The present application and resultant patent relate generally to gas turbine engines and more particularly relate to a gas turbine engine with a radial diffuser exhaust system having an enlarged expansion zone upstream of the support struts, diffuser guides with deflector lips, and an asymmetric exhaust collector.
During normal operation of a gas turbine engine, one of the main aerodynamic challenges involves the efficient discharge of the high momentum combustion gas flow exiting the last stage of the turbine. Although it may be aerodynamically beneficial to use a horizontal exhaust configuration, such an axial exhaust may be impractical due to the overall footprint implications. Given such, it is standard practice to use a vertical and side mounted exhaust stacks that radially turns the combustion gas flow from an axial turbine. Specifically, a radial diffuser may be used to direct the combustion gas flow in a radial direction. The radial diffuser generally includes a number of struts mounted onto an inner diffuser guide and enclosed by an outer diffuser guide. The radial diffuser converts the kinetic energy of the combustion gas flow exiting the last stage of the turbine into potential energy in the form of increased static pressure. Increasing the overall static pressure recovery tends to increase the overall performance and efficiency of the gas turbine engine.
There is thus a desire for an improved diffuser design and an improved exhaust system for use with a gas turbine engine. Such an improved diffuser and exhaust system may provide enhanced aerodynamic performance and efficiency while reducing the overall axial length of the gas turbine engine as a whole. In addition, improvements to aero performance of exhaust systems traditionally has been linked with lower noise emissions, hence similar results may be expected from a radial exhaust diffuser as compared to a conventional axial configuration.
The present application and the resultant patent thus provide a radial diffuser exhaust system for use with a gas turbine engine. The radial diffuser exhaust system may include a radial diffuser positioned within an asymmetric exhaust collector. The asymmetric exhaust collector may include a closed end chamber and an exhaust end chamber. The closed end chamber may have a first size, the exhaust end chamber may have a second size, and the first size may be smaller than the second size.
The present application and the resultant patent further provide a radial diffuser exhaust system for use with a gas turbine engine. The radial diffuser exhaust system may include a radial diffuser positioned asymmetrically within an exhaust collector. The radial diffuser may include an upper diffuser guide. The upper diffuser guide may include an upstream expansion angle, a downstream expansion angle, an upper deflector lip with a slanted configuration, and a lower deflector lip.
The present application and the resultant patent further provide a radial diffuser exhaust system for use with a gas turbine engine. The radial diffuser exhaust system may include a radial diffuser positioned within an asymmetric exhaust collector. The radial diffuser may include an upper diffuser guide. The upper diffuser guide may include an upstream expansion angle and a downstream expansion angle. The upstream expansion angle may be larger than the downstream expansion angle.
These and other features and improvements of the present application and the resultant patent will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.
Referring now to the drawings, in which like numerals refer to like elements throughout the several views,
The gas turbine engine 10 may use natural gas, liquid fuels, various types of syngas, and/or other types of fuels and combinations thereof. The gas turbine engine 10 may be any one of a number of different gas turbine engines offered by General Electric Company of Schenectady, New York, including, but not limited to, those such as a 7 or a 9 series heavy duty gas turbine engine, the GE Aero Derivatives engines, and the like. The gas turbine engine 10 may have different configurations and may use other types of components. Other types of gas turbine engines also may be used herein. Multiple gas turbine engines, other types of turbines, and other types of power generation equipment also may be used herein together.
The gas turbine engine 10 also may include a radial diffuser 55. The radial diffuser 55 may be positioned downstream of the turbine 40. As described above, the radial diffuser 55 may include a number of struts 60 mounted on an inner diffuser guide 65 and enclosed within an outer diffuser guide 70. The radial diffuser 55 turns the flow of combustion gases 35 in a radial direction. Other types of diffusers may be used. Other components and other configurations may be used herein.
The radial diffuser 110 may have any number of the diffuser support struts 140. The support struts 140 may have an aerodynamic, airfoil-like shape 180 or a similar configuration. The support struts 140 may be positioned between the conical sections 150 of the inner diffuser guide 120 and the outer diffuser guide 130. Other components and other configurations may be used herein.
The outer diffuser guide 130 may include a kink 190 just upstream of the support struts 140. Specifically, the outer diffuser guide 130 may include an upstream expansion angle 200 upstream of the support struts 140 and a downstream expansion angle 210 downstream of a leading edge 220 of the support struts 140 with the kink 190 being the apex in-between. The upstream expansion angle 200 may be more than about twenty-five percent (25%) larger than the downstream expansion angle 210. The ratio of the upstream expansion angle 200 to the downstream expansion angle 210, as well as the axial length of the sections, may vary with the downstream design of the radial diffuser 110, the aerodynamic and thermodynamic characteristics of the flow including velocity, swirl, temperature, and pressure, as well other types of operational parameters. Other angles also may be used herein. Other components and other configurations may be used herein.
The radial diffuser exhaust system 100 also may include an exhaust collector 230. The radial diffuser 110 may be positioned within the exhaust collector 230. In this example, the exhaust collector 230 may be an asymmetric exhaust collector 240. The asymmetric exhaust collector 240 may include a closed end chamber 250 on one end thereof and an exhaust end chamber 260 on the other end. The closed end chamber 250 may be smaller than the exhaust end chamber 260. The ratio of the size of the closed end chamber 250 to the size of the exhaust end chamber 260 may depend upon the flow rate, total pressure, temperature, the cross-sectional area of the exhaust stack, and other types of operational parameters. By way of example, the axial length of the closed end chamber 250 may be more than about thirty percent (30%) shorter or smaller than the exhaust end chamber 260.
In use, the larger upstream expansion angle 200 positioned about the kink 190 in the outer diffuser guide 130 allows for a more aggressive expansion of the combustion gas flow 35 upstream of the support struts 140 with related slower expansion downstream thereof. The use of the differing expansion angles 200, 210 thus provides an improvement in static pressure recovery. Flow impingement on the leading edge 220 of the support struts 140 may remove part of the kinetic energy of the combustion gas flow 35. The larger upstream expansion angle 200 allows for a larger radius to be used in the support struts 140 so as to reduce the effective blockage and allow a better recovery of static pressure. The kink 190 also allows for a shorter axial length of the overall radial diffuser exhaust system 100.
The larger upstream expansion angle 200 is allowed because the support struts 140 may cause local deceleration and a static pressure increase so as to prevent flow separation from the outer diffuser guide 130. As such, the upstream expansion angle 200 may be synchronized with the blockage of the support struts 140, the operating engine mass flow rate, and the back pressure generated by the sharp turning of the flow about the closed end chamber 250. The larger upstream expansion angle 200 is placed at an upstream end of the outer diffuser guide 130 because of a strong boundary layer allows a more aggressive angle without separation for greater pressure recovery.
In order to reduce this back pressure at the closed end chamber 250, the asymmetric design of the closed end chamber 250 and the exhaust end chamber 260 may prevent the formation of large vortices so as to assist in achieving a smoother pressure recovery in the combustion gas flow 35. The formation of such vortices may be a primary cause of flow separation. The asymmetric exhaust chamber 240 thus provides enhanced aerodynamic performance while reducing the overall length of the radial diffuser exhaust system 100. The use of the kink 190 and the asymmetric exhaust chamber 240 thus may provide improvements in overall diffuser aerodynamic efficiency and overall engine performance.
The upper deflector lip 310 may have a slanted configuration 330 extending upward towards the exhaust end chamber 260 in a downstream direction. The slanted configuration 330 allows for the combustion gases 35 to flow upwards into the exhaust end chamber 260 and towards the exhaust stack. The slanted configuration 330 of the upper deflector lip 310 may guide the recirculation flow into the main stream while avoiding creation of a larger total pressure drop. The slanted configuration 330 of the upper deflector lip 310 helps to eliminate recirculation bubbles within the exhaust end chamber 260 while reducing overall flow separation. The upper deflector lip 310 also provides additional space for the combustion gas flow 35 to expand.
The lower deflector lip 320 may have a largely flat or a different configuration 340 as compared to the slanted configuration 330 of the upper deflector lip 310. The different configuration 340 of the lower deflector lip 320 further inhibits the formation of recirculation vortices about the closed end chamber 250 and contributes to breaking down any vortices therein. The lower deflector lip 20 thus prevents interaction between the strong recirculating flow generated therein and the incoming flow. Specifically, the lower deflector lip 320 helps to evacuate the flow therein without interference with the incoming flow.
The size, shape, angle, and circumferential length of the guide lips may be dictated by the specific thermodynamics of the gas turbine package as a whole as well as the dimensions of the exhaust collector and other components. The width and shape of the guide lips may be independent form one another and may vary along the circumferential locations. A V-profile trim as viewed from the side of the guide lips may favor the motion of the combustion gases from the closed end of the exhaust collector to the open end.
It should be apparent that the foregoing relates only to certain embodiments of the present application and the resultant patent. Numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention as defined by the following claims and the equivalents thereof.