This invention relates generally to radial turbine wheels and more specifically to radial turbine wheels having blades with locally curved trailing edge tips.
High cycle fatigue of turbine wheel blades is a significant design problem because fatigue failure can result from resonant vibratory stresses sustained over a relatively short time. Fatigue failure results from a combination of steady stress and vibratory stress. The root cause of vibratory stress is flow-induced vibration at blade resonant frequency interfering with nozzle/vane passage frequency expressed in N per revolution with N=1, 2 . . . etc. For avoidance of high cycle fatigue failure due to vibratory stress, it would be preferable if the wheel has all blade vibration frequencies high enough that clears the vane count in the operating speed region.
The prior art has attempted to reduce stresses on the turbine wheel blades by configuring blade geometry. In one turbine blade, the leading edge geometry is a very slender ellipse or parabola and includes a serrated structure, pocket-type depressions, or a recessed area acting as a sweep back. In another example, an area of roughness is incorporated into the blade close to the leading edge. While both these blades have reduced vibrational stress, both incorporate areas that must be machined into the blade and are not easily manipulated once the blade has been made.
As can be seen, there is a need for radial turbine wheels having blades with decreased vibrational stresses resulting in increased blade life. It would also be desirable if the blades were easy and cost effective to manufacture.
In one aspect of the present invention there is provided a turbine wheel comprising a hub; a central bore running longitudinally through the hub; at least one blade, the blade extending radially from the hub and wherein the blade comprises a blade tip, the blade tip comprising a trailing edge; and wherein the trailing edge of the blade tip is locally curved.
In another aspect of the present invention there is provided a turbine wheel comprising: a hub; a central bore running longitudinally through the hub; long splitters and short splitter, the long and short splitters extending radially from the hub; a plurality of blades, the blades extending radially from the hub and being separated from one another by the long and short splitter, wherein the blade comprises a blade tip, the blade tip comprising a trailing edge; and wherein the trailing edge of the blade tip is curved.
In a further aspect of the present invention there is provided a method for increasing the natural frequency in a blade vibrating mode of blades of a turbine wheel comprising the steps of: (a) clipping the trailing edges of blade tips of the blades to form a circular or polynomial arc; (b) predicting the natural frequency of blade vibrating modes by using a finite element model of the modified turbine wheel; (c) determining the actual natural frequency of blade vibration modes by testing the modified turbine wheel; and (d) comparing the actual natural frequency to the predicted natural frequency.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
The following detailed description is of the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
Broadly, the present invention provides a turbine wheel comprising blades having a locally curved trailing edge tip. The present invention also provides methods of using the turbine wheel of the present invention to control blade natural frequencies which may result in increased fatigue life of the blades and may also eliminate vortex shedding. The turbine wheel of the present invention may be used in gas turbine engines for applications in, but not limited to, aerospace.
The present invention provides a turbine wheel which may have increased blade fatigue life and no or reduced vortex shedding. This may be accomplished by having a locally curved trailing edge tip on the blade itself. The prior art provides blades for turbine wheels having modifications at the leading edge. These prior art modifications include providing areas of roughness on the surface of blade, indentations or recessed areas and changes in the geometry of the leading edge. In contrast, the present invention provides a locally curved blade edge tip at the trailing edge of blade.
Referring to
Blade 16 may comprise a blade tip 24 and blade tip 24 may comprise a trailing edge 22 with respect to the direction of rotation 26 of turbine wheel 10. Blade tip 24 may be the part of blade 16 that intersects with an outer shroud (not shown). Trailing edge 22 of blade tip 24 may be locally curved as shown in
Referring to
R=an×Znan-1×Zn-1+ . . . +a×Z+b
where:
This curvature of trailing edge 22 may control blade frequency for low order modes of resonance which may result in increased fatigue life and the elimination of vortex shedding.
The curvature of trailing edge 22 may be characterized by circular or polynomial arc 28. By adjusting the curvature of circular or polynomial arc 28 of trailing edge 22, blade 16 may achieve frequency avoidance for low order modes resonance. The amount of curvature of circle arc 28 may be determined empirically. All blades 16 may be clipped at the same time to give locally curved trailing edge 22 of blade tip 24 and then the frequency of blades 16 may be monitored. It may then be determined whether additional clipping is necessary to produce the proper frequency adjustment. It may be preferable to clip blade tip 24 in small increments to avoid over-clipping of blade tip 24. Over clipping may lead to a decrease in aerodynamic and/or structural performance.
By way of non-limiting example, when turbine wheel 10, as depicted for illustrative purposes in
The fatigue failure of turbine wheel blade 16 may result from a combination of steady stress and vibratory stress of blade 16. For avoidance of failure due to high cycle fatigue, a maximum steady stress location 32 (see
By way of non-limiting example, when turbine wheel 10, as depicted for illustrative purposes in
The present invention also provides a method 100 (
It should be understood, of course, that the foregoing relates to exemplary embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.