Radial arm system for patient care equipment

Information

  • Patent Grant
  • 8336138
  • Patent Number
    8,336,138
  • Date Filed
    Friday, March 18, 2011
    13 years ago
  • Date Issued
    Tuesday, December 25, 2012
    11 years ago
Abstract
A patient care equipment support system includes an arm having a first arm portion and a second arm portion that telescopically extends and retracts relative to the first arm portion along a substantially horizontal axis. The first arm portion includes a first end of the arm that is supported for pivoting movement about a substantially vertical first axis. The second arm portion includes a second end of the arm. A column is situated beneath the second end of the arm. The column includes a first column portion and a second column portion that telescopically extends and retracts relative to the first column portion along a substantially vertical second axis.
Description
BACKGROUND OF THE INVENTION

The present disclosure relates to a system for supporting and housing patient care equipment adjacent a patient support such as a hospital bed, stretcher, chair or the like.


Hospitalized patients often require patient care equipment to be in close proximity during care. Such patient care equipment may include heart monitoring equipment, medical gas delivery equipment, infusion pumps, intra-venous bags, equipment monitors, defibrillators, and other patient care equipment, many of which directly connect to the patient via lines or tubes.


SUMMARY OF THE INVENTION

The present invention comprises one or more of the following features or elements in the appended claims or combinations thereof. A support structure is provided typically to be at the head end of a patient support. The support structure may be configured to be mounted to extend between a hospital floor and ceiling, or upwardly from a hospital floor or downwardly from a hospital ceiling, or it may be configured to extend outwardly from a hospital wall or be embedded in the wall. The support structure may be positioned adjacent a hospital wall. Typically, the structure will be vertically disposed and provide one or more vertical axes about which equipment moves. An arm extends from the support structure and is pivotably movable relative to the structure, typically in a horizontal plane. The arm may be telescoping or fixed in length and comprise a first portion having a mount end pivotably mounted to the support structure and a distal end opposite the mount end. The first portion is pivotable about a pivot axis, and a second portion extends from the distal end of the first portion for telescopic movement relative to the first portion.


A patient care equipment column can be supported by the second portion, the column providing either mounting capabilities for patient care equipment or a service head for patient care equipment, or both. Patient care equipment may be mounted or coupled to an equipment support, and/or patient care equipment may be coupled to any one or more of the services provided by one or more service heads. The column will typically be pivotable about a vertical axis passing through the distal end of the arm.


The support structure may be integrated with or part of a headwall and/or a bed locator. The support structure and/or arm and/or service head and/or headwall may have service outlets, such as for delivery of medical gases or suction, delivery of electrical power, and transmission of data.


Additional telescoping or fixed-length arms may be provided, and may be mounted to the support structure for horizontal pivotable movement about the same pivot axis, or about different axes. Such additional arms may carry a service head, a monitor, and/or patient monitoring equipment.


In some illustrative embodiments, a console or headwall unit is provided, the console providing cabinets or cavities or spaces for housing any one of the service head, the monitor, and the equipment support when these are in respective storage positions.


Additional features will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments exemplifying the best mode of carrying out various systems for transporting and supporting patient care equipment as presently perceived.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description particularly refers to the accompanying figures, in which:



FIG. 1 is a perspective view of a patient care equipment support system built into a headwall;



FIG. 2 is a perspective view of the support system of FIG. 1 having a patient support positioned adjacent thereto, showing cabinets on both sides of the support system opened to expose a set of patient care columns supporting patient care equipment thereon;



FIG. 3 is an embodiment of a support system showing a plurality of arms moved to a variety of positions to support associated patient care equipment and service heads in desired locations relative to a pair of patient supports;



FIG. 4 is another embodiment of a support system showing arms extending from support structures adjacent opposite walls toward a patient support;



FIG. 5 is a perspective view of the support structure used to support the telescoping and pivoting arms;



FIG. 6 is a top view of the support structure of FIG. 5 built into a wall;



FIG. 7 is a top view of the support structure of FIG. 5 mounted adjacent to a hospital wall;



FIG. 8 is a perspective view of a movable cart having drawers and an extendable shelf, the cart storable in a cabinet recess;



FIG. 9 is a perspective view of a stool that can stored in the cabinet recess;



FIG. 10 is a perspective view of a portable toilet that can be stored in the cabinet recess;



FIG. 11 is a perspective view of a HEPA filtration system built in to a wall-arm support structure;



FIG. 12 is a diagrammatic view of a gas port showing nozzles, a display, and controls mounted on the exterior of a caregiver interface, and showing a digital flow meter mounted on the interior;



FIG. 13 is a front elevation view of an equipment support system configured to have a plurality of arms supporting columns that can be used with a plurality of patient supports;



FIG. 14 is a front elevation view similar to that of FIG. 13, showing a plurality of arms supporting columns that can be used with a single patient support;



FIG. 15 is a front elevation view of an equipment support system having a wall-mounted pivotable arm with an elbow;



FIG. 16 is a front elevation view of another embodiment of an equipment support system having a wall-mounted pivotable arm that houses a track for movement of the column relative to the track;



FIG. 17 is a perspective view of yet another equipment support system having a plurality of pivotable, telescoping arms that can be positioned at a large range of places around a patient support;



FIG. 18 is a perspective view of a telescoping arm having a line-guide system housed therein;



FIG. 19 is a perspective view of a wall-mounted arm supporting a patient lift;



FIG. 20 is a front view of the lift mechanism associated with the use of the patient lift;



FIG. 21 is a cross-sectional view of a support arm showing a telescoping arm in an extended position, the arm housing a plurality of line-guides;



FIG. 22 is a cross-sectional view similar to that of FIG. 21, showing the telescoping arm in the retracted position;



FIG. 23 is a cross-sectional view taken along the line 23-23 of FIG. 22, showing placement of the lines inside the telescoping arm and the line-guides; and



FIG. 24 is a perspective view of a vertically movable equipment support, the equipment support being configured to be mounted on a receiver coupled to a column.





DETAILED DESCRIPTION OF THE DRAWINGS

A patient care equipment support system 10 is shown in FIG. 1 and a patient support 12 is positioned in front of the system in FIG. 2. Patient support 12 is illustratively a hospital bed positioned in a hospital room, however, it should be understood that the embodiments disclosed herein may be modified to be used with other patient supports, such as operating room tables, stretchers, or any other equipment on which a patient may rest, and in various types of settings including intensive care rooms, operating rooms, and physician offices.


In the embodiment illustrated in FIG. 1, support system 10 comprises a console including a headwall 14 having cabinets 16, 18 positioned on opposite sides thereof. Cabinets 16, 18 illustratively have access doors 20, 22, however, it is within the scope of the invention to utilize other types of doors such as bi-fold doors, pocket doors, or even to leave cabinets 16, 18 without doors. It is within the scope of the disclosure to offer only one cabinet 16 or 18, or to offer no cabinets. An upper space 59 defined by walls 65, 67 may or may not be offered.



FIGS. 1 and 2 show drawers 24 illustratively positioned under cabinet 18 for providing additional storage. However, it is within the scope of the disclosure to replace at least one of drawers 24 with a movable storage cabinet or supply cart 210, such as a cart having an extendable or pivotable (not shown) table 212 attached thereto as shown in FIG. 8. It is also within the scope of the disclosure to provide a pull-out stool 214 for use by a caregiver in the place of drawers 24, as can be seen in FIG. 9. The seat on stool 214 can be movable between a raised use position and a lowered storage position. Stool 214 can be stored in a recess sized to receive the Furthermore, a portable toilet 215 may be provided, as shown in FIG. 28, to be stored in a similarly sized space in the cabinet. Illustratively, each of the stool 214 and portable toilet 215 have an aesthetic facade 217 having a handle 218 to facilitate positioning of the stool 214 or toilet 215. Further illustratively, toilet 215 may have a drawer 219 in which toilet sewage may be stored and accessed, or in the alternative, for other storage.


In the illustrative embodiment shown in FIG. 1, headwall 14 is shaped in a concave fashion such that the central portion of headwall 14 is recessed relative to the edges which contact cabinets 16, 18. Such a configuration permits the head end of patient support 12 to be positioned closer to wall 26 and provides more clearance at the foot end of patient support 12. A bed locator (not shown) can be mounted to headwall 14 for assisting in positioning the bed in a fixed position. It is within the scope of the disclosure to provide headboards, headwalls with other configurations, or to omit the headwall altogether.


Support system 10 is shown in FIGS. 1, 2 and 6 to be substantially flush with wall 26 such that cabinets 16, 18 and other portions of support system 10 are built into wall 26. However, it is should be understood that frame 72 of support system 10 could be positioned such that support system 10 extends outwardly from wall 26, or even be positioned away from wall 26 as an independent structure such as shown, for example, in FIG. 3. In the embodiment illustrated in FIG. 3, a support system 216 is configured to support arms extending from more than one side of the support system. Such a configuration allows for a plurality of patient supports 12 to be positioned near support system 216, support system 216 providing patient care equipment support for the plurality of patient supports 12 simultaneously. Bed locators 25 can be mounted on sides of support column 23.


As can be seen in FIG. 2, doors 20, 22 can be opened to expose the inside of cabinets 16, 18, respectively. A first arm 28 illustratively telescopes horizontally and has a patient care column 27 coupled thereto.


As can be seen in FIG. 24, the patient care column illustratively comprises a first column 27, a second column 29 movable relative to the first column 27, and a post receiver 31 coupled to the second column 29. Post receiver 31 is configured to receive an equipment support 30 having a mount post 70. The illustrative mount post 70 has a tapered collar 161 mounted on an upward portion of the mount post, the collar 161 having a protrusion 162 extending therefrom. Post receiver 31 comprises a substantially C-shaped cross-section that permits the passage of mount post 70 therethrough, while engaging protrusion 162 on mount post 70. Such engagement provides an axial lock that prevents axial movement of mount post 70 when it is docked on post receiver 31.


Illustratively, second column 29 telescopes vertically relative to first column 27 under the power of an electric motor 71, illustratively a Linak LA 31 Linear Actuator with a CB9 central box, housed in first column 27, the electric motor being actuated by either a toggle switch (not shown) positioned on first column 27, or a wired or wireless remote control. Such vertical telescoping movement permits the equipment support 30 to be raised and lowered for optimal placement by a caregiver and for loading of equipment or IV bags by a caregiver. Additionally, such vertical telescoping movement can permit the docking of equipment support 30 on a post receiver mounted on a patient support, as disclosed in the patent application entitled Patient Care Equipment Management System, filed simultaneously herewith having U.S. patent application Ser. No. 10/802,289, such application also being based upon U.S. Provisional Application Ser. No. 60/455,621, filed Mar. 18, 2003 and U.S. Provisional Application Ser. No. 60/510,756, filed Oct. 13, 2003. Other locations for a post receiver 73 are within the scope of the disclosure. For example, a post receiver 73 may be located in a cabinet 16 or 18, thereby permitting the docking of equipment support 30 in a cabinet as can be seen in FIG. 2. In the alternative, a post receiver may be formed in a stand positioned near patient support 12. Illustratively, second column 29 may move as much as 12-18 inches relative to first column 27. It should be understood that drivers such as hydraulic cylinders, magnetic cylinders, pneumatic cylinders, and the like may be used to move column 29 relative to column 27 in lieu of an electric motor.


In the embodiment shown in FIGS. 19 and 20, column 220 may be configured to support a patient transfer device 224. Patient transfer device 224 illustratively comprise a body sling 225 supported by tethers 227 on a hangar 229, but other patient transfer devices are within the scope of the disclosure. For example, an assist handle, a mattress support, or other variations of devices designed to lift, transfer and/or move patients are contemplated.


Illustratively, column 220 may vertically extend or retract as much as 12-18 inches relative to first arm 28. Such vertical movement may be achieved by an electric motor, hydraulic cylinder, magnetic cylinder, pneumatic cylinder, or the like. Illustratively, the vertical movement is achieved with an electric motor 231 having a screw drive.


Equipment support 30 is configured to support patient care equipment thereon, as can be seen in FIG. 2. Equipment support 30 illustratively includes a secondary service head 233 that can provide requisite electricity and services to an infusion management system 32, as pictured in FIG. 2. Illustratively, equipment support 30 is configured to hold IV bags on an upper portion 36 of support frame 30, and infusion management systems 32 can be mounted on a lower portion of equipment support 30.


While patient support columns are illustrated and described herein as either equipment supports, service heads, structures for carrying equipment supports, structures for carrying patients, or a combination thereof, it should be understood that patient support columns may comprise any other device or element that could be connected to an arm in a hospital room, operating room, or doctor's office. As used herein, the word “column” generally refers to a vertically disposed structure mounted on an arm, and the word “arm” generally refers to a horizontally disposed structure. However, these definitions should not be construed as limiting to the possibility of other embodiments in which columns are other than generally vertical and/or in which arms are other than generally horizontal.


A second arm 34 is illustratively provided in FIGS. 2 and 3, and is illustratively telescoping in length and can also carry a column supporting patient care equipment. Either or both columns may also comprise a main service head 38, visible in FIG. 24, which may provide medical air, oxygen, medical vacuum, nitrogen, nitrous oxide, electronic data connectivity, and electricity, among other services that may be needed specific to the use of support system 10. Illustratively, such services have been positioned at sufficiently raised locations so as to allow a caregiver to access the service ports 279, while the dragging of medical lines and tubes is prevented. Such services could be arranged so that there is a “dry” column and a “wet” column. A dry column, for example, may include electronic monitoring equipment, communication ports, medical air, oxygen, medical vacuum, nitrogen, nitrous oxide ports, and a ventilator. A wet column may include IV fluids, pumps, and medications.


In some embodiments a column may support other hardware, including patient monitor 44, satellite modules 46, an examination or other light, or other items.


As can be seen in FIGS. 1 and 2, second arm 34 may be pivoted coaxially about the same pivot axis 40 as that which first arm 28 pivots about. However, it is within the scope of the disclosure to utilize separate pivot axes. For example, first and second arms 28, 34 may be spaced apart on a wall such that first and second arms 28, 34 have parallel pivot axes, or first and second arms 28, 34 may be positioned on separate walls, as can be seen in FIG. 4


In the embodiment shown in FIG. 4 first arm 28 pivots about an axis 292 proximal to wall 296 and second arm 34 pivots about an axis 294 proximal to wall 298. Axes 292, 294 are illustratively parallel. Arms 28, 34 are shown supported by an upper platform 300 and can be further supported by a lower platform. A supply cart 210 is illustratively provided in the room.


The illustrative infusion management systems 32 are manufactured by Alaris and are sold under the name Medley Medication Safety System. However, it should be understood that the disclosed equipment support 30 is configured for use with the products of any number of infusion management system manufacturers. It is also within the scope of the disclosure to mount infusion management systems 32 to main service head 38, or on any other column or arm provided by support system 10.


A third arm 42 is provided in the illustrative system 10, shown in FIGS. 1 and 2. Third arm 42 is illustratively fixed in length and carries a patient monitor 44, and can also carry a computer or satellite modules. Such satellite modules may incorporate various monitoring devices for monitoring a patient's condition. Patient monitor 44 displays information relating to the patient's condition.


Illustratively, third arm 42 may carry patient monitor 44, while another column carries satellite modules 46. Satellite modules 46 may be manufactured by Hewlett-Packard and marketed under the name Veridia System, but other modules or devices for monitoring a patient's condition can conceivably be carried by third arm 42. Third arm 42 may have a service head portion 228, as can be seen in FIG. 2. Such a service head portion illustratively provides electricity and data ports, but other services may be provided and are within the scope of the disclosure.


Service ports 277 may also be provided in headwall 14, as can be seen in FIGS. 1 and 2. In such an embodiment, selected services 279 may still be provided on a column. Illustratively, two telescoping arms are provided, but it is within the scope of the disclosure to utilize one or more arms fixed in length.


Patient monitor 44 may be embodied to be used by the patient in addition to a caregiver, or patient monitor 44 may be configured for use by only the patient. In such embodiments, as shown in FIG. 2, the patient can view television programming, educational programming, or other information offered by the hospital or physician's office.


A computer 230, shown in FIG. 1 (in phantom), may be carried by an arm or may be mounted inside the console or any other location conveniently accessed. Computer 230 is illustratively mounted inside a space 244 in headwall 14 that is enclosed by doors 242 in FIGS. 1 and 2.


Illustratively, third arm 42 is constructed of two tubular beams 48 which extend outwardly in spaced apart relation, the two tubular beams 48 angling downwardly in a distal region thereof to join together at their distal ends, forming a central support for equipment support 56. Third arm 42 illustratively pivots about pivot axis 40 in a fashion similar to that of first arm 28 and second arm 34, although it is within the scope of the disclosure to have third arm 42 pivot about a separate axis.


In the illustrated embodiment, equipment that is carried by each of first arm 28, second arm 34, and third arm 42 is pivotable about a second distal axis that is parallel to pivot axis 40. For example, patient monitor 44 is positioned on an equipment support 56 that is pivotable about pivot axis 54 relative to third arm 42. Such dual pivoting movement permits the equipment on each of the arms to be accessible from a wide range of locations. Each arm may further be telescoping, which provides even greater flexibility and movement of the arms and attached columns.


First arm 28 is illustratively telescoping and comprises a first portion 58 that has a mount end 60 mounted for pivotable movement about pivot axis 40 and a distal end 62 extended away from mount end 60 as shown in FIG. 2. First arm 28 further comprises a second portion 64 that is coupled to the distal end of the first portion and configured to telescope relative to first portion 58. Such telescoping movement allows equipment support 30 to extend beyond the radial lengths of second and third arms 34, 42, providing the option of positioning first arm 28 on either side of arms 34, 42, thereby giving a caregiver additional flexibility in setting up patient care equipment about a patient. Additionally, such telescoping movement allows a service head or any other column to be positioned in a greater range of locations relative to the patient support 12.


In a similar fashion, second and third arms 34, 42 can also pass by each other to switch places. If only one arm is telescoping, it could be positioned vertically above or below the other arms, facilitating movement of the arms past each other.


As can be seen in FIGS. 1 and 2, an upper space 59 can be provided that illustratively extends horizontally for substantially the length of the console. Upper space 59 is illustratively of sufficient depth to allow arms 28, 34, 42 to be positioned in their storage positions inside upper space 59. Upper space 59 is bounded on the upper side by wall 61 (which houses upper platform 82), and on the lower side by wall 63 (which houses lower platform 84). Upper space 59 is also bounded by side wall 65, extending vertically along one side of the console to simultaneously form a side wall for cabinet 16, and side wall 67, extending vertically along the other side of the console to form a side wall for cabinet 18.


Cabinets 16, 18 illustratively have interior regions or spaces that communicate with upper space 59 so that when arms 28, 34, 42 are in their storage positions, as shown in FIG. 2, columns 30, 38, 56 depend from the arms into the associated spaces of storage cabinets 16, 18. Illustratively, the console is configured such that arms 28, 34, 42 and columns 30, 38, 56 can be stored completely within the console, without elements protruding from the console.


It should be understood that various embodiments and configurations for the console are within the scope of the disclosure. Such a console may be sold to include only one cabinet 16 or 18. The console may be sold without an upper space 59 bounded by walls, or it may be sold with only a headwall 14.


Lighting, whether ambient or for reading or examination purposes, may illustratively be mounted on the console, on an arm, and/or on a column. A console light 286 may be built in to lower pier 122, as can be seen in phantom in FIG. 1 and in FIG. 3. Ambient lights 288 may be mounted above the console to provide ambient lighting for the room, as can be seen in FIG. 1.


It should be understood that third arm 42 and equipment support 56 (illustratively carrying patient monitor 44) can be moved adjacent to either column. A recess 66 is illustratively formed in the upper portion of each column. Such recess 66 being configured to receive equipment support 56 when third arm 42 is aligned parallel to the selected first or second arm.


As can be seen in FIG. 5, the illustrative support system 10 includes a support structure frame 72 that is configured to extend between a hospital floor and a ceiling, which could be supported with a ceiling truss or ceiling support system. Such a ceiling truss or ceiling support system may need to be reinforced with support bars. The support structure frame 72 illustratively comprises a first vertically extending member 74 and a second vertically extending member 76. A horizontal stabilizer 78 is mounted to the bottom of both vertically extending members 74, 76. An arm mount portion 80 extends laterally and between vertically extending members 74, 76. The arm mount portion comprises an upper platform 82 and a lower platform 84. Upper and lower platforms 82, 84 each have a hole 86 defined therein. A shaft or collar structure for arms 28, 34, 42 is mounted between the holes such that arms 28, 34, 42 can each individually pivot about pivot axis 40. As can be seen in FIGS. 21 and 23, conduits or service lines 88 are illustratively dropped from the ceiling and selectively routed through arms 28, 34, 42 to provide medical air, oxygen, vacuum, nitrogen, nitrous oxide, telephone/data connectivity, and/or electricity, among other services that may be needed specific to the use of support system 10.


As can be seen in FIG. 5, lower platform 84 comprises a back wall 71 coupled to a front side of vertically extending members 74, 76 to define a vertical plane. Horizontal surface 73 cantilevers outwardly from back wall 71 and is supported by side supports 75, 77 that extend downwardly and also couple to vertically extending members 74, 76. A lip 79 extends downwardly from a front edge of horizontal surface 73, lip 79 being further coupled to front edges of side supports 75, 77.


Similarly, upper platform 82 comprises a back wall coupled to a front side of vertically extending members 74, 76 to define a vertical plane. Horizontal surface 83 cantilevers outwardly from back wall 81 and is supported by side supports 85, 87 that extend upwardly and also couple to vertically extending members 74, 76. A lip 89 extends upwardly from a front edge of horizontal surface 83, lip 89 being further coupled to front edges of side supports 85, 87.


Illustratively, vertically extending members 74, 76 are positioned adjacent wall 26 as shown in FIG. 7. However, it should be understood that vertically extending members 74, 76 may be built into the wall, as shown in FIG. 6, or completely self-standing away from any wall, depending on the placement need for support system 10. Other embodiments of support structures are within the scope of the disclosure, including support structures that extend from the hospital floor but do not touch the ceiling, support structures that extend from the ceiling and do not touch the floor, and support structures that extend from the wall. It is also contemplated that the support structure may extend from either the ceiling or floor and connect to the adjacent wall.


As can be seen in FIG. 3, multiple support structure frames may be placed adjacent each other to provide a support system 216 capable of supporting arms over a plurality of patient supports 12.


Columns may include integrated flow meters, which are schematically shown in FIG. 12. A digital flow meter 402 is positioned internally in a column, and display 404, controls 406, and gas nozzle 408 are located such that a caregiver can access or view them from the outside of the column. The internal placement of the digital flowmeter removes one or more items from the cluster of elements normally attached at the gas nozzle area. The gas or fluid is directed to flow into the flow meter 402 as shown by arrow 410, flow through the column interface 412 and out of nozzle 408 in the direction indicated by arrow 414.



FIG. 11 shows another embodiment of a patient care equipment support system 110, wherein a headwall 114 with a built-in HEPA (High Efficiency Particulate Air) filtration system 116 is provided, and cabinets and drawers are omitted from the system. Headwall 114 is illustratively configured to have an arm support portion 118. Arm support portion 118 illustratively has an upper pier 120, a lower pier 122, and a channel 124 formed therebetween. Channel 124 is formed so that arms 28, 34 can pivot about their pivot axes to extend through either side of channel 124.


Illustratively, HEPA filtration system 116 comprises an air inlet 117 in a lower portion of headwall 114, and an air outlet 119 that is configured to disperse the air through upper pier 123. The HEPA filtration system 116 is illustratively built into the headwall 114 and can be serviced through an access door (not shown).



FIG. 18 shows a cutaway view of a telescoping arm, illustratively first arm 28. A linear bearing assembly 126 supports second portion 64 for horizontal telescoping movement relative to first portion 58. Illustratively, first arm 28 includes a longitudinal bearing member 90 having a flat upper surface 92 and a lower surface 94 defining a V-shaped edge (not shown). Upper bearing wheels 96 engage upper surface 92, and lower bearing wheels 98 define a V-shaped groove for engagement with lower surface 94 of bearing member 90. Other embodiments of bearing assembly 126 are within the scope of the disclosure. For example, the cross-sectional view of arm 28 shown in FIG. 23 illustrates a bearing assembly having lower bearing wheels 97 mounted on the bottom portion of first portion 58 of arm 28, and upper bearing wheels 99 mounted on second portion 64 of arm 28. Tracks 105 are mounted on second arm portion 64 and tracks 107 are mounted on first portion 58.


Service lines 88 are grouped and integrated into an energy chain management system 100 to ensure tangle-free operation of the electrical lines and gas tubing. Illustratively, energy chain management system 100 is a flexible polymer chain link conduit that serves to guide the service lines through the telescoping arm while preventing their entanglement with each other or other objects. The “S”-shape and the flexibility accommodate the telescoping movement of the arm. It should be understood, of course, that any number of energy chains is within the scope of the disclosure. For example, two energy chains 101, 103 are provided in FIGS. 21 and 23 in order to separate electric service lines from others, facilitating future service on the service lines. Energy chain management system 100 is commercially available through Igus Inc. of East Providence, Rhode Island, and is marketed under the trademark E-Chain, however, it should be understood that variations and alternative constructions to energy chain management system 100 are within the scope of the disclosure, as well as other constructions for first arm 28 as a whole.


It should be understood that the presently disclosed system can be modified to provide care in a number of different environments, as shown in FIGS. 13-17. For example, as shown in FIG. 14, a first arm 28 and a second arm 34 can be positioned on opposite sides of a patient support 12. However, the first and second arms 28, 34 can be also divided between two different patient supports 12, as shown in FIG. 13. Such use may be required when a hospital is more crowded and more than one patient is necessarily placed into the patient care environment.



FIGS. 15 and 16 show still further embodiments for arms. For example, as shown in FIG. 15, arm 300 may have an elbow 306 that permits pivotable movement of a second arm 308 about pivot axis 310. Such a configuration could be used in place of or in addition to a telescoping arm, thereby providing greater movement of column 312.


As shown in FIG. 16, arms 302, 304 may have slidable columns 312, 314 that move along tracks built into arms 302, 304. Furthermore, as shown in FIG. 17, a support structure may be mounted to hang from a ceiling and support telescoping arms 316, 318 that can carry columns 320, 322, such arms 316, 318 being permitted to pass each other as required by telescoping one arm 318 to pass radially outside of arm 316. It should be understood that the use of one or more fixed-length arms instead of telescoping arms is still within the scope of the disclosure.


The illustrated embodiments provide for flexible arrangement of patient care devices, permitting a patient's care to be tailored to various levels of acuity without movement between rooms or support systems 10. Cords and lines running below the patient support can be reduced or eliminated. Unused portions of such patient care devices can be stowed in cabinets 16, 18 or moved out of the way, facilitating care of the patient and movement about the patient. Such a support system 10 can eliminate the need for IV stands near a patient support 12. Furthermore, the support system 10 removes from the patient's direct overhead view the ceiling-mounted arm support structure.


Although the invention has been described in detail with reference to certain illustrative embodiments, variations and modifications exist with the scope and spirit of this disclosure as described and defined in the following claims.

Claims
  • 1. A patient care equipment support system comprising an arm including a first arm portion and a second arm portion that telescopically extends and retracts relative to the first arm portion along a substantially horizontal axis, the first arm portion including a first end of the arm that is supported for pivoting movement about a substantially vertical first axis, the second arm portion including a second end of the arm, a set of wheels guiding the telescopic movement of the second arm portion relative to the first arm portion,a column situated beneath the second end of the arm, the column including a first column portion and a second column portion that telescopically extends and retracts relative to the first column portion along a substantially vertical second axis, anda support structure extending from the floor to the ceiling of a room and the arm is coupled to the support structure.
  • 2. The patient care equipment support system of claim 1, further comprising a transfer device attached to a lower end of the column.
  • 3. The patient care equipment support system of claim 2, wherein the transfer device comprises a hanger.
  • 4. The patient care equipment support system of claim 3, wherein the transfer device further comprises a sling coupled to the hanger.
  • 5. The patient care equipment support system of claim 1, wherein the second portion of the column is extendable and retractable by about 12 inches to about 18 inches relative to the first column portion.
  • 6. The patient care equipment support system of claim 1, further comprising at least one of an electric motor, a hydraulic cylinder, a pneumatic cylinder, and a magnetic cylinder that is operable to extend and retract the second column portion relative to the first column portion.
  • 7. The patient care equipment support system of claim 1, further comprising an electric motor having a screw drive to extend and retract the second column portion relative to the first column portion.
  • 8. The patient care equipment support system of claim 1, further comprising a post receiver coupled to the second column portion to be raised and lowered as the second column portion is extended and retracted relative to the first column portion.
  • 9. The patient care equipment support system of claim 8, further comprising an equipment support having a mount post that is receivable in the post receiver.
  • 10. The patient care equipment support system of claim 9, wherein the post has a tapered collar mounted thereon and the post receiver engages the tapered collar when the equipment support is coupled to the column.
  • 11. The patient care equipment support system of claim 8, wherein the column comprises a main column portion and the first column portion is mounted to and offset from said main column portion.
  • 12. The patient care equipment support system of claim 11, further comprising at least one service outlet mounted to the main column portion and at least one service line routed through the arm and though the main column portion to the service outlet.
  • 13. The patient care equipment support system of claim 8, wherein the first and second column portions comprise first and second portions of a linear actuator.
  • 14. The patient care equipment support system of claim 1, wherein the support structure includes at least one vertical frame member, a first platform extending horizontally from the at least one vertical frame member in a cantilevered manner, and a second platform extending from the at least one vertical frame member in a cantilevered manner, and wherein the first end of the arm is situated between the first and second platforms.
  • 15. A patient care equipment support system comprising an arm including a first arm portion and a second arm portion that telescopically extends and retracts relative to the first arm portion along a substantially horizontal axis, the first arm portion including a first end of the arm that is supported for pivoting movement about a substantially vertical first axis, the second arm portion including a second end of the arm, a set of wheels guiding the telescopic movement of the second arm portion relative to the first arm portion,a column situated beneath the second end of the arm, the column including a first column portion and a second column portion that telescopically extends and retracts relative to the first column portion along a substantially vertical second axisa post receiver coupled to the second column portion to be raised and lowered as the second column portion is extended and retracted relative to the first column portion, andan equipment support having a mount post that is receivable in the post receiver, the post has a tapered collar mounted thereon and the post receiver engages the tapered collar when the equipment support is coupled to the column, wherein the post receiver is C-shaped with a protrusion receiving opening and the tapered collar includes a protrusion that is received in the protrusion receiving opening when the equipment support is coupled to the column.
  • 16. A patient care equipment support system comprising an arm including a first arm portion and a second arm portion that telescopically extends and retracts relative to the first arm portion along a substantially horizontal axis, the first arm portion including a first end of the arm that is supported for pivoting movement about a substantially vertical first axis, the second arm portion including a second end of the arm, a set of wheels guiding the telescopic movement of the second arm portion relative to the first arm portion,a column situated beneath the second end of the arm, the column including a first column portion and a second column portion that telescopically extends and retracts relative to the first column portion along a substantially vertical second axis, anda console including at least one cabinet, the arm being coupled to the console.
  • 17. The patient care equipment support system of claim 16, further comprising a wheeled unit and wherein the at least one cabinet has a storage space into which the wheeled unit can be rolled for storage.
  • 18. The patient care equipment support system of claim 17, wherein the wheeled unit comprises a stool.
  • 19. The patient care equipment support system of claim 17, wherein the wheeled unit comprises a set of drawers.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 11/770,265, filed Jun. 28, 2007, now U.S. Pat. No. 7,921,489, which is a continuation of U.S. application Ser. No. 11/422,365, filed Jun. 6, 2006, now U.S. Pat. No. 7,254,850,which is a continuation of U.S. application Ser. No. 10/802,287, filed Mar. 17, 2004, now U.S. Pat. No. 7,065,811, which claimed the benefit under 35 U.S.C. 119(e) to U.S. Provisional Application No. 60/455,621, filed Mar. 18, 2003 and U.S. Provisional Application No. 60/510,756, filed Oct. 13, 2003, each of which are hereby expressly incorporated by reference herein.

US Referenced Citations (497)
Number Name Date Kind
266167 Leslie Oct 1882 A
274527 Stelle et al. Mar 1883 A
378220 Staples et al. Feb 1888 A
662477 Ulrich Nov 1900 A
716886 Goode Dec 1902 A
841702 Martin Jan 1907 A
860303 Jones Jul 1907 A
1085879 Skeffington Feb 1914 A
1103436 Root Jul 1914 A
1139526 Holicky May 1915 A
1263611 Scroggin Apr 1918 A
1385424 Billings Jul 1921 A
1487171 Vigne Mar 1924 A
1620298 Smith Mar 1927 A
1686341 Nathanson Oct 1928 A
1815006 Horsting et al. Apr 1931 A
1915985 Edwards Jun 1933 A
2093231 Broadwell Sep 1937 A
2177986 James Oct 1939 A
2208945 Miller Jul 1940 A
2291444 Bengtson Jul 1942 A
2439009 Kujawski Apr 1948 A
2439066 Vanderlyn et al. Apr 1948 A
2498853 Hassold et al. Feb 1950 A
2528048 Gilleland Oct 1950 A
2536707 Allyn Jan 1951 A
2547532 Mendelsohn Apr 1951 A
2565761 Dean Aug 1951 A
2607881 Anderson Aug 1952 A
2630583 Gilleland Mar 1953 A
2632619 Wilson Mar 1953 A
2665432 Butler Jan 1954 A
2710975 Stoon et al. Jun 1955 A
2733452 Tanney Feb 1956 A
2745163 Van Buren, Jr. May 1956 A
2761153 Mew Sep 1956 A
2812524 Pruitt Nov 1957 A
2826766 Stoner Mar 1958 A
2827642 Huff Mar 1958 A
2860352 Pierre Nov 1958 A
2939195 Carlson Jun 1960 A
2959412 Sjostrom Nov 1960 A
2959792 Haugard Nov 1960 A
2979737 Pierre Apr 1961 A
3012781 Nelson Dec 1961 A
3030128 Versen Apr 1962 A
3099842 Jensen Aug 1963 A
3108290 Partridge Oct 1963 A
3112968 Cotton et al. Dec 1963 A
3123224 Kral Mar 1964 A
3154340 Lowell Oct 1964 A
3167788 Murphy et al. Feb 1965 A
3167789 Wicks Feb 1965 A
3213877 May et al. Oct 1965 A
3243497 Kendall et al. Mar 1966 A
3259922 Fischer Jul 1966 A
3272928 Hainzelin Sep 1966 A
3294247 Norrington Dec 1966 A
3302219 Harris Feb 1967 A
3317928 Root May 1967 A
3351959 Turpin Nov 1967 A
3358957 Lindenmuth Dec 1967 A
3363269 Kossuth Jan 1968 A
3364506 Hale Jan 1968 A
3383717 Underwood May 1968 A
3392410 Grahn Jul 1968 A
3413663 Swann Dec 1968 A
3418670 Morgan Dec 1968 A
3431937 Hettlinger et al. Mar 1969 A
3451070 Danielson Jun 1969 A
3452371 Hirsch Jul 1969 A
3506985 Lang Apr 1970 A
3506988 Saddoris Apr 1970 A
3521308 Fowler et al. Jul 1970 A
3556455 Storm et al. Jan 1971 A
3562824 White Feb 1971 A
3593351 Dove Jul 1971 A
3597774 Warren Aug 1971 A
3609211 Van Herk Sep 1971 A
3623501 Reimbold Nov 1971 A
3662981 Hogrebe May 1972 A
3750199 Spivey Aug 1973 A
3757363 Langlais Sep 1973 A
3769642 Warman Nov 1973 A
3775784 Fry Dec 1973 A
3781929 Stevens Jan 1974 A
3794313 Berger et al. Feb 1974 A
3810263 Taylor et al. May 1974 A
3820752 Oram Jun 1974 A
3827089 Grow Aug 1974 A
3829914 Treat Aug 1974 A
3859677 Nordwig Jan 1975 A
3874010 Geary Apr 1975 A
3877089 Spivey et al. Apr 1975 A
3884225 Witter May 1975 A
3889914 Torme Jun 1975 A
3893480 Dunbar Jul 1975 A
3895403 Davis Jul 1975 A
3905055 Blair Sep 1975 A
3924281 Gibbs Dec 1975 A
3931452 Nilsson Jan 1976 A
3938203 Linard Feb 1976 A
3977645 Deely Aug 1976 A
4011609 Bethlen Mar 1977 A
4012799 Rutherford Mar 1977 A
4023757 Allard et al. May 1977 A
4032775 Bobrick et al. Jun 1977 A
4038572 Hanagan Jul 1977 A
4038727 Robbins Aug 1977 A
4051565 Berge Oct 1977 A
4070721 Stasko Jan 1978 A
4077073 Koll et al. Mar 1978 A
4080530 Krogsrud Mar 1978 A
4092748 Ewers Jun 1978 A
4094484 Galione Jun 1978 A
4107769 Saluja Aug 1978 A
4125908 Vail et al. Nov 1978 A
4156946 Attenburrow Jun 1979 A
4160536 Krogsrud Jul 1979 A
4161044 Bogle Jul 1979 A
4165530 Sowden Aug 1979 A
4166602 Nllsen et al. Sep 1979 A
4180879 Mann Jan 1980 A
4183489 Copher et al. Jan 1980 A
4190912 Nilsson Mar 1980 A
4194253 Ullven Mar 1980 A
4195375 Paul Apr 1980 A
4202063 Murray May 1980 A
4202064 Joergensen May 1980 A
4208028 Brown et al. Jun 1980 A
4222132 Crim et al. Sep 1980 A
4243147 Twitchell et al. Jan 1981 A
4256098 Swan et al. Mar 1981 A
4259756 Pace Apr 1981 A
4262375 Lilienthal Apr 1981 A
4266747 Souder, Jr. et al. May 1981 A
4270234 James Jun 1981 A
4274168 Depowski Jun 1981 A
4281564 Hill Aug 1981 A
4296509 Simmons et al. Oct 1981 A
D261804 Foster et al. Nov 1981 S
4327453 Sefton May 1982 A
4353411 Harter et al. Oct 1982 A
4361918 Roisaeth Dec 1982 A
4372452 McCord Feb 1983 A
4403641 Reeder Sep 1983 A
4410158 Maffei Oct 1983 A
4416511 Weinberg Nov 1983 A
4452499 Verburg Jun 1984 A
4453687 Sweere Jun 1984 A
4453695 Sennott et al. Jun 1984 A
4459712 Pathan Jul 1984 A
4465255 Hill Aug 1984 A
4475322 Russo et al. Oct 1984 A
4479993 James Oct 1984 A
4490867 Gabrielsson Jan 1985 A
4494177 Matthews Jan 1985 A
4498205 Hino Feb 1985 A
4500127 Van Derlin Feb 1985 A
4502169 Persson Mar 1985 A
4523732 Biber et al. Jun 1985 A
4536903 Parker Aug 1985 A
4558847 Coates Dec 1985 A
4562987 Leeds et al. Jan 1986 A
4591124 Hellenbrand et al. May 1986 A
4610118 Fullenkamp Sep 1986 A
4627122 Hopp Dec 1986 A
4635308 Maggio et al. Jan 1987 A
4639955 Carminati et al. Feb 1987 A
4644595 Daniel Feb 1987 A
4660240 Hutton et al. Apr 1987 A
4662016 Seeman May 1987 A
4673154 Karapita Jun 1987 A
4679259 DiMatteo et al. Jul 1987 A
4680818 Ooka et al. Jul 1987 A
4681279 Nakamura Jul 1987 A
4686748 Kaivanto Aug 1987 A
4687167 Skalka et al. Aug 1987 A
4688304 Marcott Aug 1987 A
4698880 Hamm Oct 1987 A
4700415 DiMatteo et al. Oct 1987 A
4700417 McGovern Oct 1987 A
4716607 Johansson Jan 1988 A
4726082 DiMatteo et al. Feb 1988 A
4739526 Hollick Apr 1988 A
4744019 Krogsrud May 1988 A
4747170 Knouse May 1988 A
4761841 Larsen Aug 1988 A
4770384 Kuwazima et al. Sep 1988 A
4776047 DiMatteo Oct 1988 A
4782543 Hutton et al. Nov 1988 A
4787104 Grantham Nov 1988 A
4794660 Hawkrigg Jan 1989 A
4795122 Petre Jan 1989 A
4796313 DiMatteo et al. Jan 1989 A
4801815 Biette et al. Jan 1989 A
4809377 Lynn Mar 1989 A
4817903 Braehler et al. Apr 1989 A
4819283 DiMatteo et al. Apr 1989 A
4821352 DiMatteo et al. Apr 1989 A
4829617 Dameron May 1989 A
4836478 Sweere Jun 1989 A
4837872 DiMatteo et al. Jun 1989 A
4837873 DiMatteo et al. Jun 1989 A
4840363 McConnell Jun 1989 A
4843665 Cockel et al. Jul 1989 A
4844387 Sorgi et al. Jul 1989 A
4846434 Krogsrud Jul 1989 A
4850562 Mazzanti Jul 1989 A
4856741 Schaefer Aug 1989 A
4868938 Knouse Sep 1989 A
4872226 Lonardo Oct 1989 A
4879798 Petre Nov 1989 A
4887325 Tesch Dec 1989 A
4901967 Petre Feb 1990 A
4908890 Beckman et al. Mar 1990 A
4918771 James Apr 1990 A
4920590 Weiner May 1990 A
4937901 Brennan Jul 1990 A
4937904 Ross Jul 1990 A
4939801 Schaal et al. Jul 1990 A
4941220 DiMatteo et al. Jul 1990 A
4944056 Schroeder et al. Jul 1990 A
4945592 Sims et al. Aug 1990 A
4970738 Cole Nov 1990 A
4987623 Stryker et al. Jan 1991 A
4993683 Kreuzer Feb 1991 A
4997155 Reuter et al. Mar 1991 A
5001789 Schoenberger Mar 1991 A
5014399 Grisel May 1991 A
5014968 Lammers et al. May 1991 A
5016300 Jandrakovic May 1991 A
5016306 Grivna et al. May 1991 A
5018225 Fergni et al. May 1991 A
5022810 Sherrow et al. Jun 1991 A
5026017 Kreuzer Jun 1991 A
5033132 Greenblatt Jul 1991 A
5033170 Ewert Jul 1991 A
5036557 Fales Aug 1991 A
5038424 Carter et al. Aug 1991 A
5040765 Schonfelder Aug 1991 A
5046207 Chamberlain Sep 1991 A
5048133 Iura et al. Sep 1991 A
5050254 Murphy Sep 1991 A
5054140 Bingham et al. Oct 1991 A
5060324 Marinberg et al. Oct 1991 A
5063624 Smith et al. Nov 1991 A
5065464 Blanchard et al. Nov 1991 A
5068931 Smith Dec 1991 A
5072840 Asakawa et al. Dec 1991 A
5072906 Foster Dec 1991 A
5077843 Foster et al. Jan 1992 A
5083331 Schnelle et al. Jan 1992 A
5100091 Pollak Mar 1992 A
5107636 Schindele et al. Apr 1992 A
5108063 Koerber, Sr. et al. Apr 1992 A
5108064 Kreuzer Apr 1992 A
5113897 Kummerfeld et al. May 1992 A
5117521 Foster et al. Jun 1992 A
5123131 Jandrakovic Jun 1992 A
5127113 DeMatteo et al. Jul 1992 A
5144284 Hammett Sep 1992 A
5148558 Dunn Sep 1992 A
5161276 Hutton et al. Nov 1992 A
5163189 DeGray Nov 1992 A
5168587 Shutes Dec 1992 A
5172442 Bartley et al. Dec 1992 A
5185895 Gagne et al. Feb 1993 A
5186337 Foster et al. Feb 1993 A
5197156 Stryker et al. Mar 1993 A
5210887 Kershaw May 1993 A
5235711 Jandrakovic Aug 1993 A
5239713 Toivio et al. Aug 1993 A
5271110 Newman Dec 1993 A
5273502 Kelsey et al. Dec 1993 A
5274862 Palmer, Jr. et al. Jan 1994 A
5279010 Ferrand et al. Jan 1994 A
5280657 Stagg Jan 1994 A
5284255 Foster et al. Feb 1994 A
5285556 Shorin et al. Feb 1994 A
5288277 Kummerfeld Feb 1994 A
5299338 Foster Apr 1994 A
5306109 Kreuzer et al. Apr 1994 A
5319813 DiMatteo et al. Jun 1994 A
5327592 Stump Jul 1994 A
5329657 Bartley et al. Jul 1994 A
5333103 Cvek Jul 1994 A
5340072 Halbirt Aug 1994 A
5340266 Hodgetts Aug 1994 A
5343581 Bartley et al. Sep 1994 A
5348260 Acevedo Sep 1994 A
5359739 Rains et al. Nov 1994 A
5377371 Foster Jan 1995 A
5377391 Foster Jan 1995 A
5379468 Cassidy et al. Jan 1995 A
5390379 Palmer, Jr. et al. Feb 1995 A
5394576 Soltani et al. Mar 1995 A
5396673 Foster Mar 1995 A
5398359 Foster Mar 1995 A
5404602 Kondo Apr 1995 A
5406658 Olkkonen et al. Apr 1995 A
5421548 Bennett et al. Jun 1995 A
5428851 Shore et al. Jul 1995 A
5452807 Foster et al. Sep 1995 A
5455975 Foster Oct 1995 A
5456655 Morris Oct 1995 A
5469588 DiMatteo et al. Nov 1995 A
5479958 Kummerfeld Jan 1996 A
5490293 Nilsson Feb 1996 A
5513406 Foster et al. May 1996 A
5522100 Schilling et al. Jun 1996 A
5524304 Shutes Jun 1996 A
5527125 Kreuzer et al. Jun 1996 A
5530974 Rains et al. Jul 1996 A
5530976 Horcher Jul 1996 A
5539941 Fuller Jul 1996 A
5544371 Fuller Aug 1996 A
5544395 Rosenvinge Aug 1996 A
5560374 Viard Oct 1996 A
5561878 Ruehl Oct 1996 A
5562091 Foster et al. Oct 1996 A
5569129 Seif-Naraghi et al. Oct 1996 A
5577279 Foster et al. Nov 1996 A
5597385 Moerke Jan 1997 A
5603496 Rappaport Feb 1997 A
5608929 Crane Mar 1997 A
5613252 Yu et al. Mar 1997 A
5615425 Corente Apr 1997 A
5615426 Hokett Apr 1997 A
5618090 Montague et al. Apr 1997 A
5623948 Van Morris Apr 1997 A
5630238 Weismiller et al. May 1997 A
5642537 Johnson Jul 1997 A
5644876 Walker Jul 1997 A
5647079 Hakamiun et al. Jul 1997 A
5651149 Garman Jul 1997 A
5653064 Kappers et al. Aug 1997 A
5659905 Palmer, Jr. et al. Aug 1997 A
5669089 Dees Sep 1997 A
5673443 Marmor Oct 1997 A
5680661 Foster et al. Oct 1997 A
5682631 Weismiller et al. Nov 1997 A
5692272 Woods Dec 1997 A
5697109 Hodgetts Dec 1997 A
5708997 Foster et al. Jan 1998 A
5715548 Weismiller et al. Feb 1998 A
5732423 Weismiller et al. Mar 1998 A
5737781 Votel Apr 1998 A
5738316 Sweere et al. Apr 1998 A
5743503 Voeller et al. Apr 1998 A
5745937 Weismiller et al. May 1998 A
5790997 Ruehl Aug 1998 A
5799917 Li Sep 1998 A
5802636 Corbin et al. Sep 1998 A
5802640 Ferrand et al. Sep 1998 A
5806111 Heimbrock et al. Sep 1998 A
5819339 Hodgetts Oct 1998 A
5826846 Buccieri et al. Oct 1998 A
5842672 Sweere et al. Dec 1998 A
5850642 Foster Dec 1998 A
5876008 Sweere et al. Mar 1999 A
5878536 Demmitt et al. Mar 1999 A
5890238 Votel Apr 1999 A
5895886 Beuster et al. Apr 1999 A
5901388 Cowan May 1999 A
D412161 Theis et al. Jul 1999 S
5924665 Sweere et al. Jul 1999 A
D413110 Sweere et al. Aug 1999 S
5937456 Norris Aug 1999 A
5947429 Sweere et al. Sep 1999 A
5966760 Gallant et al. Oct 1999 A
5967479 Sweere et al. Oct 1999 A
5992809 Sweere et al. Nov 1999 A
5996144 Hodgetts Dec 1999 A
D148603 Gallant Jan 2000 S
6035465 Rogozinski Mar 2000 A
6045596 Holland, Jr. et al. Apr 2000 A
6058533 Nelson May 2000 A
6065162 Behr May 2000 A
6085368 Robert et al. Jul 2000 A
6095468 Chirico et al. Aug 2000 A
6108837 Knebel, III Aug 2000 A
6128796 McCormick et al. Oct 2000 A
6146158 Peratoner et al. Nov 2000 A
6152426 Von Fange Nov 2000 A
6155743 Chen Dec 2000 A
6170102 Kreuzer Jan 2001 B1
6179260 Ohanian Jan 2001 B1
6201983 Haumann et al. Mar 2001 B1
6213481 Mar.ese et al. Apr 2001 B1
6231526 Taylor et al. May 2001 B1
D443365 Walker Jun 2001 S
6256935 Walker Jul 2001 B1
6269594 Walker Aug 2001 B1
6282734 Holberg Sep 2001 B1
6289533 Hodgetts Sep 2001 B1
D452573 Walker Dec 2001 S
6341393 Votel Jan 2002 B1
6343601 Kiske et al. Feb 2002 B1
6349436 Kreuzer Feb 2002 B1
6360389 Gallant et al. Mar 2002 B1
6363555 LaRose Apr 2002 B1
6364268 Metelski Apr 2002 B1
6378148 Votel Apr 2002 B1
D456751 Williams May 2002 S
6393636 Wheeler May 2002 B1
6431515 Gampe et al. Aug 2002 B1
6434329 Dube et al. Aug 2002 B1
6466432 Beger Oct 2002 B1
6471363 Howell et al. Oct 2002 B1
6484332 Korver, II et al. Nov 2002 B2
6496991 Votel Dec 2002 B1
6507963 Hodgetts Jan 2003 B2
6523195 Rodier et al. Feb 2003 B1
6526606 Friedrich Mar 2003 B2
6530742 Trinler et al. Mar 2003 B2
6532607 Heil Mar 2003 B1
6539569 O'Connell Apr 2003 B2
6553587 Barker et al. Apr 2003 B1
6560793 Walker May 2003 B2
6591435 Hodgetts Jul 2003 B1
6615423 Sverdlik et al. Sep 2003 B2
6629323 Sverdlik et al. Oct 2003 B2
6639623 Howell et al. Oct 2003 B2
6639789 Beger Oct 2003 B2
6662388 Friel et al. Dec 2003 B2
6668493 Walker Dec 2003 B1
6675412 Faucher et al. Jan 2004 B2
6725483 Gallant et al. Apr 2004 B2
6728979 Robert May 2004 B1
6772456 Votel Aug 2004 B2
6817585 Wagner et al. Nov 2004 B2
6834402 Hanson et al. Dec 2004 B2
6899442 Howell et al. May 2005 B2
7029176 Martti et al. Apr 2006 B2
7040057 Gallant et al. May 2006 B2
7065811 Newkirk et al. Jun 2006 B2
7065812 Newkirk et al. Jun 2006 B2
7073765 Newkirk Jul 2006 B2
7097145 Turner Aug 2006 B2
7191992 Wagner et al. Mar 2007 B2
7216382 Newkirk et al. May 2007 B2
7219472 Gallant et al. May 2007 B2
7254850 Newkirk et al. Aug 2007 B2
7392621 Gallant et al. Jul 2008 B2
7418749 Graham et al. Sep 2008 B2
7581708 Newkirk Sep 2009 B2
7676865 Graham et al. Mar 2010 B2
7735266 Gallant et al. Jun 2010 B2
7735788 Newkirk et al. Jun 2010 B2
7770247 Lubbers et al. Aug 2010 B2
7770860 Culpepper et al. Aug 2010 B1
7849978 Graham et al. Dec 2010 B2
7884735 Newkirk Feb 2011 B2
7921489 Newkirk et al. Apr 2011 B2
8141188 Lubbers et al. Mar 2012 B2
20010030683 Howell et al. Oct 2001 A1
20010044957 Hodgetts Nov 2001 A1
20010047543 VanSteenburg et al. Dec 2001 A1
20020015296 Howell et al. Feb 2002 A1
20020029418 Votel Mar 2002 A1
20020083521 Sverdlik Jul 2002 A1
20020083522 Sverdlik et al. Jul 2002 A1
20020152555 Gallant et al. Oct 2002 A1
20020170110 Hodgetts Nov 2002 A1
20030014817 Gallant et al. Jan 2003 A1
20030021107 Howell et al. Jan 2003 A1
20030070226 Heimbrock Apr 2003 A1
20030074732 Hanson et al. Apr 2003 A1
20030100559 Sikorski et al. May 2003 A1
20030100560 LaVoie et al. May 2003 A1
20030110559 Weigand Jun 2003 A1
20030110560 Friel et al. Jun 2003 A1
20040040086 Eisenberg et al. Mar 2004 A1
20040164220 Newkirk Aug 2004 A1
20040188578 Turner Sep 2004 A1
20040199996 Newkirk et al. Oct 2004 A1
20040221388 Votel Nov 2004 A1
20040237202 Gallant et al. Dec 2004 A1
20040262484 Wagner et al. Dec 2004 A1
20050000019 Newkirk et al. Jan 2005 A1
20050138727 Faux et al. Jun 2005 A1
20060043244 Graham et al. Mar 2006 A1
20060179571 Newkirk Aug 2006 A1
20060207025 Newkirk et al. Sep 2006 A1
20060207026 Newkirk et al. Sep 2006 A1
20060226333 Newkirk Oct 2006 A1
20060242763 Graham et al. Nov 2006 A1
20070007418 Lubbers et al. Jan 2007 A1
20070067911 Graham et al. Mar 2007 A1
20070068089 Gallant et al. Mar 2007 A1
20070138354 Graham et al. Jun 2007 A1
20070187559 Newkirk et al. Aug 2007 A1
20070251014 Newkirk et al. Nov 2007 A1
20100205739 Gallant et al. Aug 2010 A1
20100299841 Lubbers et al. Dec 2010 A1
20110168860 Newkirk et al. Jul 2011 A1
Foreign Referenced Citations (25)
Number Date Country
660123 Dec 1978 CH
1260692 Feb 1968 DE
92 04 321.6 May 1992 DE
29805019 May 1998 DE
0 215 212 Mar 1987 EP
0 257 299 Mar 1988 EP
0875228 Apr 1998 EP
0 943 306 Sep 1999 EP
1 155 673 Nov 2001 EP
1 243 900 Sep 2002 EP
1 292 174 Apr 1962 FR
1487854 Jul 1967 FR
2624007 Dec 1987 FR
2687065 Nov 1992 FR
420697 Dec 1934 GB
1 061 383 Mar 1967 GB
1091031 Nov 1967 GB
1447163 Aug 1976 GB
2139487 Nov 1984 GB
WO 8600221 Jan 1986 WO
WO 9521600 Aug 1995 WO
WO 9709896 Mar 1997 WO
WO 9727770 Aug 1997 WO
WO 9844889 Oct 1998 WO
WO 0009061 Feb 2000 WO
Related Publications (1)
Number Date Country
20110168860 A1 Jul 2011 US
Provisional Applications (2)
Number Date Country
60455621 Mar 2003 US
60510756 Oct 2003 US
Continuations (3)
Number Date Country
Parent 11770265 Jun 2007 US
Child 13050985 US
Parent 11422365 Jun 2006 US
Child 11770265 US
Parent 10802287 Mar 2004 US
Child 11422365 US