Only when the pulse propagation time to the target and the delay time of the carrier pulses correspond at quadrature mixer 8 does a mixed product result at the NF port (IQ outputs), i.e., a temporal windowing is implemented using the adjustable delay time, the windowing linked via the propagation rate of electromagnetic waves being equivalent to a distance measurement. If the delay time is varied according to a saw tooth function, using a saw tooth voltage generator 11, it is possible to systematically scan the distance for possible targets. If this scanning takes place relatively slowly in relation to the pulse repetition rate, multiple pulses (typically several hundred) are received per target and integrated for improving the signal-to-noise ratio using low pass filters 12, 13. Subsequently, an analog-to-digital conversion (ADC) takes place in steps 14 and 15, as well as a corresponding digital signal processing (DSP) including detection and distance measurement in module 16.
A dual-beam sensor is shown in
Furthermore, the system is expanded by a transfer switch 18 in combination with a bistable flipflop 19 which alternatingly transmits the HF signal energy from the two antennas to mixer 8, e.g., at the pulse repetition clock rate of the transmitted radar pulses, i.e., only half as many pulses are received per receiving antenna. Low pass filters 12, 13 upstream from analog-to-digital converter ADC may not have an integrating effect, but are rather only used as anti-aliasing low pass filters for band limitation. To that effect, the ADC should have a higher sample rate. The ultimate pulse integration for each antenna path takes place digitally in processor 16. The evident disadvantage of the integration loss of 3 dB may be compensated at least in part, since the NF signals of the two reception paths of a ramp passage may be totaled in processor 16 for the detection, thereby reaching the signal-to-noise ratio of the original sensor for targets detected by both antennas. However, an integration loss of 3 dB occurs if a target is located outside the sensing area of the narrow antenna.
The switch over is active as long as the short range of the sensor (corresponds to the broad reception characteristic) is being scanned. Using the known mono-pulse method, an angle determination is also possible in the area in which both antenna characteristics overlap. The angle determination methods are not discussed in greater detail. A switch over is no longer expedient from a certain scanning distance, since only targets having the long range characteristic are detected.
If two or optionally three dual-beam sensors are used, an angle determination is possible in the entire target corridor by combining the mono-pulse and triangulation methods.
In the areas in which the antenna characteristics of the two antennas of one sensor overlap, the target angle is determined using the mono-pulse method, and the triangulation method is used for the angle determination in the areas in which the characteristics of both sensors overlap. Redundant information which may be used, for example, for a simple calibration of the mono-pulse analysis, is obtained in the short range (i.e., by using overlapping of four antenna characteristics).
Number | Date | Country | Kind |
---|---|---|---|
103 57 148.5 | Dec 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/52507 | 10/12/2004 | WO | 00 | 5/7/2007 |