In some embodiments, computing device 102 determines proximity with a user or another device based on input received from the magnetic field-based sensors.
A temperature sensor 210 of the computing device 102 can sense a temperature of a housing of the device or ambient temperature of the device's environment. Although not shown, the temperature sensor 210 may also be implemented in conjunction with a humidity sensor that enables moisture levels to be determined. In some cases, the temperature sensor can sense a temperature of a user that is holding, wearing, or carrying, the computing device 102. Alternately or additionally, the computing device may include an infrared thermal sensor that can sense temperature remotely or without having physical contact with an object of interest.
The computing device 102 also includes one or more acoustic sensors 212. The acoustic sensors can be implemented as microphones or acoustic wave sensors configured to monitor sound of an environment that computing device 102 operates. The acoustic sensors 212 are capable of receiving voice input of a user, which can then be processed by a DSP or processor of computing device 102. Sound captured by the acoustic sensors 212 may be analyzed or measured for any suitable component, such as pitch, timbre, harmonics, loudness, rhythm, envelope characteristics (e.g., attack, sustain, decay), and so on. In some embodiments, the computing device 102 identifies or differentiates a user based on data received from the acoustic sensors 212.
Capacitive sensors 214 enable the computing device 102 to sense changes in capacitance. In some cases, the capacitance sensors 214 are configured as touch sensors that can receive touch input or determine proximity with a user. In other cases, the capacitance sensors 214 are configured to sense properties of materials proximate a housing of the computing device 102. For example, the capacitance sensors 214 may provide data indicative of the devices proximity with respect to a surface (e.g., table or desk), body of a user, or the user's clothing (e.g., clothing pocket or sleeve). Alternately or additionally, the capacitive sensors may be configured as a touch screen or other input sensor of the computing device 102 through which touch input is received.
The computing device 102 may also include proximity sensors 216 that sense proximity with objects. The proximity sensors may be implemented with any suitable type of sensor, such as capacitive or infrared (IR) sensors. In some cases, the proximity sensor is configured as a short-range IR emitter and receiver. In such cases, the proximity sensor may be located within a housing or screen of the computing device 102 to detect proximity with a user's face or hand. For example, a proximity sensor 216 of a smart-phone may enable detection of a user's face, such as during a voice call, in order to disable a touch screen of the smart-phone to prevent the reception of inadvertent user input.
An ambient light sensor 218 of the computing device 102 may include a photo-diode or other optical sensors configured to sense an intensity, quality, or changes in light of the environment. The light sensors are capable of sensing ambient light or directed light, which can then be processed by the computing device 102 (e.g., via a DSP) to determine aspects of the device's environment. For example, changes in ambient light may indicate that a user has picked up the computing device 102 or removed the computing device 102 from his or her pocket.
In this example, the computing device also includes a red-green-blue sensor 220 (RGB sensor 220) and an infrared sensor 222. The RGB sensor 220 may be implemented as a camera sensor configured to capture imagery in the form of images or video. In some cases, the RGB sensor 220 is associated with a light-emitting diode (LED) flash increase luminosity of the imagery in low-light environments. In at least some embodiments, the RGB sensor 220 can be implemented to capture imagery associated with a user, such as a user's face or other physical features that enable identification of the user.
The infrared sensor 222 is configured to capture data in the infrared frequency spectrum, and may be configured to sense thermal variations or as an infrared (IR) camera. For example, the infrared sensor 222 may be configured to sense thermal data associated with a user or other people in the device's environment. Alternately or additionally, the infrared sensor may be associated with an IR LED and configured to sense proximity with or distance to an object.
In some embodiments, the computing device includes a depth sensor 224, which may be implemented in conjunction with the RGB sensor 220 to provide RGB-enhanced depth information. The depth sensor 222 may be implemented as a single module or separate components, such as an IR emitter, IR camera, and depth processor. When implemented separately, the IR emitter emits IR light that is received by the IR camera, which provides IR imagery data to the depth processor. Based on known variables, such as the speed of light, the depth processor of the depth sensor 224 can resolve distance to a target (e.g., time-of-flight camera). Alternately or additionally, the depth sensor 224 may resolve a three-dimensional depth map of the object's surface or environment of the computing device.
From a power consumption viewpoint, each of the sensors 118 may consume a different respective amount of power while operating. For example, the magnetometer 208 or acoustic sensor 212 may consume tens of milliamps to operate while the RGB sensor, infrared sensor 222, or depth sensor 224 may consume hundreds of milliamps to operate. In some embodiments, power consumption of one or more of the sensors 118 is known or predefined such that lower power sensors can be activated in lieu of other sensors to obtain particular types of data while conserving power. In many cases, the radar sensor 120 can operate, either continuously or intermittently, to obtain various data while consuming less power than the sensors 118. In such cases, the radar sensor 120 may operate while all or most of the sensors 118 are powered-down to conserve power of the computing device 102. Alternately or additionally, a determination can be made, based on data provided by the radar sensor 120, to activate one of the sensors 118 to obtain additional sensor data.
The gaming system 304 includes, or is associated with, the radar sensor 302-1. These devices work together to improve user interaction with the gaming system 304. Assume, for example, that the gaming system 304 includes a touch screen 310 through which content display and user interaction can be performed. This touch screen 310 can present some challenges to users, such as needing a person to sit in a particular orientation, such as upright and forward, to be able to touch the screen. Further, the size for selecting controls through touch screen 310 can make interaction difficult and time-consuming for some users. Consider, however, the radar sensor 302-1, which provides near radar field 308-1 enabling a user's hands to interact with desktop computer 304, such as with small or large, simple or complex gestures, including those with one or two hands, and in three dimensions. As is readily apparent, a large volume through which a user may make selections can be substantially easier and provide a better experience over a flat surface, such as that of touch screen 310.
Similarly, consider the radar sensor 302-2, which provides the intermediate radar field 308-2. Providing a radar-field enables a variety of interactions with a user positioned in front of the television. For example, the user may interact with the television 306 from a distance and through various gestures, ranging from hand gestures, to arm gestures, to full-body gestures. By so doing, user selections can be made simpler and easier than a flat surface (e.g., touch screen 310), a remote control (e.g., a gaming or television remote), and other conventional control mechanisms. Alternately or additionally, the television 306 may determine, via the radar sensor 302-2, an identity of the user, which can be provided to sensor-based applications to implement other functions (e.g., content control).
In some embodiments, the digital signal processor 126 is configured to process the received reflection signal from the surface sufficient to provide radar data usable to identify the hand 402 and/or determine a gesture made thereby. Note that with the surface radar field 404, another hand may by identified or interact to perform gestures, such as to tap on the surface on the hand 402, thereby interacting with the surface radar field 404. Example gestures include single and multi-finger swipe, spread, squeeze, non-linear movements, and so forth. Or the hand 402 may simply move or change shape to cause reflections, thereby also performing an occluded gesture.
With respect to human-tissue reflection, reflecting radar fields can process these fields to determine identifying indicia based on the human-tissue reflection, and confirm that the identifying indicia matches recorded identifying indicia for a person, such as authentication for a person permitted to control a corresponding computing device. These identifying indicia can include various biometric identifiers, such as a size, shape, ratio of sizes, cartilage structure, and bone structure for the person or a portion of the person, such as the person's hand. These identify indicia may also be associated with a device worn by the person permitted to control the mobile computing device, such as device having a unique or difficult-to-copy reflection (e.g., a wedding ring of 14 carat gold and three diamonds, which reflects radar in a particular manner).
In addition, the radar sensor systems can be configured so that personally identifiable information is removed. For example, a user's identity may be treated so that no personally identifiable information can be determined for the user, or a user's geographic location may be generalized where location information is obtained (such as to a city, ZIP code, or state level), so that a particular location of a user cannot be determined. Thus, the user may have control over what information is collected about the user, how that information is used, and what information is provided to the user.
In this example, the sensor fusion engine includes a radar signal transformer 502 (signal transformer 502) and a radar feature extractor 504 (feature extractor 504). Although shown as separate entities embodied on the sensor fusion engine 110, the signal transformer 502 and feature abstractor 504 may also be implemented by, or within, the digital signal processor 126 of the radar sensor 120. The sensor fusion engine 110 is communicably coupled with the sensors 118, from which sensor data 506 is received. The sensor data 506 may include any suitable type of raw or pre-processed sensor data, such as data corresponding to any type of the sensors described herein. The sensor fusion engine 110 is also operably coupled with the radar sensor 120, which provides radar data 508 to the sensor fusion engine 110. Alternately or additionally, the radar data 508 provided by the radar sensor 120 may comprise real-time radar data, such as raw data representing reflection signals of a radar field as they are received by the radar sensor 120.
In some embodiments, the signal transformer 502 transforms the raw radar data representing reflection signals into radar data representations. In some cases, this includes performing signal pre-processing on the raw radar data. For example, as an antenna receives reflected signals, some embodiments sample the signals to generate a digital representation of the raw incoming signals. Once the raw data is generated, the signal transformer 502 pre-processes the raw data to clean up the signals or generate versions of the signals in a desired frequency band or desired data format. Alternately or additionally, pre-processing the raw data may include filtering the raw data to reduce a noise floor or remove aliasing, resampling the data to obtain to a different sample rate, generating a complex representation of the signals, and so on. The signal transformer 502 can pre-process the raw data based on default parameters, while in other cases the type and parameters of the pre-processing is configurable, such as by the sensor fusion engine 110 or the context manager 112.
The signal transformer 502 transforms the received signal data into one or more different data representations or data transforms. In some cases, the signal transformer 502 combines data from multiple paths and corresponding antennas. The combined data may include data from various combinations of transmit paths, receive paths, or combined transceiver paths of the radar sensor 120. Any suitable type of data fusion technique can be used, such as weighted integration to optimize a heuristic (e.g., signal-to-noise (SNR) ratio or minimum mean square error (MMSE)), beamforming, triangulation, and the like.
The signal transformer 502 may also generate multiple combinations of signal data for different types of feature extraction, and/or transforms the signal data into another representation as a precursor to feature extraction. For example, the signal transformer 502 can process the combined signal data to generate a three-dimensional (3D) spatial profile of the target object. However, any suitable type of algorithm or transform can be used to generate a view, abstraction, or version of the raw data, such as an I/Q transformation that yields a complex vector containing phase and amplitude information related to the target object, a beamforming transformation that yields a spatial representation of target objects within range of a gesture sensor device, or a range-Doppler algorithm that yields target velocity and direction. Other types of algorithms and transforms may include a range profile algorithm that yields target recognition information, a micro-Doppler algorithm that yields high-resolution target recognition information, and a spectrogram algorithm that yields a visual representation of the corresponding frequencies, and so forth.
As described herein, the raw radar data can be processed in several ways to generate respective transformations or combined signal data. In some cases, the same raw data can be analyzed or transformed in multiple ways. For instance, a same capture of raw data can be processed to generate a 3D profile, target velocity information, and target directional movement information. In addition to generating transformations of the raw data, the radar signal transformer can perform basic classification of the target object, such as identifying information about its presence, a shape, a size, an orientation, a velocity over time, and so forth. For example, some embodiments use the signal transformer 502 to identify a basic orientation of a hand by measuring an amount of reflected energy off of the hand over time.
These transformations and basic classifications can be performed in hardware, software, firmware, or any suitable combination. At times, the transformations and basic classifications are performed by digital signal processor 126 and/or the sensor fusion engine 110. In some cases, the signal transformer 502 transforms the raw radar data or performs a basic classification based upon default parameters, while in other cases the transformations or classifications are configurable, such as through the sensor fusion engine 110 or context manager 112.
The feature abstractor 504 receives the transformed representations of the radar data from the signal transformer 502. From these data transforms, the feature abstractor 504 resolves, extracts, or identifies one or more radar features 510. These radar features 510 may indicate various properties, dynamics, or characteristics of a target and, in this example, include detection features 512, reflection features 514, motion features 516, position features 518, and shape features 520. These features are described by way of example only, and are not intended to limit ways in which the sensor fusion engine extracts feature or gesture information from raw or transformed radar data. For example, the radar feature extractor 504 may extract alternate radar features, such as range features or image features, from radar data representations provided by the signal transformer 502.
The detection features 512 may enable the sensor fusion engine 110 to detect a presence of a user, other people, or objects in an environment of the computing device 102. In some cases, a detection feature indicates a number of targets in a radar field or a number of targets in a room or space that is swept by a radar field. The reflection features 514 may indicate a profile of energy reflected by the target, such as reflected energy over time. This can be effective to enable velocity of a target's motion to be tracked over time. Alternately or additionally, the reflection feature may indicate an energy of a strongest component or a total energy of a moving target.
The motion features 516 may enable the fusion engine 110 to track movement or motion of a target in or through a radar field. In some cases, the motion feature 516 includes a velocity centroid in one or three dimensions, or a phase-based fine target displacement in one dimension. Alternately or additionally, the motion feature may include a target velocity or a 1D velocity dispersion. In some embodiments, the position features 518 include spatial 2D or 3D coordinates of a target object. The position features 518 may also be useful to range or determine distance to a target object.
The shape features 520 indicate a shape of a target or surface, and may include a spatial dispersion. In some cases, the sensor fusion engine 110 can scan or beam form different radar fields to build a 3D representation of a target or environment of the computing device 102. For example, the shape features 520 and other of the radar features 510 can be combined by the sensor fusion engine 110 to construct a unique identifier (e.g., a fingerprint) of a particular room or space.
In some embodiments, the feature abstractor 504 builds on a basic classification identified by the signal transformer 502 for feature extraction or abstraction. Consider the above example in which the signal transformer 502 classifies a target object as a hand. The feature abstractor 504 can build from this basic classification to extract lower resolution features of the hand. In other words, if the feature abstractor 504 is provided information identifying the target object as a hand, then the feature abstractor 504 uses this information to look for hand-related features (e.g., finger tapping, shape gestures, or swipe movements) instead of head-related features, (e.g., an eye blink, mouthing a word, or head-shaking movement).
As another example, consider a scenario in which the signal transformer 502 transforms the raw radar data into a measure of the target object's velocity over time. In turn, the feature abstractor 504 uses this information to identify a finger fast-tap motion by using a threshold value to compare the target object's velocity of acceleration to the threshold value, a slow-tap feature, and so forth. Any suitable type of algorithm can be used to extract a feature, such as machine-learning algorithms implemented by a machine-learning component (not shown) of the digital signal processor 126.
In various embodiments, the sensor fusion engine 110 combines or augments the radar features 510 with sensor data 506 from the sensors 118. For example, the sensor fusion engine 110 may apply a single algorithm to extract, identify, or classify a feature, or apply multiple algorithms to extract a single feature or multiple features. Thus, different algorithms can be applied to extract different types of features on a same set of data, or different sets of data. Based on the radar feature, the sensor fusion engine 110 can activate a particular sensor to provide data that is complimentary or supplemental to the radar feature. By so doing, an accuracy or validity of the radar features can be improved with the sensor data.
The sensor fusion engine 110 provides or exposes the sensor data 506, radar data 508, or various combinations thereof to sensor-based applications 108 and the context manager 112. For example, the sensor fusion engine 110 may provide, to the sensor-based applications 108, radar data augmented with sensor data or radar data that is verified based on sensor data. The sensor-based applications 108 may include any suitable application, function, utility, or algorithm that leverages information or knowledge about the computing device 102's environment or relation thereto in order to provide device functionalities or to alter device operations.
In this particular example, the sensor-based applications 108 include proximity detection 522, user detection 524, and activity detection 526. The proximity detection application 522 may detect, based on sensor data or radar data, proximity with a user or other objects. For example, the proximity detection application 522 may use detection radar features 512 to detect an approaching object and then switch to proximity sensor data to confirm proximity with a user. Alternately or additionally, the application may leverage a shape radar feature 520 to verify that the approaching object is a user's face, and not another similar sized large body object.
The user detection application 524 may detect, based on sensor data or radar data, presence of a user. In some cases, the user detection application 524 also tracks the user when the user is detected in the environment. For example, the user detection application 524 may detect the presence based on a detection radar feature 512 and shape radar feature 520 that matches a known 3D profile of the user. The user detection application 524 can also verify detection of the user through image data provided by the RGB sensor 220 or voice data provided by the acoustic sensors 212.
In some embodiments, the activity detection application 526 uses the sensor data and the radar data to detect activity in the computing device 102's environment. The activity detection application 526 may monitor radar for detection features 512 and motion features 516. Alternately or additionally, the activity detection application 526 can use the acoustic sensors 212 to detect noise, and the RGB sensor 220 or depth sensor 224 to monitor movement.
The sensor-based applications also include biometric recognition 528, physiologic monitor 530, and motion identification 532. The biometric recognition application 528 may use sensor data and radar data to capture or obtain biometric characteristics of a user that are useful to identify that user, such as to implement facial recognition. For example, the biometric recognition application 528 can use a shape radar feature 520 to obtain a 3D map of skeletal structure of the user's face and a color image from the RGB sensor 220 to confirm the user's identity. Thus, even if an imposter was able to forge an appearance of the user, the imposter would not be able to replicate the exact facial structure of the user and thus fail identification through the biometric recognition application 528.
The physiological monitor application 530 can detect or monitor medical aspects of a user, such as breathing, heart rate, reflexes, fine motor skills, and the like. To do so, the physiological monitor application 530 may use radar data, such as to track motion of user's chest, monitor arterial flow, subdermal muscle contraction, and the like. The physiological monitor application 530 can monitor other sensors of the device for supplemental data, such as acoustic, thermal (e.g., temperature), image (e.g., skin or eye color), and motion (e.g., tremors) data. For example, the physiological monitor application 530 may monitor a user's breathing patterns with radar motion features 516, breath noises recorded by the acoustic sensors 212, and heat signatures of exhaled air captured by the infrared sensor 222.
The motion identification application 532 can use the radar data and sensor data to identify various motion signatures. In some cases, the motion radar features 516 or other radar features are useful for track motion. In such cases, the motions may be too fast for accurate capture by the RGB sensor 220 or the depth sensor 224. By using the radar features, which are able to track very fast motion, the motion identification application 532 can track motion and leverage image data from the RGB sensor 220 to provide additional spatial information. Thus, the sensor fusion engine 110 and the motion identification application 532 are able to track a fast moving object with corresponding spatial information.
The gesture detection application 534 of the sensor-based applications 108 performs gesture recognition and mapping. For instance, consider a case where a finger tap motion feature has been extracted. The gesture detection application 534 can use this information, sound data from the acoustic sensors 212, or image data from the RGB sensor 220 to identify the feature as a double-click gesture. The gesture detection application 534 may use a probabilistic determination of which gesture has most likely occurred based upon the radar data and sensor data provided by the sensor fusion engine 110, and how this information relates to one or more previously learned characteristics or features of various gestures. For example, a machine-learning algorithm can be used to determine how to weight various received characteristics to determine a likelihood these characteristics correspond to particular gestures (or components of the gestures).
The context manager 112 may access the sensor-based applications 108, sensor data 506, or the radar features 510 of the sensor fusion engine 110 to implement radar-based contextual sensing. In some embodiments, the radar data 508 can be combined with sensor data 506 to provide maps of spaces or rooms in which the computing device 102 operates. For example, position and inertial sensor data can be leveraged to implement synthetic aperture techniques for capturing and meshing 3D radar imagery. Thus, as the device moves through an environment, the context manager 112 can construct detailed or high resolution 3D maps of various spaces and rooms. Alternately or additionally, the 3D imagery can be captured through optical occlusions or be used in combination with other techniques of sensor fusion to improve activity recognition.
In this particular example, the context manager 112 includes context models 536, device contexts 538, and context settings 540. The context models 536 include physical models of various spaces, such as dimensions, geometry, or features of a particular room. In other words, a context model can be considered to describe the unique character of particular space, like a 3D fingerprint. In some cases, building the context models 536 is implemented via machine learning techniques and may be performed passively as a device enters or passes through a particular space. Device contexts 538 include and may describe multiple contexts in which the computing device 102 may operate. These contexts may include a standard set of work contexts, such as “meeting,” “do not disturb,” “available,” “secure,” “private,” and the like. For example, the “meeting” context may be associated with the device being in a conference room, with multiple other coworkers and customers. Alternately or additionally, the device contexts 538 may be user programmable or custom, such as contexts for different rooms of a house, with each context indicating a respective level of privacy or security associated with that context.
Context settings 540 include various device or system settings that are configurable based on context or other environmental properties. The context settings 540 may include any suitable type of device setting, such as ringer volume, ringer mode, display modes, connectivity to networks or other devices, and the like. Alternately or additionally, the context settings 540 may include any suitable type of system settings, such as security settings, privacy settings, network or device connection settings, remote control features, and the like. For example, if a user walks into her home theater, the context manager 112 may recognize this context (e.g., “home theater”) and configure context settings by muting a device's alerts and configuring a wireless interface of the device to control audio/video equipment in the home theater. This is just but one example of how context manager 112 can determine and configure a device based on context.
Having described respective examples of a computing device 102, a sensor fusion engine 110, and a context manager 112 in accordance with one or more embodiments, now consider a discussion of techniques that can be performed by those and other entities described herein to implement radar-enabled sensor fusion.
At 602, a radar field is provided, such as one of the radar fields shown in
By way of example, consider
At 604, one or more reflection signals are received that correspond to a target in the radar field. The radar reflection signals may be received as a superposition of multiple points of a target object in the radar field, such as a person or object within or passing through the radar field. In the context of the present example, reflection signals from the user's hand are received by the radar sensor 120.
At 606, the one or more reflection signals are transformed into radar data representations. The reflection signals may be transformed using any suitable signal processing, such as by performing a range-Doppler transform, range profile transform, micro-Doppler transform, I/Q transform, or spectrogram transform. Continuing the ongoing example, the radar sensor performs a range-Doppler transform to provide target velocity and direction information for the user's hand.
At 608, a radar feature indicative of a characteristic of the target is extracted from the radar data. The radar feature may provide a real-time measurement of the characteristic of the target, position of the target, or dynamics of the target. The radar feature may include any suitable type of feature, such as a detection feature, reflection feature, motion feature, position feature, or shape feature, examples of which are described herein. In the context of the present example, reflection radar features and motion radar features of the user's hand are extracted from the radar data.
At 610, a sensor is activated based on the radar feature. The sensor can be activated to provide supplemental data. In some cases, a sensor is selected for activation based on the radar feature or a type of the radar feature. For example, an RGB or infrared sensor can be activated to provide supplemental sensor data for a surface feature or motion feature. In other cases, an accelerometer or gyroscope can be activated to obtain supplemental data for a motion feature or position feature. In yet other cases, data may be received from a microphone or depth sensor to improve a detection feature. Continuing the ongoing example, the sensor fusion engine 110 activates the RGB sensor 220 of the laptop 102-5 to capture spatial information.
At 612, the radar feature is augmented with the supplemental sensor data. This may include combining, or fusing, the radar feature and sensor data to provide a more-accurate or more-precise radar feature. Augmenting the radar feature may include improving an accuracy or resolution of the radar feature based on supplemental or complimentary sensor data. Examples of this sensor fusion may include using sensor data to increase a positional accuracy of the radar feature, mitigate a false detection attributed to the radar feature, increase a spatial resolution of the radar feature, increase a surface resolution of the radar feature, or improve a classification precision of the radar feature. In the context of the present example, the sensor fusion engine 110 combines the motion radar features 516 and RGB information to provide sensor information that spatially captures a very fast movement. In some cases, the RGB sensor 220 would not be able to detect or capture such motion due to inherent limitations of the sensor.
At 614, the augmented radar feature is provided to a sensor-based application. This can be effective to increase performance of the sensor-based application. In some cases, the augmented radar feature increases accuracy of detection applications, such as proximity detection, user detection, activity detection, gesture detection, and the like. In such cases, sensor data may be used to eliminate false detection, such as by confirming or disproving detection of the target. In other cases, the augmented radar feature may improve consistency of the application. Concluding the present example, the fused radar data features are passed to the gesture detection application 534, which passes a gesture to the FPS video game as game control input.
At 802, a radar sensor of a device is monitored for changes in reflected signals of a radar field. The radar sensor may provide a continuous or intermittent radar field from which the reflected signals are received. In some cases, the radar sensor is a lower-power sensor of a device, which consumes less power while operating than other sensors of the device. The changes in the reflected signals may be caused by movement of the device or movement of a target within the device's environment. By way of example, consider environment 900 of
At 804, the reflected signals are transformed to detect a target in the radar field. In some cases, detection features are extracted from the transformed radar data to confirm detection of the target in the radar field. In other cases, shape features or motion features are extracted from the transformed radar data to identity physical characteristics the target or movement of the target in the radar field. In the context of the present example, detection radar features for the first and second users are extracted from the reflected radar signals.
At 806, responsive to detection of the target in the reflected signals, a higher-power sensor is activated from a low-power state to obtain target-related sensor data. For example, if a radar detection feature indicates movement or presence of a user in the radar field, an RGB sensor can be activated to capture imagery of the user. In other cases, a GPS module of the device may be activated in response to position radar features or reflection radar features that indicate the device is moving. Continuing the ongoing example, the sensor fusion engine 110 activates the RGB sensor 220 of the television 902. The RGB sensor 220 obtains face image data 908 of the first user 904 and face image data 910 of the second user 906. This image data may be static images or video of the user's faces, such as to enable eye tracking or other dynamic facial recognition features.
At 808, the target-related sensor data is passed to a sensor-based application. The sensor-based application may include any suitable application, such as those described herein. In some cases, execution of the sensor-based application is initiated or resumed in response to detecting a particular activity or target in the radar field. For example, a surveillance application may be resumed in response to sensing activity features that indicate an unauthorized person entering a controlled area. An RGB sensor can then pass image data to the surveillance application. In the context of the present example in
Optionally at 810, radar features extracted from the transformed radar data are passed to the sensor-based application. In some cases, the radar features provide additional context for the sensor data passed to the sensor-based application. For example, a position radar feature can be passed to an application receiving RGB imagery to enable the application to tag targets in the imagery with respective location information.
Continuing the ongoing example, the sensor fusion engine 110 passes respective radar surface features of the user's faces to the biometric recognition application 528. Here, the application may determine that the first user 904 is not watching the television (e.g., eye tracking), and determine that the second user 906 is interested in watching the television 902. Using the face image data 910, the sensor fusion engine 110 can identify the second user 906 and retrieve, based on his identity, a viewing history associated with this identity. The context manager 112 leverages this viewing history to change a channel of the television to a last channel viewed by the second user 906.
At 812, the higher-power sensor is returned to a low-power state. Once the sensor data is passed to the sensor-based application, the higher-power sensor can be returned to the low-power state to conserve power of the device. Because the radar sensor consumes relatively little power while providing an array of capabilities, the other sensors can be left in low-power states until more sensor-specific data needs to be obtained. By so doing, power consumption of the device can be reduced, which is effective to increase run times for battery operated devices. From operation 812, the method 800 may return to operation 802 to monitor the radar sensor for subsequent changes in the reflected signals of the radar field. Concluding the present example, the RGB sensor 220 is returned to a low-power state after changing the channel of the television and may reside in the low-power state until further activity is detected by the radar sensor 120.
At 1002, a sensor of a device is monitored for environmental variances. The sensor may include any suitable type of sensor, such as those described in reference to
At 1004, an environmental variance is detected via the sensor. The environmental variance may include any suitable type of variance, such as a user's voice, ambient noise, device motion, user proximity, temperature change, change in ambient light, and so on. The detected environmental variance may be associated with a particular context, activity, user, and the like. For example, the environmental variance may include a voice command from a user to wake the device from a sleep state and unlock the device for use.
At 1006, responsive to detecting the environmental variance, a radar sensor is activated to provide a radar field. The radar sensor of the device may be activated to provide radar data that is supplemental or complimentary to data provided by the sensor. In some cases, the radar field is configured based on a type of sensor that detects the environmental variance or sensor data that characterizes the environmental variance. For example, if user proximity is detected, the radar sensor is configured to provide a short-range radar field suitable for identifying the user. In other cases, the radar sensor can be configured to provide a sweeping long-range radar field in response to detecting ambient noise or vibrations. In such cases, the long-range radar field can be used to detect activity or a location associated with the source of the noise.
At 1008, reflection signals from the radar field are transformed to provide radar data. The reflection signals may be transformed using any suitable signal processing, such as by performing a range-Doppler transform, range profile transform, micro-Doppler transform, I/Q transform, or spectrogram transform. In some cases, a type of transform used to provide the radar data is selected based on a type of sensor that detects the environmental variance or the data provided by the sensor.
At 1010, a radar feature is extracted from the radar data. The radar feature can be extracted based on the environmental variance. In some cases, a type of radar feature is selected based on the environmental variance or a type of the environmental variance. For example, a detection feature or motion feature can be selected in response to an acoustic sensor detecting ambient noise. In other cases, the radar sensor can extract a position feature or shape feature in response to an accelerometer sensing movement of the device.
At 1012, the sensor data is augmented with the radar feature to provide enhanced sensor data. This can be effective to increase an accuracy or confidence rate associated with the sensor data. In other words, if the sensor has a weakness with respect to accuracy, range, or another measurement, the radar data may compensate for this shortcomings and improve the quality of the sensor data. For example, a surface feature of a user's face may confirm an identity of the user and a validity of a voice command received to unlock the device.
At 1014, the enhanced sensor data is exposed to a sensor-based application. This can be effective to improve performance of the sensor-based application by improving an accuracy of the application, reducing an amount of sensor data used by the application, expanding functionality of the application, and the like. For example, a motion-based power state application that awakes the device in response to movement may also authenticate a user and unlock the device based on enhanced sensor data that includes motion data and a surface feature of the user's facial structure.
At 1102, a radar sensor of a device is activated to obtain radar data for a space or area of interest. The radar sensor may be activated responsive to movement of the device, such as inertial data or GPS data indicating that the device is moving into the space or area. In some cases, the radar sensor is activated responsive to detecting unknown devices, such as wireless access points, wireless appliances, or other wireless devices in the space transmitting data detectable by a wireless interface of the device.
By way of example, consider environment 1200 of
At 1104, 3D radar features are extracted from the radar data. The 3D radar features may include 3D radar features or a combination of 1D and 2D features that are useful to construct 3D radar features. The 3D radar features may include radar reflection features, motion features, or shape features that capture physical aspects of the space or area of interest. For example, the 3D radar features may include ranging, position, or shape information for targets in the space, such as furniture, walls, appliances, floor coverings, architectural features, and the like. In the context of the present example, the context manager 112 extracts position and surface radar features of targets in the room, such as the television 1204, plant 1206, door 1208, lamp 1210, picture 1212, and sofa 1214. The radar shapes may indicate an approximate shape, surface texture, or position (absolute or relative to other targets) of each target in the room.
At 1106, positional data is received from sensors of the device. The positional data may include orientation data, inertial data, motion data, directional data, and the like. In some cases, the positional data is useful to implement synthetic aperture techniques for radar scanning or radar imaging. Alternately or additionally, other sensors of the device can provide data indicative of the environment of the space. For example, an acoustic sensor may provide data useful to identify an ambient noise (e.g., fan noise or machinery hum) present in the space. Continuing the ongoing example, an accelerometer 202 of the smart-phone 102-3 provides inertial and orientation data to the sensor fusion engine 110 as the user moves throughout the room.
At 1108, a spatial relation of the 3D radar features is determined based on the positional data. As noted, the positional data can be leveraged to provide a synthetic aperture through which the radar sensor can scan the area of interest. In other words, as a device moves through a space, the radar sensor can capture physical characteristics of the room as multiple 3D radar features. The positional data received from the sensor can then be used to determine spatial relations between the multiple 3D features or how these features fit together in a 3D space. In the context of the present example, the context manager 112 determines spatial relations between the targets in room by using the inertial and orientation data of the accelerometer 202.
At 1110, a portion of a 3D map is generated based on the 3D radar features and spatial relations thereof. A 3D map can be generated for a portion of the space or room based on landmarks captured by the radar features. These landmarks may include identifiable physical characteristics of the space, such as furniture, basic shape and geometry of the space, reflectivity of surfaces, and the like. From operation 1110, the method 1100 may return to operation 1102 to generate another portion of the 3D map of the space or proceed to operation 1112. Continuing the ongoing example and assuming the sensor fusion engine has scanned most of the room, the context manager 112 generates multiple portions of a 3D map of the room based on the radar features of the targets 1204 through 1214 in the room and/or overall dimensions of the room.
At 1112, the portions of the 3D map are combined to create a 3D model of the space. In some cases, the portions of the 3D map may be assembled or meshed by overlapping respective edges. In other cases, the portions of the 3D map are combined based on the previously obtained positional data. The 3D map of the space may be complete or partial depending on a number of viable 3D radar features extracted from the radar data. In the context of the present example, the context manager 112 meshes the previously generated portions to provide a 3D model of the living room.
At 1114, the 3D model of the space is associated with a context of the space. This can be effective to create a 3D context model of the space. The context can be any suitable type of context, such as a type of room, a security level, privacy level, device operating mode, and the like. In some cases, the context is user defined, which may include prompting the user to select from a list of predefined contexts. In other cases, machine learning tools may implement the mapping operations and assign a context based on physical characteristics of the space. Continuing the ongoing example, the context manager 112 associates, based on the presence of the television 1204 and sofa 1214, a “living room” context to the space. This context indicates that the area is private, security risks are low, and that television 1204 is media capable and can be controlled through wireless or gesture-driven control functions. For instance, media playback on the smart-phone 102-3 may be transferred to the television 1204 upon entry into the living room.
At 1116, the 3D context model of the space is stored by the device. The 3D context model can be stored to local memory or uploaded to the Cloud to enable access by the device or other devices. In some cases, storing the 3D context model enables subsequent identification of the space via the radar sensor. For example, the device may maintain a library of 3D context models that enables the device to learn and remember spaces and contexts associated therewith. Concluding the present example, the context manager 112 stores the 3D context model of the living room to enable subsequent access and device configuration, an example of which is described herein.
At 1302, a radar sensor of a device is activated to obtain radar data for a space or area of interest. The radar sensor may be activated responsive to movement of the device, such as inertial data or GPS data indicating that the device is moving into the space or area. In some cases, the radar sensor is activated responsive to detecting known devices, such as wireless access points, wireless appliances, or other wireless devices in the space with which the device has previously been associated.
At 1304, 3D radar features are extracted from the radar data. The 3D radar features may include 3D radar features or a combination of 1D and 2D features that are useful to construct 3D radar features. The 3D radar features may include radar reflection features, motion features, or shape features that capture physical aspects of the space or area of interest. For example, the 3D radar features may include ranging, position, or shape information for targets in the space, such as furniture, walls, appliances, floor coverings, architectural features, and the like.
At 1306, positional data is received from sensors of the device. The positional data may include orientation data, inertial data, motion data, directional data, and the like. In some cases, the positional data is useful to implement synthetic aperture techniques for radar scanning or radar imaging. Alternately or additionally, other sensors of the device can provide data indicative of the environment of the space. For example, an acoustic sensor may provide data useful to identify an ambient noise (e.g., fan noise or machinery hum) present in the space.
At 1308, a spatial relation of the 3D radar features is determined based on the positional data provided by the sensors. As noted, the positional data can be leveraged to provide a synthetic aperture through which the radar sensor can scan the area of interest. In other words, as a device moves through a space, the radar sensor can capture physical characteristics of the room as multiple 3D radar features. The positional data received from the sensor can then be used to determine spatial relations between the multiple 3D features or how these features fit together in a 3D space.
At 1310, a set of 3D landmarks of the space is generated based on the 3D radar features and the spatial orientation thereof. These landmarks may include identifiable physical characteristics of the space, such as furniture, basic shape and geometry of the space, reflectivity of surfaces, and the like. For example, 3D landmarks of a conference room may include a table having legs of a particular shape and an overhead projector mounted to a mast that protrudes from the ceiling.
At 1312, the set of 3D landmarks is compared to known 3D context models. This can be effective to identify the space in which the device is operating based on a known 3D context model. In some cases, a match to a known 3D context model is determined when the set of the 3D landmarks correspond to those of the 3D context model. To account for variability over time, such as moving or replacing furniture, a match may be determined when enough of the 3D landmarks match to meet a predefined confidence threshold. In such cases, static 3D landmarks, which may include room geometry and fixed architecture (e.g., staircases), can be weighted heavier to minimize an effect that dynamic landmarks have on model matching rates.
At 1314, a context associated with the space is retrieved based on the matching 3D context model. Once a match for the space is determined, a context to apply to the device can be retrieved or accessed by the device. The context may be any suitable type of context, such as a privacy, meeting, appointment, or security context. Alternately or additionally, if a context of the 3D context model is incompatible with current device settings or out-of-date, the user may be prompted to select a context, create a context, or update a context for the space.
At 1316, context settings are configured based on the context associated with the space. The context settings configured may include any suitable type of setting, such as ringer volume, ringer mode, display modes, connectivity to networks or other devices, and the like. Further, security settings or privacy settings, of the device can be configured to enable or limit the display of secure or private content.
At 1402, a radar sensor of a device is activated to obtain radar data for an area of interest. The radar sensor may emit a continuous or directional radar field from which signals are reflected by targets in the area. The targets in the area may include any suitable type of object, such as walls, furniture, windows, floor coverings, appliances, room geometry, and the like. By way of example, consider environment 1500 of
At 1404, radar features are extracted from the radar data. The 3D radar features may include 3D radar features or a combination of 1D and 2D features that are useful to construct 3D radar features. The 3D radar features may include radar reflection features, motion features, or shape features that capture physical aspects of the space or area of interest. For example, the 3D radar features may include ranging, position, or shape information for targets in the space. In the context of the present example, a sensor fusion engine 110 of the tablet computer 102-4 extracts radar features useful to identify targets within and a geometry of the living room of environment 1500.
Optionally at 1406, data is received from a sensor of the device. In some cases, sensor data is useful to determine context for a space. For example, an acoustic sensor may provide data associated with an identifiable ambient noise in the space, such as running water of a fountain or a specific frequency of fan noise. In other cases, appliances or electronic devices may emit a particular whine, hum, or ultrasonic noise that can be detected by the acoustic sensors to provide identification data for a particular space.
At 1408, a context for the space is determined based on at least the radar features. In some cases, the context for the device is determined based on geometries and occupancies derived from the radar features. For example, the context manager may determine a size of the space, number of other occupants, and distances to those occupants in order to set a privacy bubble around the device. In other cases, a set of landmarks in the radar features is compared to known 3D context models. This can be effective to identify the space in which the device is operating based on a known 3D context model.
Although described as known, the 3D context models may also be accessed or downloaded to the device, such as based on device location (e.g., GPS). Alternately or additionally, other types of sensor data can be compared with that of known 3D context models. For example, sounds and wireless networks detected by the device can be compared to acoustic and network data of the known 3D context models. Continuing the ongoing example, the context manager 112 of the tablet computer 102-4 determines a context of environment 1500 as “living room,” a private, semi-secure context.
At 1410, context settings of the device are configured based on the determined context. The context settings configured may include any suitable type of setting, such as ringer volume, ringer mode, display modes, connectivity to networks or other devices, and the like. Further, security settings or privacy settings of the device can be configured to enable or limit the display of secure or private content. In the context of the present example, assume that before an unknown person 1504 enters the room, the context manager 112 configures display, security, and alerts settings of the tablet computer 102-4 for a private context in which these settings are fully enabled or open.
At 1412, the space is monitored for activity via the radar sensor. The radar sensor may provide a continuous or intermittent radar field from which the reflected signals are received. In some cases, the radar sensor detects activity or targets in the radar field responsive to changes in the reflected signals. Continuing the ongoing example, the radar sensor 120 monitors environment 1500 for any activity or detection events that may indicate a change in context.
At 1414, radar features are extracted from radar data to identify the source of the activity in the space. This may include extracting detection, motion, or shape radar features to identify targets in the space. In some cases, the source of activity is a target leaving the space, such as someone leaving a room. In other cases, the source of activity may include people or objects entering the space. In the context of the present example, assume that the unknown person 1504 enters the room and approaches the user 1502. In response to this, the radar sensor 120 provides detection and shape radar features 1506 to facilitate identification of the unknown person 1504.
At 1416, it is determined that the source of the activity changes the context of the space. In some cases, other people leaving a space increases user privacy or reduces noise constraints on a device, thus resulting in a more-open context. In other cases, people entering a space or moving closer to the device can decrease user privacy or increase security concerns for the device and user. With this reduction in privacy or increased need for security, the context of the device can become more private and security oriented. Continuing the ongoing example, shape radar features 1506 are used in an attempt identify, via facial recognition, the unknown person 1504. Here, assume that that facial recognition fails, and that the context manager 112 determines that the presence of an unknown entity changes the context of the space with respect to privacy and security.
At 1418, the context settings of the device are altered based on the change in context of the space. In response to the change in context, the context settings of the device can be altered to compensate for the context changes. When the context of the device increases in privacy or security, altering the context settings may include limiting content exposed by the device, such as by dimming a display, disabling particular applications, affecting display polarization, limiting wireless connectivity of the device, or reducing audio playback volume. Concluding the present example, in response to detecting a change in context, the context manager 112 increases privacy and security settings of the tablet computer 102-4, such as by closing secure applications, reducing volume of alerts and device audio, or reducing a font size of displayed content such that the unknown person would be unable to discern the tablet's content.
The computing system 1600 includes communication devices 1602 that enable wired and/or wireless communication of device data 1604 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). Device data 1604 or other device content can include configuration settings of the device, media content stored on the device, and/or information associated with a user of the device (e.g., an identity of an actor performing a gesture). Media content stored on the computing system 1600 can include any type of audio, video, and/or image data. The computing system 1600 includes one or more data inputs 1606 via which any type of data, media content, and/or inputs can be received, such as human utterances, interactions with a radar field, user-selectable inputs (explicit or implicit), messages, music, television media content, recorded video content, and any other type of audio, video, and/or image data received from any content and/or data source.
The computing system 1600 also includes communication interfaces 1608, which can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. Communication interfaces 1608 provide a connection and/or communication links between the computing system 1600 and a communication network by which other electronic, computing, and communication devices communicate data with the computing system 1600.
The computing system 1600 includes one or more processors 1610 (e.g., any of microprocessors, controllers, and the like), which process various computer-executable instructions to control the operation of the computing system 1600 and to enable techniques for, or in which can be embodied, radar-enabled sensor fusion. Alternatively or in addition, the computing system 1600 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits, which are generally identified at 1612. Although not shown, the computing system 1600 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.
The computing system 1600 also includes computer-readable media 1614, such as one or more memory devices that enable persistent and/or non-transitory data storage (i.e., in contrast to mere signal transmission), examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. The computing system 1600 can also include a mass storage media device (storage media) 1616.
The computer-readable media 1614 provides data storage mechanisms to store the device data 1604, as well as various device applications 1618 and any other types of information and/or data related to operational aspects of the computing system 1600. For example, an operating system 1620 can be maintained as a computer application with the computer-readable media 1614 and executed on the processors 1610. The device applications 1618 may include a device manager, such as any form of a control application, software application, signal-processing and control module, code that is native to a particular device, an abstraction module or gesture module and so on. The device applications 1618 also include system components, engines, or managers to implement radar-enabled sensor fusion, such as the sensor-based applications 108, sensor fusion engine 110, and context manager 112.
The computing system 1600 may also include, or have access to, one or more of radar systems or sensors, such as a radar sensor chip 1622 having the radar-emitting element 122, a radar-receiving element, and the antennas 124. While not shown, one or more elements of the sensor fusion engine 110 or context manager 112 may be implemented, in whole or in part, through hardware or firmware.
Although techniques using, and apparatuses including, radar-enabled sensor fusion have been described in language specific to features and/or methods, it is to be understood that the subject of the appended claims is not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed as example ways in which radar-enabled sensor fusion can be implemented.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/237,975 filed on Oct. 6, 2015, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3610874 | Gagliano | Oct 1971 | A |
3752017 | Lloyd et al. | Aug 1973 | A |
3953706 | Harris et al. | Apr 1976 | A |
4104012 | Ferrante | Aug 1978 | A |
4654967 | Thenner | Apr 1987 | A |
4700044 | Hokanson et al. | Oct 1987 | A |
4795998 | Dunbar et al. | Jan 1989 | A |
4838797 | Dodier | Jun 1989 | A |
5016500 | Conrad et al. | May 1991 | A |
5121124 | Spivey et al. | Jun 1992 | A |
5298715 | Chalco et al. | Mar 1994 | A |
5341979 | Gupta | Aug 1994 | A |
5410471 | Alyfuku et al. | Apr 1995 | A |
5468917 | Brodsky et al. | Nov 1995 | A |
5564571 | Zanotti | Oct 1996 | A |
5656798 | Kubo et al. | Aug 1997 | A |
5724707 | Kirk et al. | Mar 1998 | A |
5798798 | Rector et al. | Aug 1998 | A |
6032450 | Blum | Mar 2000 | A |
6037893 | Lipman | Mar 2000 | A |
6080690 | Lebby et al. | Jun 2000 | A |
6101431 | Niwa et al. | Aug 2000 | A |
6210771 | Post et al. | Apr 2001 | B1 |
6254544 | Hayashi | Jul 2001 | B1 |
6313825 | Gilbert | Nov 2001 | B1 |
6340979 | Beaton et al. | Jan 2002 | B1 |
6386757 | Konno | May 2002 | B1 |
6440593 | Ellison et al. | Aug 2002 | B2 |
6492980 | Sandbach | Dec 2002 | B2 |
6493933 | Post et al. | Dec 2002 | B1 |
6513833 | Breed et al. | Feb 2003 | B2 |
6513970 | Tabata et al. | Feb 2003 | B1 |
6524239 | Reed et al. | Feb 2003 | B1 |
6543668 | Fujii et al. | Apr 2003 | B1 |
6616613 | Goodman | Sep 2003 | B1 |
6711354 | Kameyama | Mar 2004 | B2 |
6717065 | Hosaka et al. | Apr 2004 | B2 |
6802720 | Weiss et al. | Oct 2004 | B2 |
6833807 | Flacke | Dec 2004 | B2 |
6835898 | Eldridge et al. | Dec 2004 | B2 |
6854985 | Weiss | Feb 2005 | B1 |
6929484 | Weiss et al. | Aug 2005 | B2 |
6970128 | Dwelly et al. | Nov 2005 | B1 |
6997882 | Parker et al. | Feb 2006 | B1 |
7019682 | Louberg et al. | Mar 2006 | B1 |
7134879 | Sugimoto et al. | Nov 2006 | B2 |
7158076 | Fiore et al. | Jan 2007 | B2 |
7164820 | Eves et al. | Jan 2007 | B2 |
7194371 | McBride et al. | Mar 2007 | B1 |
7205932 | Fiore | Apr 2007 | B2 |
7223105 | Weiss et al. | May 2007 | B2 |
7230610 | Jung et al. | Jun 2007 | B2 |
7249954 | Weiss | Jul 2007 | B2 |
7266532 | Sutton et al. | Sep 2007 | B2 |
7299964 | Jayaraman et al. | Nov 2007 | B2 |
7310236 | Takahashi et al. | Dec 2007 | B2 |
7317416 | Flom et al. | Jan 2008 | B2 |
7348285 | Dhawan et al. | Mar 2008 | B2 |
7365031 | Swallow et al. | Apr 2008 | B2 |
7421061 | Boese et al. | Sep 2008 | B2 |
7462035 | Lee et al. | Dec 2008 | B2 |
7528082 | Krans et al. | May 2009 | B2 |
7544627 | Tao et al. | Jun 2009 | B2 |
7578195 | DeAngelis et al. | Aug 2009 | B2 |
7644488 | Aisenbrey | Jan 2010 | B2 |
7647093 | Bojovic et al. | Jan 2010 | B2 |
7670144 | Ito et al. | Mar 2010 | B2 |
7677729 | Vilser et al. | Mar 2010 | B2 |
7691067 | Westbrook et al. | Apr 2010 | B2 |
7698154 | Marchosky | Apr 2010 | B2 |
7791700 | Bellamy | Sep 2010 | B2 |
7834276 | Chou et al. | Nov 2010 | B2 |
7845023 | Swatee | Dec 2010 | B2 |
7941676 | Glaser | May 2011 | B2 |
7952512 | Delker et al. | May 2011 | B1 |
7999722 | Beeri et al. | Aug 2011 | B2 |
8062220 | Kurtz et al. | Nov 2011 | B2 |
8063815 | Valo et al. | Nov 2011 | B2 |
8169404 | Boillot | May 2012 | B1 |
8179604 | Prada Gomez et al. | May 2012 | B1 |
8193929 | Siu et al. | Jun 2012 | B1 |
8199104 | Park et al. | Jun 2012 | B2 |
8282232 | Hsu et al. | Oct 2012 | B2 |
8289185 | Alonso | Oct 2012 | B2 |
8301232 | Albert et al. | Oct 2012 | B2 |
8314732 | Oswald et al. | Nov 2012 | B2 |
8334226 | Nhan et al. | Dec 2012 | B2 |
8341762 | Balzano | Jan 2013 | B2 |
8344949 | Moshfeghi | Jan 2013 | B2 |
8367942 | Howell et al. | Feb 2013 | B2 |
8475367 | Yuen et al. | Jul 2013 | B1 |
8505474 | Kang et al. | Aug 2013 | B2 |
8509882 | Albert et al. | Aug 2013 | B2 |
8514221 | King et al. | Aug 2013 | B2 |
8527146 | Jackson et al. | Sep 2013 | B1 |
8549829 | Song et al. | Oct 2013 | B2 |
8560972 | Wilson | Oct 2013 | B2 |
8562526 | Heneghan et al. | Oct 2013 | B2 |
8569189 | Bhattacharya et al. | Oct 2013 | B2 |
8614689 | Nishikawa et al. | Dec 2013 | B2 |
8655004 | Prest et al. | Feb 2014 | B2 |
8700137 | Albert | Apr 2014 | B2 |
8758020 | Burdea et al. | Jun 2014 | B2 |
8759713 | Sheats | Jun 2014 | B2 |
8764651 | Tran | Jul 2014 | B2 |
8785778 | Streeter et al. | Jul 2014 | B2 |
8790257 | Libbus et al. | Jul 2014 | B2 |
8814574 | Selby et al. | Aug 2014 | B2 |
8819812 | Weber et al. | Aug 2014 | B1 |
8854433 | Rafii | Oct 2014 | B1 |
8860602 | Nohara et al. | Oct 2014 | B2 |
8921473 | Hyman | Dec 2014 | B1 |
8948839 | Longinotti-Buitoni et al. | Feb 2015 | B1 |
9055879 | Selby et al. | Jun 2015 | B2 |
9093289 | Vicard et al. | Jul 2015 | B2 |
9125456 | Chow | Sep 2015 | B2 |
9141194 | Keyes et al. | Sep 2015 | B1 |
9148949 | Guofu et al. | Sep 2015 | B2 |
9223494 | Desalvo et al. | Dec 2015 | B1 |
9229102 | Wright et al. | Jan 2016 | B1 |
9230160 | Kanter | Jan 2016 | B1 |
9235241 | Newham et al. | Jan 2016 | B2 |
9316727 | Sentelle et al. | Apr 2016 | B2 |
9331422 | Nazzaro et al. | May 2016 | B2 |
9335825 | Rautianinen et al. | May 2016 | B2 |
9346167 | O'Connor et al. | May 2016 | B2 |
9354709 | Heller et al. | May 2016 | B1 |
9508141 | Khachaturian et al. | Nov 2016 | B2 |
9569001 | Mistry et al. | Feb 2017 | B2 |
9575560 | Poupyrev et al. | Feb 2017 | B2 |
9588625 | Poupyrev | Mar 2017 | B2 |
9594443 | Vanblon et al. | Mar 2017 | B2 |
9600080 | Poupyrev | Mar 2017 | B2 |
9693592 | Robinson et al. | Jul 2017 | B2 |
9746551 | Scholten et al. | Aug 2017 | B2 |
9766742 | Papakostas | Sep 2017 | B2 |
9778749 | Poupyrev | Oct 2017 | B2 |
9811164 | Poupyrev | Nov 2017 | B2 |
9817109 | Saboo et al. | Nov 2017 | B2 |
9837760 | Karagozler et al. | Dec 2017 | B2 |
9848780 | DeBusschere et al. | Dec 2017 | B1 |
9921660 | Poupyrev | Mar 2018 | B2 |
9933908 | Poupyrev | Apr 2018 | B2 |
9947080 | Nguyen et al. | Apr 2018 | B2 |
9971414 | Gollakota et al. | May 2018 | B2 |
9971415 | Poupyrev et al. | May 2018 | B2 |
9983747 | Poupyrev | May 2018 | B2 |
9994233 | Diaz-Jimenez et al. | Jun 2018 | B2 |
10016162 | Rogers et al. | Jul 2018 | B1 |
10034630 | Lee et al. | Jul 2018 | B2 |
10073590 | Dascola et al. | Sep 2018 | B2 |
10080528 | DeBusschere et al. | Sep 2018 | B2 |
10082950 | Lapp | Sep 2018 | B2 |
10088908 | Poupyrev et al. | Oct 2018 | B1 |
10139916 | Poupyrev | Nov 2018 | B2 |
10155274 | Robinson et al. | Dec 2018 | B2 |
10175781 | Karagozler et al. | Jan 2019 | B2 |
10203763 | Poupyrev et al. | Feb 2019 | B1 |
10222469 | Gillian et al. | Mar 2019 | B1 |
10241581 | Lien et al. | Mar 2019 | B2 |
10268321 | Poupyrev | Apr 2019 | B2 |
10285456 | Poupyrev et al. | May 2019 | B2 |
10300370 | Amihood et al. | May 2019 | B1 |
10310620 | Lien et al. | Jun 2019 | B2 |
10310621 | Lien et al. | Jun 2019 | B1 |
20010035836 | Miceli et al. | Nov 2001 | A1 |
20020009972 | Amento et al. | Jan 2002 | A1 |
20020080156 | Abbott et al. | Jun 2002 | A1 |
20020170897 | Hall | Nov 2002 | A1 |
20030005030 | Sutton et al. | Jan 2003 | A1 |
20030071750 | Benitz | Apr 2003 | A1 |
20030093000 | Nishio et al. | May 2003 | A1 |
20030100228 | Bungo et al. | May 2003 | A1 |
20030119391 | Swallow et al. | Jun 2003 | A1 |
20030122677 | Kail | Jul 2003 | A1 |
20040009729 | Hill et al. | Jan 2004 | A1 |
20040102693 | Jenkins | May 2004 | A1 |
20040249250 | McGee et al. | Dec 2004 | A1 |
20040259391 | Jung et al. | Dec 2004 | A1 |
20050069695 | Jung et al. | Mar 2005 | A1 |
20050128124 | Greneker et al. | Jun 2005 | A1 |
20050148876 | Endoh et al. | Jul 2005 | A1 |
20050231419 | Mitchell | Oct 2005 | A1 |
20050267366 | Murashita et al. | Dec 2005 | A1 |
20060035554 | Glaser et al. | Feb 2006 | A1 |
20060040739 | Wells | Feb 2006 | A1 |
20060047386 | Kanevsky et al. | Mar 2006 | A1 |
20060061504 | Leach, Jr. et al. | Mar 2006 | A1 |
20060125803 | Westerman et al. | Jun 2006 | A1 |
20060136997 | Telek et al. | Jun 2006 | A1 |
20060139162 | Flynn | Jun 2006 | A1 |
20060139314 | Bell | Jun 2006 | A1 |
20060148351 | Tao et al. | Jul 2006 | A1 |
20060157734 | Onodero et al. | Jul 2006 | A1 |
20060166620 | Sorensen | Jul 2006 | A1 |
20060170584 | Romero et al. | Aug 2006 | A1 |
20060209021 | Yoo et al. | Sep 2006 | A1 |
20060258205 | Locher et al. | Nov 2006 | A1 |
20060284757 | Zemany | Dec 2006 | A1 |
20070024488 | Zemany et al. | Feb 2007 | A1 |
20070026695 | Lee et al. | Feb 2007 | A1 |
20070027369 | Pagnacco et al. | Feb 2007 | A1 |
20070118043 | Oliver et al. | May 2007 | A1 |
20070161921 | Rausch | Jul 2007 | A1 |
20070164896 | Suzuki et al. | Jul 2007 | A1 |
20070176821 | Flom et al. | Aug 2007 | A1 |
20070192647 | Glaser | Aug 2007 | A1 |
20070197115 | Eves et al. | Aug 2007 | A1 |
20070197878 | Shklarski | Aug 2007 | A1 |
20070210074 | Maurer et al. | Sep 2007 | A1 |
20070237423 | Tico et al. | Oct 2007 | A1 |
20080001735 | Tran | Jan 2008 | A1 |
20080002027 | Kondo | Jan 2008 | A1 |
20080015422 | Wessel | Jan 2008 | A1 |
20080024438 | Collins et al. | Jan 2008 | A1 |
20080039731 | McCombie et al. | Feb 2008 | A1 |
20080059578 | Albertson et al. | Mar 2008 | A1 |
20080065291 | Breed | Mar 2008 | A1 |
20080134102 | Movold et al. | Jun 2008 | A1 |
20080136775 | Conant | Jun 2008 | A1 |
20080168396 | Matas et al. | Jul 2008 | A1 |
20080194204 | Duet et al. | Aug 2008 | A1 |
20080194975 | MacQuarrie et al. | Aug 2008 | A1 |
20080211766 | Westerman et al. | Sep 2008 | A1 |
20080233822 | Swallow et al. | Sep 2008 | A1 |
20080278450 | Lashina | Nov 2008 | A1 |
20080282665 | Speleers | Nov 2008 | A1 |
20080291158 | Park et al. | Nov 2008 | A1 |
20080303800 | Elwell | Dec 2008 | A1 |
20080316085 | Rofougaran et al. | Dec 2008 | A1 |
20080320419 | Matas et al. | Dec 2008 | A1 |
20090018408 | Ouchi et al. | Jan 2009 | A1 |
20090018428 | Dias et al. | Jan 2009 | A1 |
20090033585 | Lang | Feb 2009 | A1 |
20090053950 | Surve | Feb 2009 | A1 |
20090056300 | Chung et al. | Mar 2009 | A1 |
20090058820 | Hinckley | Mar 2009 | A1 |
20090113298 | Jung et al. | Apr 2009 | A1 |
20090115617 | Sano et al. | May 2009 | A1 |
20090118648 | Kandori et al. | May 2009 | A1 |
20090149036 | Lee et al. | Jun 2009 | A1 |
20090177068 | Stivoric et al. | Jul 2009 | A1 |
20090203244 | Toonder | Aug 2009 | A1 |
20090226043 | Angell et al. | Sep 2009 | A1 |
20090253585 | Diatchenko et al. | Oct 2009 | A1 |
20090270690 | Roos et al. | Oct 2009 | A1 |
20090278915 | Kramer et al. | Nov 2009 | A1 |
20090288762 | Wolfel | Nov 2009 | A1 |
20090295712 | Ritzau | Dec 2009 | A1 |
20090319181 | Khosravy et al. | Dec 2009 | A1 |
20100045513 | Pett et al. | Feb 2010 | A1 |
20100050133 | Nishihara et al. | Feb 2010 | A1 |
20100053151 | Marti et al. | Mar 2010 | A1 |
20100060570 | Underkoffler et al. | Mar 2010 | A1 |
20100065320 | Urano | Mar 2010 | A1 |
20100069730 | Bergstrom et al. | Mar 2010 | A1 |
20100071205 | Graumann et al. | Mar 2010 | A1 |
20100094141 | Puswella | Apr 2010 | A1 |
20100109938 | Oswald et al. | May 2010 | A1 |
20100152600 | Droitcour et al. | Jun 2010 | A1 |
20100179820 | Harrison et al. | Jul 2010 | A1 |
20100198067 | Mahfouz et al. | Aug 2010 | A1 |
20100201586 | Michalk | Aug 2010 | A1 |
20100204550 | Heneghan et al. | Aug 2010 | A1 |
20100205667 | Anderson et al. | Aug 2010 | A1 |
20100208035 | Pinault et al. | Aug 2010 | A1 |
20100225562 | Smith | Sep 2010 | A1 |
20100234094 | Gagner et al. | Sep 2010 | A1 |
20100241009 | Petkie | Sep 2010 | A1 |
20100002912 | Solinsky | Oct 2010 | A1 |
20100281438 | Latta et al. | Nov 2010 | A1 |
20100292549 | Schuler | Nov 2010 | A1 |
20100306713 | Geisner et al. | Dec 2010 | A1 |
20100313414 | Sheats | Dec 2010 | A1 |
20100324384 | Moon et al. | Dec 2010 | A1 |
20100325770 | Chung et al. | Dec 2010 | A1 |
20110003664 | Richard | Jan 2011 | A1 |
20110010014 | Oexman et al. | Jan 2011 | A1 |
20110018795 | Jang | Jan 2011 | A1 |
20110029038 | Hyde et al. | Feb 2011 | A1 |
20110073353 | Lee et al. | Mar 2011 | A1 |
20110083111 | Forutanpour et al. | Apr 2011 | A1 |
20110093820 | Zhang et al. | Apr 2011 | A1 |
20110118564 | Sankai | May 2011 | A1 |
20110119640 | Berkes et al. | May 2011 | A1 |
20110166940 | Bangera et al. | Jul 2011 | A1 |
20110181509 | Rautiainen | Jul 2011 | A1 |
20110181510 | Hakala et al. | Jul 2011 | A1 |
20110193939 | Vassigh et al. | Aug 2011 | A1 |
20110197263 | Stinson, III | Aug 2011 | A1 |
20110202404 | van der Riet | Aug 2011 | A1 |
20110213218 | Weiner et al. | Sep 2011 | A1 |
20110221666 | Newton et al. | Sep 2011 | A1 |
20110234492 | Ajmera et al. | Sep 2011 | A1 |
20110239118 | Yamaoka et al. | Sep 2011 | A1 |
20110245688 | Arora et al. | Oct 2011 | A1 |
20110279303 | Smith | Nov 2011 | A1 |
20110286585 | Hodge | Nov 2011 | A1 |
20110303341 | Meiss et al. | Dec 2011 | A1 |
20110307842 | Chiang et al. | Dec 2011 | A1 |
20110316888 | Sachs et al. | Dec 2011 | A1 |
20110318985 | McDermid | Dec 2011 | A1 |
20120001875 | Li et al. | Jan 2012 | A1 |
20120019168 | Noda et al. | Jan 2012 | A1 |
20120029369 | Icove et al. | Feb 2012 | A1 |
20120047468 | Santos et al. | Feb 2012 | A1 |
20120068876 | Bangera et al. | Mar 2012 | A1 |
20120092284 | Rofougaran et al. | Apr 2012 | A1 |
20120123232 | Najarian et al. | May 2012 | A1 |
20120127082 | Kushler et al. | May 2012 | A1 |
20120144934 | Russell et al. | Jun 2012 | A1 |
20120150493 | Casey et al. | Jun 2012 | A1 |
20120154313 | Au et al. | Jun 2012 | A1 |
20120156926 | Kato et al. | Jun 2012 | A1 |
20120174299 | Balzano | Jul 2012 | A1 |
20120174736 | Wang et al. | Jul 2012 | A1 |
20120182222 | Moloney | Jul 2012 | A1 |
20120193801 | Gross et al. | Aug 2012 | A1 |
20120220835 | Chung | Aug 2012 | A1 |
20120248093 | Ulrich et al. | Oct 2012 | A1 |
20120254810 | Heck et al. | Oct 2012 | A1 |
20120268416 | Pirogov et al. | Oct 2012 | A1 |
20120280900 | Wang | Nov 2012 | A1 |
20120298748 | Factor | Nov 2012 | A1 |
20120310665 | Xu et al. | Dec 2012 | A1 |
20130016070 | Starner et al. | Jan 2013 | A1 |
20130027218 | Schwarz | Jan 2013 | A1 |
20130035563 | Angellides | Feb 2013 | A1 |
20130046544 | Kay et al. | Feb 2013 | A1 |
20130053653 | Cuddihy et al. | Feb 2013 | A1 |
20130078624 | Holmes et al. | Mar 2013 | A1 |
20130082922 | Miller | Apr 2013 | A1 |
20130083173 | Geisner et al. | Apr 2013 | A1 |
20130086533 | Stienstra | Apr 2013 | A1 |
20130096439 | Lee et al. | Apr 2013 | A1 |
20130102217 | Jeon | Apr 2013 | A1 |
20130104084 | Mlyniec et al. | Apr 2013 | A1 |
20130113647 | Sentelle et al. | May 2013 | A1 |
20130113830 | Suzuki | May 2013 | A1 |
20130117377 | Miller | May 2013 | A1 |
20130132931 | Bruns et al. | May 2013 | A1 |
20130147933 | Aubauer et al. | Jun 2013 | A1 |
20130150735 | Cheng | Jun 2013 | A1 |
20130161078 | Li | Jun 2013 | A1 |
20130169471 | Lynch | Jul 2013 | A1 |
20130176161 | Derham et al. | Jul 2013 | A1 |
20130194173 | Zhu et al. | Aug 2013 | A1 |
20130195330 | Kim et al. | Aug 2013 | A1 |
20130196716 | Khurram | Aug 2013 | A1 |
20130207962 | Oberdorfer et al. | Aug 2013 | A1 |
20130229508 | Li et al. | Sep 2013 | A1 |
20130241765 | Kozma et al. | Sep 2013 | A1 |
20130245986 | Grokop et al. | Sep 2013 | A1 |
20130253029 | Jain et al. | Sep 2013 | A1 |
20130260630 | Ito et al. | Oct 2013 | A1 |
20130278499 | Anderson | Oct 2013 | A1 |
20130278501 | Bulzacki | Oct 2013 | A1 |
20130281024 | Rofougaran et al. | Oct 2013 | A1 |
20130283203 | Batraski et al. | Oct 2013 | A1 |
20130322729 | Mestha et al. | Dec 2013 | A1 |
20130332438 | Li et al. | Dec 2013 | A1 |
20130345569 | Mestha et al. | Dec 2013 | A1 |
20140005809 | Frei et al. | Jan 2014 | A1 |
20140022108 | Alberth et al. | Jan 2014 | A1 |
20140028539 | Newham et al. | Jan 2014 | A1 |
20140049487 | Konertz et al. | Feb 2014 | A1 |
20140050354 | Heim et al. | Feb 2014 | A1 |
20140051941 | Messerschmidt | Feb 2014 | A1 |
20140070957 | Longinotti-Buitoni et al. | Mar 2014 | A1 |
20140072190 | Wu et al. | Mar 2014 | A1 |
20140073486 | Ahmed et al. | Mar 2014 | A1 |
20140073969 | Zou et al. | Mar 2014 | A1 |
20140081100 | Muhsin et al. | Mar 2014 | A1 |
20140095480 | Marantz et al. | Apr 2014 | A1 |
20140097979 | Nohara et al. | Apr 2014 | A1 |
20140121540 | Raskin | May 2014 | A1 |
20140135631 | Brumback et al. | May 2014 | A1 |
20140139422 | Mistry et al. | May 2014 | A1 |
20140139616 | Pinter et al. | May 2014 | A1 |
20140143678 | Mistry et al. | May 2014 | A1 |
20140149859 | Van Dyken et al. | May 2014 | A1 |
20140184496 | Gribetz et al. | Jul 2014 | A1 |
20140184499 | Kim | Jul 2014 | A1 |
20140191939 | Penn et al. | Jul 2014 | A1 |
20140200416 | Kashef et al. | Jul 2014 | A1 |
20140201690 | Holz | Jul 2014 | A1 |
20140208275 | Mongia et al. | Jul 2014 | A1 |
20140215389 | Walsh et al. | Jul 2014 | A1 |
20140239065 | Zhou et al. | Aug 2014 | A1 |
20140244277 | Krishna Rao et al. | Aug 2014 | A1 |
20140246415 | Wittkowski | Sep 2014 | A1 |
20140247212 | Kim et al. | Sep 2014 | A1 |
20140250515 | Jakobsson | Sep 2014 | A1 |
20140253431 | Gossweiler et al. | Sep 2014 | A1 |
20140253709 | Bresch et al. | Sep 2014 | A1 |
20140262478 | Harris et al. | Sep 2014 | A1 |
20140275854 | Venkatraman et al. | Sep 2014 | A1 |
20140280295 | Kurochikin et al. | Sep 2014 | A1 |
20140281975 | Anderson | Sep 2014 | A1 |
20140282877 | Mahaffey et al. | Sep 2014 | A1 |
20140297006 | Sadhu | Oct 2014 | A1 |
20140298266 | Lapp | Oct 2014 | A1 |
20140300506 | Alton et al. | Oct 2014 | A1 |
20140306936 | Dahl et al. | Oct 2014 | A1 |
20140309855 | Tran | Oct 2014 | A1 |
20140316261 | Lux et al. | Oct 2014 | A1 |
20140318699 | Longinotti-Buitoni et al. | Oct 2014 | A1 |
20140324888 | Xie et al. | Oct 2014 | A1 |
20140329567 | Chan et al. | Nov 2014 | A1 |
20140333467 | Inomata | Nov 2014 | A1 |
20140343392 | Yang | Nov 2014 | A1 |
20140347295 | Kim et al. | Nov 2014 | A1 |
20140357369 | Callens et al. | Dec 2014 | A1 |
20140368378 | Crain et al. | Dec 2014 | A1 |
20140368441 | Touloumtzis | Dec 2014 | A1 |
20140376788 | Xu et al. | Dec 2014 | A1 |
20150002391 | Chen | Jan 2015 | A1 |
20150009096 | Lee et al. | Jan 2015 | A1 |
20150026815 | Barrett | Jan 2015 | A1 |
20150029050 | Driscoll et al. | Jan 2015 | A1 |
20150030256 | Brady et al. | Jan 2015 | A1 |
20150040040 | Balan et al. | Feb 2015 | A1 |
20150046183 | Cireddu | Feb 2015 | A1 |
20150062033 | Ishihara | Mar 2015 | A1 |
20150068069 | Tran et al. | Mar 2015 | A1 |
20150077282 | Mohamadi | Mar 2015 | A1 |
20150085060 | Fish et al. | Mar 2015 | A1 |
20150091820 | Rosenberg et al. | Apr 2015 | A1 |
20150091858 | Rosenberg et al. | Apr 2015 | A1 |
20150091859 | Rosenberg et al. | Apr 2015 | A1 |
20150091903 | Costello et al. | Apr 2015 | A1 |
20150095987 | Potash et al. | Apr 2015 | A1 |
20150099941 | Tran | Apr 2015 | A1 |
20150100328 | Kress et al. | Apr 2015 | A1 |
20150106770 | Shah et al. | Apr 2015 | A1 |
20150109164 | Takaki | Apr 2015 | A1 |
20150112606 | He et al. | Apr 2015 | A1 |
20150133017 | Liao et al. | May 2015 | A1 |
20150143601 | Longinotti-Buitoni et al. | May 2015 | A1 |
20150145805 | Liu | May 2015 | A1 |
20150162729 | Reversat et al. | Jun 2015 | A1 |
20150177866 | Hwang et al. | Jun 2015 | A1 |
20150185314 | Corcos | Jul 2015 | A1 |
20150199045 | Robucci et al. | Jul 2015 | A1 |
20150205358 | Lyren | Jul 2015 | A1 |
20150223733 | Al-Alusi | Aug 2015 | A1 |
20150226004 | Thompson | Aug 2015 | A1 |
20150229885 | Offenhaeuser | Aug 2015 | A1 |
20150256763 | Niemi | Sep 2015 | A1 |
20150261320 | Leto | Sep 2015 | A1 |
20150268027 | Gerdes | Sep 2015 | A1 |
20150268799 | Starner et al. | Sep 2015 | A1 |
20150277569 | Sprenger et al. | Oct 2015 | A1 |
20150280102 | Tajitsu et al. | Oct 2015 | A1 |
20150285906 | Hooper | Oct 2015 | A1 |
20150287187 | Redtel | Oct 2015 | A1 |
20150301167 | Sentelle et al. | Oct 2015 | A1 |
20150312041 | Choi | Oct 2015 | A1 |
20150314780 | Stenneth et al. | Nov 2015 | A1 |
20150317518 | Fujimaki et al. | Nov 2015 | A1 |
20150323993 | Levesque et al. | Nov 2015 | A1 |
20150332075 | Burch | Nov 2015 | A1 |
20150341550 | Lay | Nov 2015 | A1 |
20150346820 | Poupyrev et al. | Dec 2015 | A1 |
20150350902 | Baxley et al. | Dec 2015 | A1 |
20150351703 | Phillips et al. | Dec 2015 | A1 |
20150375339 | Sterling et al. | Dec 2015 | A1 |
20160018948 | Parvarandeh et al. | Jan 2016 | A1 |
20160026253 | Bradski et al. | Jan 2016 | A1 |
20160038083 | Ding et al. | Feb 2016 | A1 |
20160041617 | Poupyrev | Feb 2016 | A1 |
20160041618 | Poupyrev | Feb 2016 | A1 |
20160042169 | Polehn | Feb 2016 | A1 |
20160048235 | Poupyrev | Feb 2016 | A1 |
20160048236 | Poupyrev | Feb 2016 | A1 |
20160048672 | Lux et al. | Feb 2016 | A1 |
20160054792 | Poupyrev | Feb 2016 | A1 |
20160054803 | Poupyrev | Feb 2016 | A1 |
20160054804 | Gollakata et al. | Feb 2016 | A1 |
20160055201 | Poupyrev et al. | Feb 2016 | A1 |
20160090839 | Stolarcyzk | Mar 2016 | A1 |
20160098089 | Poupyrev | Apr 2016 | A1 |
20160100166 | Dragne et al. | Apr 2016 | A1 |
20160103500 | Hussey et al. | Apr 2016 | A1 |
20160106328 | Mestha et al. | Apr 2016 | A1 |
20160131741 | Park | May 2016 | A1 |
20160140872 | Palmer et al. | May 2016 | A1 |
20160145776 | Roh | May 2016 | A1 |
20160146931 | Rao et al. | May 2016 | A1 |
20160170491 | Jung | Jun 2016 | A1 |
20160171293 | Li et al. | Jun 2016 | A1 |
20160186366 | McMaster | Jun 2016 | A1 |
20160206244 | Rogers | Jul 2016 | A1 |
20160213331 | Gil et al. | Jul 2016 | A1 |
20160216825 | Forutanpour | Jul 2016 | A1 |
20160220152 | Meriheina et al. | Aug 2016 | A1 |
20160249698 | Berzowska et al. | Sep 2016 | A1 |
20160252607 | Saboo et al. | Sep 2016 | A1 |
20160252965 | Mandella et al. | Sep 2016 | A1 |
20160253044 | Katz | Sep 2016 | A1 |
20160259037 | Molchanov et al. | Sep 2016 | A1 |
20160262685 | Wagner et al. | Sep 2016 | A1 |
20160282988 | Poupyrev | Sep 2016 | A1 |
20160283101 | Schwesig et al. | Sep 2016 | A1 |
20160284436 | Fukuhara et al. | Sep 2016 | A1 |
20160287172 | Morris et al. | Oct 2016 | A1 |
20160299526 | Inagaki et al. | Oct 2016 | A1 |
20160320852 | Poupyrev | Nov 2016 | A1 |
20160320853 | Lien et al. | Nov 2016 | A1 |
20160320854 | Lien et al. | Nov 2016 | A1 |
20160321428 | Rogers | Nov 2016 | A1 |
20160338599 | DeBusschere et al. | Nov 2016 | A1 |
20160345638 | Robinson et al. | Dec 2016 | A1 |
20160349790 | Connor | Dec 2016 | A1 |
20160349845 | Poupyrev et al. | Dec 2016 | A1 |
20160377712 | Wu et al. | Dec 2016 | A1 |
20170029985 | Tajitsu et al. | Feb 2017 | A1 |
20170052618 | Lee et al. | Feb 2017 | A1 |
20170060254 | Molchanov | Mar 2017 | A1 |
20170060298 | Hwang et al. | Mar 2017 | A1 |
20170075481 | Chou et al. | Mar 2017 | A1 |
20170075496 | Rosenberg et al. | Mar 2017 | A1 |
20170097684 | Lien | Apr 2017 | A1 |
20170115777 | Poupyrev | Apr 2017 | A1 |
20170124407 | Micks et al. | May 2017 | A1 |
20170125940 | Karagozler et al. | May 2017 | A1 |
20170192523 | Poupyrev | Jul 2017 | A1 |
20170192629 | Takada et al. | Jul 2017 | A1 |
20170196513 | Longinotti-Buitoni et al. | Jul 2017 | A1 |
20170232538 | Robinson et al. | Aug 2017 | A1 |
20170233903 | Jeon | Aug 2017 | A1 |
20170249033 | Podhajny et al. | Aug 2017 | A1 |
20170322633 | Shen et al. | Nov 2017 | A1 |
20170325337 | Karagozler et al. | Nov 2017 | A1 |
20170325518 | Poupyrev et al. | Nov 2017 | A1 |
20170329412 | Schwesig et al. | Nov 2017 | A1 |
20170329425 | Karagozler et al. | Nov 2017 | A1 |
20180000354 | DeBusschere et al. | Jan 2018 | A1 |
20180000355 | DeBusschere et al. | Jan 2018 | A1 |
20180004301 | Poupyrev | Jan 2018 | A1 |
20180005766 | Fairbanks et al. | Jan 2018 | A1 |
20180046258 | Poupyrev | Feb 2018 | A1 |
20180095541 | Gribetz et al. | Apr 2018 | A1 |
20180106897 | Shouldice et al. | Apr 2018 | A1 |
20180113032 | Dickey et al. | Apr 2018 | A1 |
20180157330 | Gu et al. | Jun 2018 | A1 |
20180160943 | Fyfe et al. | Jun 2018 | A1 |
20180177464 | DeBusschere et al. | Jun 2018 | A1 |
20180196527 | Poupyrev et al. | Jul 2018 | A1 |
20180256106 | Rogers et al. | Sep 2018 | A1 |
20180296163 | DeBusschere et al. | Oct 2018 | A1 |
20180321841 | Lapp | Nov 2018 | A1 |
20190033981 | Poupyrev | Jan 2019 | A1 |
20190138109 | Poupyrev et al. | May 2019 | A1 |
20190155396 | Lien et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
1462382 | Dec 2003 | CN |
101751126 | Jun 2010 | CN |
102414641 | Apr 2012 | CN |
102782612 | Nov 2012 | CN |
102893327 | Jan 2013 | CN |
202887794 | Apr 2013 | CN |
103076911 | May 2013 | CN |
103502911 | Jan 2014 | CN |
102660988 | Mar 2014 | CN |
104035552 | Sep 2014 | CN |
103355860 | Jan 2016 | CN |
102011075725 | Nov 2012 | DE |
102013201359 | Jul 2014 | DE |
0161895 | Nov 1985 | EP |
1785744 | May 2007 | EP |
1815788 | Aug 2007 | EP |
2417908 | Feb 2012 | EP |
2637081 | Sep 2013 | EP |
2770408 | Aug 2014 | EP |
2953007 | Dec 2015 | EP |
3201726 | Aug 2017 | EP |
3017722 | Aug 2015 | FR |
2070469 | Sep 1981 | GB |
2443208 | Apr 2008 | GB |
113860 | Apr 1999 | JP |
11168268 | Jun 1999 | JP |
2003280049 | Oct 2003 | JP |
2006234716 | Sep 2006 | JP |
2007011873 | Jan 2007 | JP |
2007132768 | May 2007 | JP |
2008287714 | Nov 2008 | JP |
2009037434 | Feb 2009 | JP |
2011102457 | May 2011 | JP |
201215853. | Sep 2012 | JP |
2012198916 | Oct 2012 | JP |
2013196047 | Sep 2013 | JP |
2014532332 | Dec 2014 | JP |
1020080102516 | Nov 2008 | KR |
100987650 | Oct 2010 | KR |
1020140055985 | May 2014 | KR |
101914850 | Oct 2018 | KR |
201425974 | Jul 2014 | TW |
9001895 | Mar 1990 | WO |
WO-0130123 | Apr 2001 | WO |
WO-2001027855 | Apr 2001 | WO |
WO-0175778 | Oct 2001 | WO |
WO-2002082999 | Oct 2002 | WO |
2004004557 | Jan 2004 | WO |
WO-2005033387 | Apr 2005 | WO |
2007125298 | Nov 2007 | WO |
WO-2008061385 | May 2008 | WO |
WO-2009032073 | Mar 2009 | WO |
2009083467 | Jul 2009 | WO |
WO-2010032173 | Mar 2010 | WO |
2010101697 | Sep 2010 | WO |
WO-2012026013 | Mar 2012 | WO |
2012064847 | May 2012 | WO |
WO-2012152476 | Nov 2012 | WO |
WO-2013082806 | Jun 2013 | WO |
WO-2013084108 | Jun 2013 | WO |
2013192166 | Dec 2013 | WO |
WO-2013186696 | Dec 2013 | WO |
WO-2013191657 | Dec 2013 | WO |
WO-2014019085 | Feb 2014 | WO |
2014085369 | Jun 2014 | WO |
WO-2014116968 | Jul 2014 | WO |
2014124520 | Aug 2014 | WO |
WO-2014136027 | Sep 2014 | WO |
WO-2014138280 | Sep 2014 | WO |
WO-2014160893 | Oct 2014 | WO |
WO-2014165476 | Oct 2014 | WO |
WO-2014204323 | Dec 2014 | WO |
WO-2015017931 | Feb 2015 | WO |
WO-2015022671 | Feb 2015 | WO |
2016053624 | Apr 2016 | WO |
2016118534 | Jul 2016 | WO |
2016176471 | Nov 2016 | WO |
2016178797 | Nov 2016 | WO |
2017019299 | Feb 2017 | WO |
2017062566 | Apr 2017 | WO |
2017200571 | Nov 2017 | WO |
20170200949 | Nov 2017 | WO |
2018106306 | Jun 2018 | WO |
Entry |
---|
“Combined Search and Examination Report”, GB Application No. 1620891.0, dated May 31, 2017, 9 pages. |
“Final Office Action”, U.S. Appl. No. 15/398,147, dated Jun. 30, 17, 11 pages. |
“Final Office Action”, U.S. Appl. No. 14/874,955, dated Jun. 30, 2017, 9 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,799, dated. Jul. 19, 2017, 12 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,121, dated Aug. 8, 2017, 16 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/063874, dated May 11, 2017, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/862,409, dated Jun. 22, 2017, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,730, dated Jun. 23, 2017, 14 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/513,875, dated Jun. 28, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/343,067, dated Jul. 27, 2017, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,038, dated Aug. 7, 2017, 17 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/494,863, dated May 30, 2017, 7 pages. |
“Final Office Action”, U.S. Appl. No. 15/403,066, dated Oct. 5, 2017, 31 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/518,863, dated Sep. 29, 2017, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/142,689, dated Oct. 4, 2017, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Oct. 18, 2017, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/595,649, dated Oct. 31, 2017, 16 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/874,955, dated Oct. 20, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/398,147, dated Nov. 15, 2017, 8 pages. |
“Written Opinion”, PCT Application No. PCT/US2017/032733, dated Jul. 26, 2017, 5 pages. |
“Cardiio”, Retrieved From: <http://www.cardiio.com/> Apr. 15, 2015 App Information Retrieved From: <https://itunes.apple.com/us/app/cardiio-touchless-camera-pulse/id542891434?ls=1&mt=8> Apr. 15, 2015, Feb. 24, 2015, 6 pages. |
“Extended European Search Report”, EP Application No. 15170577.9, dated Nov. 5, 2015, 12 pages. |
“Final Office Action”, U.S. Appl. No. 14/312,486, dated Jun. 3, 2016, 32 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,038, dated Sep. 27, 2016, 23 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,061, dated Mar. 9, 2016, 10 pages. |
“Frogpad Introduces Wearable Fabric Keyboard with Bluetooth Technology”, Retrieved From: <http://www.geekzone.co.nz/content.asp?contentid=3898> Mar. 16, 2015, Jan. 7, 2005, 2 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/044774, dated Nov. 3, 2015, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/024267, dated Jun. 20, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/024273, dated Jun. 20, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/032307, dated Aug. 25, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/029820, dated Jul. 15, 2016, 14 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/030177, dated Aug. 2, 2016, 15 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/043963, dated Nov. 24, 2015, 16 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/050903, dated Feb. 19, 2016, 18 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/030115, Aug. 8, 2016, 18 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/043949, dated Dec. 1, 2015, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/312,486, dated Oct. 23, 2015, 25 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,038, dated Feb. 26, 2016, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,061, dated Nov. 4, 2015, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/582,896, dated Jun. 29, 2016, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/666,155, dated Aug. 24, 2016, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/681,625, dated Aug. 12, 2016, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/930,220, dated Sep. 14, 2016, 15 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,061, dated Sep. 12, 2016, 7 pages. |
“Philips Vital Signs Camera”, Retrieved From: <http://www.vitalsignscamera.com/> Apr. 15, 2015, Jul. 17, 2013, 2 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/666,155, dated Jul. 22, 2016, 5 pages. |
“The Instant Blood Pressure app estimates blood pressure with your smartphone and our algorithm”, Retrieved at: http://www.instantbloodpressure.com/—on Jun. 23, 2016, 6 pages. |
Arbabian,“A 94GHz mm-Wave to Baseband Pulsed-Radar for Imaging and Gesture Recognition”, 2012 IEEE, 2012 Symposium on VLSI Circuits Digest of Technical Papers, 2012, 2 pages. |
Balakrishnan,“Detecting Pulse from Head Motions in Video”, In Proceedings: CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Available at: <http://people.csail.mit.edu/mrub/vidmag/papers/Balakrishnan_Detecting_Pulse_from_2013_CVPR_paper.pdf>, Jun. 23, 2013, 8 pages. |
Couderc,“Detection of Atrial Fibrillation using Contactless Facial Video Monitoring”, In Proceedings: Heart Rhythm Society, vol. 12, Issue 1 Available at: <http://www.heartrhythmjournal.com/article/S1547-5271(14)00924-2/pdf>, Jan. 2015, 7 pages. |
Espina,“Wireless Body Sensor Network for Continuous Cuff-less Blood Pressure Monitoring”, International Summer School on Medical Devices and Biosensors, 2006, Sep. 2006, 5 pages. |
Godana,“Human Movement Characterization in Indoor Environment using GNU Radio Based Radar”, Retrieved at: http://repository.tudelft.nl/islandora/object/uuid:414e1868-dd00-4113-9989-4c213f1f7094?collection=education, Nov. 30, 2009, 100 pages. |
He,“A Continuous, Wearable, and Wireless Heart Monitor Using Head Ballistocardiogram (BCG) and Head Electrocardiogram (ECG) with a Nanowatt ECG Heartbeat Detection Circuit”, In Proceedings: Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Available at: <http://dspace.mit.edu/handle/1721.1/79221>, Feb. 2013, 137 pages. |
Holleis,“Evaluating Capacitive Touch Input on Clothes”, Proceedings of the 10th International Conference on Human Computer Interaction, Jan. 1, 2008, 10 pages. |
Nakajima,“Development of Real-Time Image Sequence Analysis for Evaluating Posture Change and Respiratory Rate of a Subject in Bed”, In Proceedings: Physiological Measurement, vol. 22, No. 3 Retrieved From: <http://iopscience.iop.org/0967-3334/22/3/401/pdf/0967-3334_22_3_401.pdf> Feb. 27, 2015, Aug. 2001, 8 pages. |
Patel,“Applications of Electrically Conductive Yarns in Technical Textiles”, International Conference on Power System Technology (POWECON), Oct. 30, 2012, 6 pages. |
Poh,“A Medical Mirror for Non-contact Health Monitoring”, In Proceedings: ACM SIGGRAPH Emerging Technologies Available at: <http://affect.media.mit.edu/pdfs/11.Poh-etal-SIGGRAPH.pdf>, 2011, 1 page. |
Poh,“Non-contact, Automated Cardiac Pulse Measurements Using Video Imaging and Blind Source Separation.”, In Proceedings: Optics Express, vol. 18, No. 10. |
Available at: <http://www.opticsinfobase.org/view_article.cfm?gotourl=http%3A%2F%2Fwww%2Eopticsinfobase%2Eorg%2FDirectPDFAccess%2F77B04D55%2DBC95%2D6937%2D5BAC49A426378C02%5F199381%2Foe%2D18%2D10%2D10762%2Ep, May 7, 2010, 13 pages. |
Pu,“Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom '13 Proceedings of the 19th annual international conference on Mobile computing & networking, Aug. 27, 2013, 12 pages. |
Wang,“Exploiting Spatial Redundancy of Image Sensor for Motion Robust rPPG”, In Proceedings: IEEE Transactions on Biomedical Engineering, vol. 62, Issue 2, Jan. 19, 2015, 11 pages. |
Wang,“Micro-Doppler Signatures for Intelligent Human Gait Recognition Using a UWB Impulse Radar”, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Jul. 3, 2011, pp. 2103-2106. |
Wijesiriwardana,“Capacitive Fibre-Meshed Transducer for Touch & Proximity Sensing Applications”, IEEE Sensors Journal, IEEE Service Center, Oct. 1, 2005, 5 pages. |
Zhadobov,“Millimeter-wave Interactions with the Human Body: State of Knowledge and Recent Advances”, International Journal of Microwave and Wireless Technologies, Mar. 1, 2011, 11 pages. |
Zhang,“Study of the Structural Design and Capacitance Characteristics of Fabric Sensor”, Advanced Materials Research (vols. 194-196), Feb. 21, 2011, 8 pages. |
“Final Office Action”, U.S. Appl. No. 15/093,533, dated Mar. 21, 2018, 19 pages. |
“Final Office Action”, U.S. Appl. No. 14/518,863, dated Apr. 5, 2018, 21 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,139, dated May 1, 2018, 14 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/286,152, dated Mar. 1, 2018, 5 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/166,198, dated Apr. 25, 2018, 8 pages. |
“Foreign Office Action”, Chinese Application No. 201721290290.3, dated Mar. 9, 2018, 2 pages. |
“Foreign Office Action”, European Application No. 16784352.3, dated May 16, 2018, 3 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,253, dated Apr. 5, 2018, 17 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/959,730, dated Feb. 22, 2018, 8 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/166,198, dated Mar. 8, 2018, 8 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/362,359, dated May 17, 2018, 4 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/055671, dated Apr. 10, 2018, 9 pages. |
“Written Opinion”, PCT Application No. PCT/US2017/032733, dated Jul. 24, 2017, 5 pages. |
“Combined Search and Examination Report”, GB Application No. 1620892.8, dated Apr. 6, 2017, 5 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/930,220, dated Mar. 20, 2017, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/930,220, dated May 11, 2017, 2 pages. |
“Final Office Action”, U.S. Appl. No. 14/518,863, dated May 5, 2017, 18 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 14/959,901, dated Apr. 14, 2017, 3 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/050903, dated Apr. 13, 2017, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/060399, dated Jan. 30, 2017, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,038, dated Mar. 22, 2017, 33 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/398,147, dated Mar. 9, 2017, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/403,066, dated May 4, 2017, 31 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/343,067, dated Apr. 19, 2017, 3 pages. |
“Textile Wire Brochure”, Retrieved at: http://www.textile-wire.ch/en/home.html, Aug. 7, 2004, 17 pages. |
Stoppa,“Wearable Electronics and Smart Textiles: A Critical Review”, In Proceedings of Sensors, vol. 14, Issue 7, Jul. 7, 2014, pp. 11957-11992. |
“Final Office Action”, U.S. Appl. No. 14/959,799, dated Jan. 4, 2018, 17 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,730, dated Nov. 22, 2017, 16 pages. |
“Final Office Action”, U.S. Appl. No. 15/142,619, dated Feb. 8, 2018, 15 pages. |
“International Search Report and Written Opinion”, PCT/US2017/047691, dated Nov. 16, 2017, 13 pages. |
“International Search Report and Written Opinion”, PCT Application No. PCT/US2017/051663, dated Nov. 29, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,121, dated Jan. 2, 2018, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,901, dated Jan. 8, 2018, 21 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/862.409, dated Dec. 14, 2017, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/267,181, dated Feb. 8, 2018, 29 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/874,955, dated Feb. 8, 2018, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/403,066, dated Jan. 8, 2018, 18 pages. |
“Pre-Interview First Office Action”, U.S. Appl. No. 15/286,152, dated Feb. 8, 2018, 4 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/362,359, dated Jan. 8, 2018, 5 pages. |
Bondade, et al.. “A linear-assisted DC-DC hybrid power converter for envelope tracking RF power amplifiers”, 2014 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, Sep. 14, 2014, pp. 5769-5773, XP032680873, DOI: 10.1109/ECCE.2014.6954193, Sep. 14, 2014, 5 pages. |
Fan, et al., “Wireless Hand Gesture Recognition Based on Continuous-Wave Doppler Radar Sensors”, IEEE Transactions on Microwave Theory and Techniques, Plenum, USA, vol. 64, No. 11, Nov. 1, 2016 (Nov. 1, 2016), pp. 4012-4012, XP011633246, ISSN: 0018-9480, DOI: 10.1109/TMTT.2016.2610427. Nov. 1, 2016, 9 pages. |
Lien, et al., “Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar”, ACM Transactions on Graphics (TOG), ACM, US, vol. 35, No. 4, Jul. 11, 2016 (Jul. 11, 2016). pp. 1-19, XP058275791. ISSN: 0730-0301, DOI: 10.1145/2897824.2925953, Jul. 11, 2016, 19 pages. |
Martinez-Garcia, et al., “Four-quadrant linear-assisted DC/DC voltage regulator”, Analog Integrated Circuits and Signal Processing, Springer New York LLC, US, vol. 88, No. 1, Apr. 23, 2016 (Apr. 23, 2016) , pp. 151-160, XP0358989459, ISSN: 0925-1030, DOI: 10.1007/S10470-016-0747-8, Apr. 23, 2016, 10 pages. |
Skolnik, “CW and Frequency-Modulated Radar”, In: “Introduction to Radar Systems”, Jan. 1, 1981 (Jan. 1, 1981), McGraw Hill, XP055047545, ISBN: 978-0-07-057909-5 pp. 68-100, p. 95-p. 97, Jan. 1, 1981, 18 pages. |
Zheng et al., “Doppler Bio-Signal Detection Based Time-Domain Hand Gesture Recognition”, 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), IEEE, Dec. 9, 2013 (Dec. 9, 2013), p. 3. XP032574214, DOI: 10.1109/IMWS-BIO.2013.6756200, Dec. 9, 2013, 3 Pages. |
“Advisory Action”, U.S. Appl. No. 14/504,139, dated Aug. 28, 2017, 3 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,901, dated Aug. 25, 2017, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/093,533, dated Aug. 24, 2017, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/142,619, dated Aug. 25, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,799, dated Sept. 8, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/398,147, dated Sep. 8, 2017, 7 pages. |
“Pre-Interview Office Action”, U.S. Appl. No. 14/862,409, dated Sep. 15, 2017, 16 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/055671, dated Apr. 13, 2017, 8 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Oct. 28, 2016, 4 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/518,863, dated Oct. 14, 2016, 16 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Oct. 7, 2016, 15 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Nov. 7, 2016, 5 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/513,875, dated Oct. 21, 2016, 3 pages. |
Pu,“Gesture Recognition Using Wireless Signals”, Oct. 2014, pp. 15-18. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/504,061, dated Dec. 27, 2016, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Dec. 19, 2016, 2 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/024289, dated Aug. 25, 2016, 17 pages. |
Cheng,“Smart Textiles: From Niche to Mainstream”, IEEE Pervasive Computing, Jul. 2013, pp. 81-84. |
Farringdon,“Wearable Sensor Badge & Sensor Jacket for Context Awareness”, Third International Symposium on Wearable Computers, Oct. 1999, 7 pages. |
Schneegass,“Towards a Garment OS: Supporting Application Development for Smart Garments”, Wearable Computers, ACM, Sep. 2014, 6 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Jan. 23, 2017, 4 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Feb. 6, 2017, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Feb. 23, 2017, 2 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/043963, dated Feb. 16, 2017, 12 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/030388, dated Dec. 15, 2016, 12 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/043949, dated Feb. 16, 2017, 13 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/044774, dated Mar. 2, 2017, 8 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/062082, dated Feb. 23, 2017, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/055671, dated Dec. 1, 2016, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,121, dated Jan. 9, 2017, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Jan. 27, 2017, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/513,875, dated Feb. 21, 2017, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/874,955, dated Feb. 27, 2017, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,799, dated Jan. 27, 2017, 10 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/930,220, dated Feb. 2, 2017, 8 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/494,863, dated Jan. 27, 2017, 5 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/959,730, dated Feb. 15, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/959,901, dated Feb. 10, 2017, 3 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 15/362,359, dated Sep. 17, 2018, 10 pages. |
“Final Office Action”, U.S. Appl. No. 15/595,649, dated May 23, 2018, 13 pages. |
“Final Office Action”, U.S. Appl. No. 15/142,689, dated Jun. 1, 2018, 16 pages. |
“Final Office Action”, U.S. Appl. No. 14/874,955, dated Jun. 11, 2018, 9 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,901, dated Jun. 15, 2018, 21 pages. |
“Final Office Action”, U.S. Appl. No. 15/286,152, dated Jun. 26, 2018, 25 pages. |
“Final Office Action”, U.S. Appl. No. 15/267,181, dated Jun. 7, 2018, 31 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,121, dated Jul. 9, 2018, 23 pages. |
“Final Office Action”, U.S. Appl. No. 15/166,198, dated Sep. 27, 2018, 33 pages. |
“Foreign Office Action”, Chinese Application No. 201721290290.3, dated Jun. 6, 2018, 3 pages. |
“Foreign Office Action”, Japanese Application No. 2018-501256, dated Jul. 24, 2018, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,253, dated Sep. 7, 2018, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/586,174, dated Jun. 18, 2018, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/142,829, dated Aug. 16, 2018, 15 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/362,359, dated Aug. 3, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/862,409, dated Jun. 6, 2018, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,619, dated Aug. 13, 2018, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/595,649, dated Sep. 14, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/586,174, dated Sep. 24, 2018, 5 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/286,495, dated Sep. 10, 2018, 4 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/287,359, dated Jul. 24, 2018, 2 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/286,537, dated Aug. 27, 2018, 8 pages. |
“Apple Watch Used Four Sensors to Detect your Pulse”, retrieved from http://www.theverge.com/2014/9/9/6126991 / apple-watch-four-back-sensors-detect-activity on Sep. 23, 2017 as cited in PCT search report for PCT Application No. PCT/US2016/026756 on Nov. 10, 2017; The Verge, paragraph 1, Sep. 9, 2014, 4 pages. |
“Clever Toilet Checks on Your Health”, CNN.Com; Technology, Jun. 28, 2005, 2 pages. |
“Final Office Action”, U.S. Appl. No. 14/681,625, dated Dec. 7, 2016, 10 pages. |
“Final Office Action”, U.S. Appl. No. 14/731,195, dated Oct. 11, 2018, 12 pages. |
“Final Office Action”, U.S. Appl. No. 14/715,454, dated Sep. 7, 2017, 14 pages. |
“Final Office Action”, U.S. Appl. No. 14/720,632, dated Jan. 9, 2018, 18 pages. |
“Final Office Action”, U.S. Appl. No. 14/715,454, dated Apr. 17, 2018, 19 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,308, dated Feb. 8, 2019, 23 pages. |
“Final Office Action”, U.S. Appl. No. 14/599,954, dated Aug. 10, 2016, 23 pages. |
“Final Office Action”, U.S. Appl. No. 14/699,181, dated May 4, 2018, 41 pages. |
“Final Office Action”, U.S. Appl. No. 14/715,793, dated Sep. 12, 2017, 7 pages. |
“Final Office Action”, U.S. Appl. No. 14/809,901, dated Dec. 13, 2018, 7 pages. |
“First Action Interview OA”, U.S. Appl. No. 14/715,793, dated Jun. 21, 2017, 3 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/142,471, dated Feb. 25, 2019, 29 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 14/731,195, dated Jun. 21, 2018, 4 pages. |
“First Action Interview Pilot Program Pre-Interview Communication”, U.S. Appl. No. 14/731,195, dated Aug. 1, 2017, 3 pages. |
“First Examination Report”, GB Application No. 1621332.4, dated May 16, 2017, 7 pages. |
“Foreign Office Action”, Chinese Application No. 201580034536.8, dated Oct. 9, 2018. |
“Foreign Office Action”, KR Application No. 10-2016-7036023, dated Aug. 11, 2017, 10 pages. |
“Foreign Office Action”, Chinese Application No. 201580036075.8, dated Jul. 4, 2018, 14 page. |
“Foreign Office Action”, CN Application No. 201580034908.7, dated Jul. 3, 2018, 17 pages. |
“Foreign Office Action”, JP App. No. 2016-567813, dated Jan. 16, 2018, 3 pages. |
“Foreign Office Action”, Korean Application No. 10-2016-7036015, dated Oct. 15, 2018, 3 pages. |
“Foreign Office Action”, Japanese Application No. 2016-567839, dated Apr. 3, 2018, 3 pages. |
“Foreign Office Action”, KR Application No. 10-2016-7035397, dated Sep. 20, 2017, 5 pages. |
“Foreign Office Action”, Korean Application No. 1020187012629, dated May 24, 2018, 6 pages. |
“Foreign Office Action”, EP Application No. 15170577.9, dated May 30, 2017, 7 pages. |
“Foreign Office Action”, Korean Application No. 10-2016-7036396, dated Jan. 3, 2018, 7 pages. |
“Foreign Office Action”, JP Application No. 2016567813, dated Sep. 22, 2017, 8 pages. |
“Foreign Office Action”, Japanese Application No. 2018021296, dated Dec. 25, 2018, 8 pages. |
“Foreign Office Action”, EP Application No. 15754323.2, dated Mar. 9, 2018, 8 pages. |
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2016/026756, dated Oct. 19, 2017, 8 pages. |
“International Search Report and Written Opinion”, PCT Application No. PCT/US2016/065295, dated Mar. 14, 2017, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/042013, dated Oct. 26, 2016, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/034366, dated Nov. 17, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/033342, dated Oct. 27, 2016, 20 pages. |
“Life:X Lifestyle eXplorer”, Retrieved from <https://web.archive.org/web/20150318093841/http://research.microsoft.com/en-us/projects/lifex >, Feb. 3, 2017 , 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/596,702, dated Jan. 4, 2019, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/666,155, dated Feb. 3, 2017, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/809,901, dated May 24, 2018, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/720,632, dated Jun. 14, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/715,454, dated Jan. 11, 2018, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/599,954, dated Jan. 26, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/599,954, dated Feb. 2, 2016, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/720,632, dated May 18, 2018, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/699, dated Oct. 18, 2017, 33 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/166,198, dated Feb. 21, 2019, 48 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/681,625, dated Mar. 6, 2017, 7 pages. |
“Non-Invasive Quantification of Peripheral Arterial Volume Distensibilitiy and its Non-Lineaer Relationship with Arterial Pressure”, Journal of Biomechanics, Pergamon Press, vol. 42, No. 8; as cited in the search report for PCT/US2016/013968 citing the whole document, but in particular the abstract, May 29, 2009, 2 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/599,954, dated May 24, 2017, 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/715,793, dated Jul. 6, 2018, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,495, dated Jan. 17, 2019, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/595,649, dated Jan. 3, 2019, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/715,793, dated Dec. 18, 2017, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/666,155, dated Feb. 20, 2018, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/666,155, dated Jul. 10, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/681,625, dated Jun. 7, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/681,625, dated Oct. 23, 2017, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,829, dated Feb. 6, 2019, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,137, dated Feb. 6, 2019, 9 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/142,471, dated Dec. 12, 2018, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/715,793, dated Mar. 20, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/715,454, dated Apr. 14, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/703,511, dated Feb. 11, 2019, 5 pages. |
“Pre-Interview Office Action”, U.S. Appl. No. 14/731,195, dated Dec. 20, 2017, 4 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/065295, dated Jul. 24, 2018, 18 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/042013, dated Jan. 30, 2018, 7 pages. |
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/032307, dated Dec. 7, 2017, 9 pages. |
“Pressure-Volume Loop Analysis in Cardiology”, retrieved from https://en.wikipedia.org/w/index.php?title=Pressure-volume loop analysis in cardiology&oldid=636928657 on Sep. 23, 2017; Obtained per link provided in search report from PCT/US2016/01398 on Jul. 28, 2016, Dec. 6, 2014, 10 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/462,957, dated Jan. 4, 2019, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/352,194, dated Feb. 6, 2019, 8 pages. |
“The Dash smart earbuds play back music, and monitor your workout”, Retrieved from < http://newatlas.com/bragi-dash-tracking-earbuds/30808/>, Feb. 13, 2014 , 3 pages. |
“Thermofocus No Touch Forehead Thermometer”, Technimed, Internet Archive. Dec. 24, 2014. https://web.archive.org/web/20141224070848/http://www.tecnimed.it:80/thermofocus-forehead-thermometer-H1N1-swine-flu.html, Dec. 24, 2018, 4 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/042013, dated Feb. 2, 2017, 6 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/026756, dated Nov. 10, 2016, 7 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/065295, dated Apr. 13, 2018, 8 pages. |
“Written Opinion”, PCT Application PCT/US2016/013968, dated Jul. 28, 2016, 9 pages. |
Antonimuthu, “Google's Project Soli brings Gesture Control to Wearables using Radar”, YouTube[online], Available from https://www.youtube.com/watch?v=czJfcgvQcNA as accessed on May 9, 2017; See whole video, especially 6:05-6:35. |
Duncan, David P. “Motion Compensation of Synthetic Aperture Radar”, Microwave Earth Remote Sensing Laboratory, Brigham Young University, Apr. 15, 2003, 5 pages. |
Garmatyuk, Dmitriy S. et al., “Ultra-Wideband Continuous-Wave Random Noise Arc-SAR”, IEEE Transaction on Geoscience and Remote Sensing, vol. 40, No. 12, Dec. 2002, Dec. 2002, 10 pages. |
Geisheimer, Jonathan L. et al., “A Continuous-Wave (CW) Radar for Gait Analysis”, IEEE 2001, 2001, 5 pages. |
Ishijima, Masa “Unobtrusive Approaches to Monitoring Vital Signs at Home”, Medical & Biological Engineering and Computing, Springer, Berlin, DE, vol. 45, No. 11 as cited in search report for PCT/US2016/013968 on Jul. 28, 2016, Sep. 26, 2007, 3 pages. |
Klabunde, Richard E. “Ventricular Pressure-Volume Loop Changes in Valve Disease”, Retrieved From <https://web.archive.org/web/20101201185256/http://cvphysiology.com/Heart%20Disease/HD009.htm>, Dec. 1, 2010, 8 pages. |
Kubota, Yusuke et al., “A Gesture Recognition Approach by using Microwave Doppler Sensors”, IPSJ SIG Technical Report, 2009 (6), Information Processing Society of Japan, Apr. 15, 2010, pp. 1-8, Apr. 15, 2010, 13 pages. |
Matthews, Robert J. “Venous Pulse”, Retrieved at: http://www.rjmatthewsmd.com/Definitions/venous_pulse.htm—on Nov. 30, 2016, Apr. 13, 2013, 7 pages. |
Otto, Chris et al., “System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring”, Journal of Mobile Multimedia; vol. 1, No. 4, Jan. 10, 2006, 20 pages. |
Palese, et al., “The Effects of Earphones and Music on the Temperature Measured by Infrared Tympanic Thermometer: Preliminary Results”, ORL—head and neck nursing: official journal of the Society of Otorhinolaryngology and Head-Neck Nurses 32.2, Jan. 1, 2013, pp. 8-12. |
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom'13, Sep. 30-Oct. 4, Miami, FL, USA, 2013, 12 pages. |
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, Proceedings of the 19th annual international conference on Mobile computing & networking (MobiCom'13), US, ACM, Sep. 30, 20113, pp. 27-38, Sep. 30, 2013, 12 pages. |
Zhadobov, Maxim et al., “Millimeter-Wave Interactions with the Human Body: State of Knowledge and Recent Advances”, International Journal of Microwave and Wireless Technologies, p. 1 of 11. #Cambridge University Press and the European Microwave Association, 2011 doi: 10.1017/S1759078711000122, 2011. |
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2017/032733, dated Nov. 29, 2018, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,901, dated Oct. 11, 2018, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,308, dated Oct. 15, 2018, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,152, dated Oct. 19, 2018, 27 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,837, Oct. 26, 2018, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Oct. 5, 2018, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,537, dated Nov. 19, 2018, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,155, dated Dec. 10, 2018, 12 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,689, dated Oct. 30, 2018, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/874,955, dated Oct. 4, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,200, dated Nov. 6, 2018, 19 pages. |
“Written Opinion”, PCT Application No. PCT/US2017/051663, dated Oct. 12, 2018, 8 pages. |
Gürbüz, et al., “Detection and Identification of Human Targets in Radar Data”, Proc. SPIE 6567, Signal Processing, Sensor Fusion, and Target Recognition XVI, 656701, May 7, 2007, 12 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,155, dated Apr. 10, 2019, 11 pages. |
“Final Office Action”, U.S. Appl. No. 15/286,537, dated Apr. 19, 2019, 21 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,253, dated Apr. 2, 2019, 10 pages. |
“Foreign Office Action”, Japanese Application No. 2018501256, dated Feb. 26, 2019, 3 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,394, dated Mar. 22, 2019, 39 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/238,464, dated Mar. 7, 2019, 15 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,152, dated Mar. 5, 2019, 23 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,837, dated Mar. 6, 2019, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/703,511, dated Apr. 16, 2019, 5 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/917,238, dated May 1, 2019, 6 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,901, dated May 30, 2019, 18 pages. |
“Final Office Action”, U.S. Appl. No. 15/142,471, dated Jun. 20, 2019, 26 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/917,238, dated Jun. 6, 2019, 6 pages. |
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2017/051663, dated Jun. 20, 2019, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/424,263, dated May 23, 2019, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/462,957, dated May 24, 2019, 14 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/352,194, dated Jun. 26, 2019, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20170097413 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
62237975 | Oct 2015 | US |