This invention is directed to a radiant heater device to render a radiant heater more efficient.
Trombe in U.S. Pat. No. 3,310,102 illustrates and describes conventional reflector designs used in radiant heaters. Those conventional reflector designs have a “flat top shape”, “an involute of a cylindrical radiating shape”, and “a cylindro-parabolic shape”. These reflector shapes are fundamental and generic reflector shapes used in radiant heaters. All other reflector shapes are variations thereof. A common feature of these reflector shapes is that there is a top section positioned over and spaced from a top surface of a tube through which a hot fluid is transported and the tube radiates heat energy to transfer the heat energy to surrounding air; and two corresponding side surfaces that positioned along and spaced from both side surfaces of the tube or on side surface of the tube if the tube is “U” shaped and the reflector partially encloses the entire “U” configuration.
In U.S. patent application publication number 2011/0049253, Catteau et al. describe (a) the fundamental aspects of how conventional radiant heaters operate, (b) conventional radiant heater component parts, and (c) some variations of the above-identified reflector shapes. That description is as follows: “Radiant heaters are frequently used in warehouses, factories, and commercial settings to provide a warm environment during cold weather. In such systems, tubular conduits (e.g., “tubes”) may hang from the ceiling or other overhead structure. A heated fluid (provided by a power plant) passes through the tube and heats the tube. The tube radiates heat waves (e.g., heat transfer by radiation) to an adjacent area, such as toward the floor or an object (a) positioned on the floor and (b) that may be permanent or transitory—like a person standing at or near, partaking in an activity at or near, or passing through or near the heated floor area. A reflector may direct the radiated heat in a desired direction. A heating system of this type may warm objects or people on loading docks, near open doorways, or where conditions may cause a high heat loss. . . .
Emitting tube 102 carries a heated fluid (e.g., hot flue gas), which heats emitting tube 102 to high temperatures. As a result, emitting tube 102 radiates heat waves 110 (e.g., heat wave 110-1, 110-2, 110-3, and 110-4, shown in
Reflector 104 reflects heat waves 110-2, 110-3, and 110-4 toward floor 108 as reflected heat waves 112 (e.g., heat waves 112-1, 112-2, and 112-3 shown in
Space 106 and reflector 104 may become hot themselves (e.g., the air in space 106 being in contact with emitting tube 102 (conduction), the convection in the air, and the contact of the air with reflector 104). To slow heat transfer in the upward direction (e.g., away from floor 108) and to reduce heat loss, an insulation layer 114 may reside above reflector 104.
Emitting tube 202 carries heated fluid (e.g., hot flue gas), which may heat emitting tube 202 to high temperatures. As a result, emitting tube 202 radiates heat waves 210 (shown in
Reflector 204 reflects heat waves 210 toward a floor 208 as reflected heat waves 212 (shown in
As shown in
Although emitting tube 202 may be sized larger, in one embodiment emitting tube 202 is kept a distance from the reflection envelope and junction 220. For example, the distance from emitting tube 202 to junction 220 may be between 35 to 40 millimeters (mm), 30 to 35 mm, 25 to 30 mm, 20 to 25 mm, 15 to 20 mm, 10 to 15 mm, 5 to 10 mm, or less than 5 mm. In one embodiment, the distance from emitting tube 202 to junction 220 is 29.29 mm, where the radius of emitting tube 202 is 38.05 mm and the distance between center axis P is 67.34 mm. In another embodiment, the distance from emitting tube 202 to junction 220 is 16.54 mm, where the radius of emitting tube 202 is 50.8 mm and the distance between center axis P is 67.34. The dimensions of emitting tube 202 may also be scaled smaller such that its radius may be smaller than radius R shown in
Viewed in another way, the dimensions of reflector 204 may be correspondingly scaled down before reflected radiation 212 would impinge on emitting tube 202. Alternatively, the dimensions of reflector 204 may be increased and reflected radiation 212 may still avoid emitting tube 202. Thus, reflector 204 may be designed to accommodate many different sizes of emitting tubes.
In another embodiment, reflector 204 may be formed of multiple (e.g., two) sheets of metal.
First sheet 302-1 may include first lip 304-1 and a first flange 306-1 that may run along junction 220. Flange 306-1 may provide rigidity along the length of sheet 302-1 and may overlap with a portion of second sheet 302-2 to allow first and second sheets 302-1 and 302-2 to be joined together by, for example, bolts along the length of such an overlap. Second sheet 302-2 may include second lip 304-2 and a second flange 306-2. Flange 306-2 may also overlap with a portion of first sheet 302-1 to allow first and second sheets 302-1 and 302-2 to be joined together by, for example, bolts along the length of such an overlap.
In one embodiment, a joining strip 310 may overlap with first sheet 302-1 and second sheet 302-2 along their lengths. Joining strip 310 may allow first and second sheets 302-1 and 302-2 to be joined together by, for example, bolts along the length of the overlap between joining strip 310 and first sheet 302-1 and bolts along the length of the overlap between joining strip 310 and second sheet 302-2. In an embodiment with joining strip 310, for example, flanges 306-1 and 306-2 may be omitted.
In one embodiment, joining strip 310 is short compared to the length of reflector 204. In this embodiment, multiple joining strips may be used along the length of reflector 204. For example, a joining strip 310 may be used at each end of reflector 204 and a joining strip 310 may be used in the middle of reflector 204. . . .
Emitting tube 202 becomes hot as a result of hot gasses passing through emitting tube 202. In addition to emitting thermal radiation, emitting tube 202 heats the air in space 206 surrounding emitting tube 202 (e.g., through contact of the air with emitting tube 202, or conduction). Heat may also transfer through the air in space 206 as well as the air in space 404 between reflector 204 and converter hood 402 (e.g., through convection). Reflector 204 may also conduct heat from space 206 to space 404. Hot air in space 404 is depicted in
Heat may build up in space 404 between reflector 204 and converter hood 402, and particularly at the surface of converter hood 402 by the convection of the air in space 404. As a result, converter hood 402 may capture this heat energy (e.g., become hot itself) and may begin to radiate energy. In other words, converter hood 402 may convert the heat energy transferred through convection to the surface of converter hood 402 into heat energy radiated through space. As shown in
Converter hood 402 may include corrugated portions to capture heat more effectively and to help distribute the heat energy throughout space 404. Capturing and converting heat energy around emitting tube 202, by converter hood 402, allows emitting tube 202 to operate at lower temperatures. Operating emitting tube 202 at lower temperatures may extend the life of emitting tube 202, or may allow more hot fluid to pass through emitting tube 202 without reaching its maximum rated temperatures.
Corrugated portions 508 may increase the surface area of converter hood 402, allowing it to absorb more heat and convert more energy into radiated heat. In one embodiment, corrugated portions 508 include angles (e.g., angle 520) between 35 to 50° (e.g., 35 to 40°, 40 to 45°, [and] 45 to 50°), 50 to 60°, or 60 to 70°, or 25 to 35°. Corrugated portions 508 may include angles greater than 70° or less than 25°, for example. In one embodiment, corrugated portions 508 include 45° angles, increasing the area of converter hood 402 by a factor of 1.414. Corrugated portions 508 may also trap hot air and allow heat to be more evenly distributed along converter hood 402 than if, for example, converter hood 402 were not corrugated at all, which may result in more hot air accumulating at the top portion of converter hood 402. In another embodiment, corrugated portions may include curves rather than angles.
Flat portion 510 lacks corrugations, which may also help prevent hot air from accumulating at the top portion of converter hood 402. Like corrugated portions 508, flat portion 510 may allow heat to be more evenly distributed along converter hood 402 than if, for example, the top portion were corrugated.
First side portion 502-1 may include corrugated portion 508 and first flange 506-1. First flange 506-1 may provide for rigidity along the length of converter hood 402. First flange 506-1 may also hold an insulation layer (not shown, discussed below) in place. Corrugated portion 508 may also provide for rigidity along the length of converter hood 402 in addition to the features discussed above. Second side portion 502-2 may include corrugated portion 508 and second flange 506-2, which may provide the same features as the corresponding elements of first side portion 502-1.
First top portion 504-1 may include corrugated portion 508 and flat portion 510. Likewise, second top portion 504-2 may include corrugated portion 508 and flat portion 510. Part of first top portion 504-1 may overlap with first side portion 502-1, allowing first top portion and first side portion 506-1 to be bolted together. Likewise, part of second top portion 504-2 may overlap with second side portion 502-2, allowing second top portion 504-2 and second side portion 502-2 to be bolted together. Part of first top portion 504-1 may also overlap with part of second top portion 504-2, allowing first top portion 504-1 and second top portion 504-2 to be bolted together. . . .
For example, assume that circle 702 is the first curve and that line 706-1 is a string 706 attached to circle 702 at a fixed point 708 on one end, and to a pencil 712 on the other end. Circle 702 may represent an emitting tube, such as emitting tube 202. In this example, the length of string 706 is the same as the circumference of circle 702. As string 706 is moved in a direction 710, string 706 becomes wound around circle 702 and pencil 712 traces involute curve 704. String 706 is shown in many positions (706-1, 706-2, etc.) as string 706 is wound around circle 702. Upon one complete revolution of string 706 around circle 702, involute curve 704 intersects circle 702 at point 708 because the length of string 706 is the same as the circumference of circle 702. Involute curve 704 may also be described as the unwinding of string 706 from circle 702.
One property of involute curve 704 is that tangents of circle 702 are perpendicular to involute curve 704. Because lines 706-1 through 706-11 are tangent to circle 702, lines 706-1 through lines 706-11 are all perpendicular to involute curve 704.
The relationship shown in
The spacing between emitting tube 202 and reflector 204 may be the result of fixed point 708 not being directly above the center of circle 702. For example, in
As shown in
As discussed above, these properties of reflector 204 may increase the heating efficiency of radiant heater 200 and radiant heater 400. These properties may also allow the temperature of emitting tube 202 to be lower than in conventional systems (as compared to emitting tube 102, for example).
As discussed above, reflector 204/204′ allows for more reflected energy to pass around emitting tube 202. The shape of reflector 204/204′ may help reduce heat buildup under the reflector. Reducing heat under reflector 204/204′ may result in lower temperatures on the hottest points of emitting tube 202. Thus, reflector 204/204′ may increase the reflection efficiency and may increase the radiant efficiency of a heater. This greater efficiency may increase the reliability of the heater and the lifetime of the heater, as component temperature (e.g., the temperature of emitting tube 202) may be reduced. Because reflector 204/204′ may reduce temperatures, relative to reflector 104, reflector 204/204′ may allow an increased heat input to achieve the same reliability as reflector 104.
Returning to
In addition, as shown in
As discussed above, in one embodiment, reflector 204 comprises a first sheet 302-1 and a second sheet 302-2 joined by multiple joining strips 310. In this exemplary embodiment, first sheet 302-1 and second sheet 302-2 do not include flange 306-1 and flange 306-2. Instead, an air gap may separate first sheet 302-1 and second sheet 302-2 (e.g., at junction 220), where the air gap is interrupted by joining strips 310. In this embodiment, heat transfer may occur through convection by air passing from space 206 to space 404 through the air gap between first and second sheets 302-1 and 302-2. In this embodiment, reflected radiation may not be reduced significantly because it is at junction 220 where radiation may otherwise reflect downward toward emitting tube 202. Converter hood 402 may include an angle immediately above junction 220 to reflect any radiation away from emitting tube 202. Alternatively, converter hood 402 may include a material directly above junction 220 to absorb the energy emitted by emitting tube 202 so that captured energy may be re-radiated from converter hood 402. Air gaps or holes may also be placed in other locations on reflector 204, such as periodically at the highest points of reflector 204 along its length.
In another embodiment, reflector 204 and/or emitting tube 202 may be suspended from converter hood 402 by a suspension mechanism (e.g., cables or long bolts). In this embodiment, heat may be transferred by conduction of heat along the suspension mechanism directly from reflector 204/space 204 to converter hood 402. In another embodiment, reflector 204 and/or emitting tube 202 may be connected to converter hood 402 through a metal conductor (other than a suspension mechanism) to transfer heat by conduction from reflector 204 and/or emitting tube 202 to converter hood 402.
In one embodiment, reflector 204 may be approximately 300 mm wide from edge to edge and 100 mm tall. In one embodiment, converter hood 402 may be approximately 700 mm wide from edge to edge and 170 mm tall. . . .
For example, reflector 204 may be used in a radiant heater without the use or converter hood 402. In this example, an insulation layer (not shown) may be laid above reflector 204 to slow the heat transfer upward to reduce heat loss. Is another example, converter hood 402 may be used with reflectors of any shape, including reflector 104 of radiant heater 100. As another example, a curved surface other than a circle (e.g., an ellipse) may be used to create the involute shape of reflector 204, even though emitting tube 202 is still a circle. In this example, emitting tube 202 may still be within the radiation-free envelope created by the involute curved surface. Further, shapes that approximate or are substantially similar to the shape of reflector 204 and reflector 204′ are possible.
As another example, first lip 304-1 and second lip 304-2 of reflector 204 may include another bend inward toward first sheet 302-1 and second sheet 302-2, respectively. In this embodiment, radiation 406 emitted by converter hood 402 may reflect away from reflector 204 rather than being trapped in the area formed by lips 304 and sheets 302.
As yet another example, in one embodiment, reflector 204 and converter hood 402 may both be mounted on the same support structure such that the spatial relationship between the two remains the same. In another embodiment, reflector 204, converter hood 402, and emitting tube 202 may be mounted on the same support structure such that the spatial relationship between the three remains the same. In another embodiment, emitting tube 202 and reflector 204 may be mounted on the same support structure so that the spatial relationship between the two remains the same. In this embodiment, reflector 204, converter hood 402, and/or emitting tube 202 may be sold, packaged, and shipped in a manner convenient for installation. In one embodiment reflector 204 and converter hood 402 may be integrally formed.”
In U.S. Pat. No. 7,489,858; Zank et al. wrote, “Reflector is positioned and designed to widen the heat pattern radiated (projected, dispensed, etc.) from heating unit. Reflector comprises an elongate member configured to extend opposite to heating element so as to reflect heat emitted by heating element. Reflector generally includes spine, wings and wingtips. Spine generally functions as a backbone of reflector and extends parallel to heating element. Wings obliquely extend from spine and cooperate with spine to provide a majority of a reflecting surface about heating element. Wingtips extend from wings, respectively, and are configured to cooperate with flanges of main body and housing to cover and conceal the volume between reflector and main body. Elongate bores are formed along a junction of wing and wingtip and along a junction of wing and wingtip, respectively. One of bores are configured to align with holes depending on the orientation of ends coupled to main body.
In the particular embodiment shown, spine, wings and wingtips are integrally formed as a single unitary body out of a metal such as aluminum. . . . [R]eflector has a uniform cross-section (but for openings which are cut) along its entire axial length, enabling reflector to be formed using an extrusion process. In alternative embodiments, reflector may be formed from other materials, may be formed from individual structures which are welded, bonded, fastened or otherwise connected to one another, or may be formed from one or more different manufacturing techniques. According to an exemplary embodiment, reflector has a shiny or glossy surface that reflects heat energy. According to a particularly preferred embodiment, the reflector is bright-anodized to inhibit or prevent it from darkening or tarnishing or otherwise degrade over time.” (Column 4, line 10 to 40; call out numbers were deleted and bracketed letter was capitalized only).
In U.S. Pat. No. 5,626,125; Eaves discloses a radiant tube space heater wherein “the place of the normal reflector is taken by a heat projection cowling. The bottom of the cowling is open, its lower edges being approximately on a common level with the lowermost periphery of the heating tube; it also has upwardly convergent side walls and a flat horizontal top wall. The cowling's walls are spaced away from the tube. The cowling has an insulation material on its exterior surface, relative to the tube. Positioned between the cowling flat horizontal top wall and the tube is a thermally insulating shield formation.
Common features of the above-identified cowlings, reflectors, shields, and hoods are that they each have terminal ends 13 that (a) bend upwards and away from the tube to form lips, (b) terminate without any bends, or (c) bend inwards toward the tube.
Detroit Radiant manufactures various high intensity infrared heaters that are sometimes referred to as high intensity/ceramic infrared heaters. According to Detroit Radiant's DR Series Manual, its heater assembly has a heat shield, a rayhead assembly with ceramic, a side frame, a brass union, a manifold pressure tape, a manifold end frame assembly, a gas orifice, a pilot or electrode assembly, a reflector shield, rods, a high voltage wire, a low voltage wire, a circuit board, a gas valve, a cross-over bracket, a side frame, an electrode bracket, a ceramic tile, a pilor burner, a pilot orifice, a powerpile, and a pilot shield. Common features of these high intensity/ceramic infrared heaters are that the reflector heat shield defines the heater's perimeter like the above-identified heaters and the reflector heat shield has terminal ends that (a) bend upwards and away from the tube to form lips, (b) terminate without any bends, or (c) bend inwards toward the tube.
Many other heaters that direct heat toward the ground wherein the heaters are above t ground and are, when in position to direct the heat toward the ground, either vertical to the ground or at an angle to the ground, have a reflector with terminal ends that (a) bend upwards and away from the tube to form lips, (b) terminate without any bends, or (c) bend inwards toward the tube. Those other heaters include and are not limited to the above-identified heaters and patio heaters, and others known to those skilled in the art.
The objective of the present invention is to make the above-identified radiant heaters more efficient.
A conventional radiant heating apparatus has a heat transfer apparatus and a partial enclosure device. To make that conventional radiant heating apparatus more efficient, the conventional radiant heating apparatus has a heating wing.
The heat transfer apparatus transports a hot fluid, the hot fluid transfer its heat energy to the heat transfer apparatus, and the heat transfer apparatus radiates heat energy toward a desired object in a first direction. An example of a heat transfer apparatus includes, and not limited to, a tube. The hot fluid can be a gas or a liquid; and it is heated by conventional apparatuses used in conventional heating apparatuses. The partial enclosure device partially encloses at least a portion of the transport apparatus. The partial enclosure has an opening that exposes at least a portion of the transport apparatus. The opening permits the heat energy to radiate heat energy in a first direction, and unfortunately roll out the opening toward a second direction. The partial enclosure also acts as a reflective interior surface. The reflective interior surface re-directs (a) much of the heat energy that contacts the reflective interior surface in the first direction through the opening and (b) some heat energy that contacts the reflective interior surface in a second direction opposite the first direction after the heat energy passes through the opening—a.k.a., rolls-out heat energy.
The heating wing can be positioned above or just above the opening's perimeter and on the partial enclosure device's exterior surface. The heating wing can be positioned along a single side or multiple sides of the partial enclosure. For example, on one side of the partial enclosure the heating wing can be (a) a single heating wing unit that extends the length of the partial enclosure's side, or (b) two or more units wherein each adjacent heating wing unit overlaps or contacts each other, or spaced from each other, or combinations thereof.
The heating wing also has a wing distal end that obliquely extends outwardly in relation to the partial enclosure device and toward the first direction. The heating wing, except at the wing proximal end, and the partial enclosure device's exterior surface are spaced apart so the heating wing re-directs the rolled-out heat energy toward the first direction.
The present invention improves the radiant heating efficiency of a conventional radiant heater 100 as illustrated in the prior art
The heat transfer apparatus 102 normally transports a hot fluid, the hot fluid transfers its heat energy to the heat transfer apparatus 102 and the heat transfer apparatus 102 radiates heat energy toward a desired object in a first direction 33 as illustrated at
The partial enclosure device 14, as described above and illustrated at
Each partial enclosure device 14, 14a, has an opening 17, as clearly illustrated at
The opening's 17 perimeter 80 is defined by a terminal end 18 of the sides 190L, 190R, and optionally sides 190D and 190P if they are used. The terminal end 18 can be positioned
Likewise, the radiant heater 100 (see
The crux of this invention is to improve the radiant heating efficiency of the radiant heater 100, for example and not limited to the above-identified radiant heaters. The improvement improves the heating efficiency by about 3 to 4 percentage points as measured by a radiant efficiency measurement apparatus that abides to a conventional industry standard described in a manual identified as CAN/ANSI/AHRI 1330-2015, Performance Rating for Radiant Output of Gas Fire Infrared Heaters. That percentage may be altered by percentages due to the different radiant heaters and angles that the radiant heaters are positioned. Instead of repeating or re-iterating what is disclosed above about radiant heaters and in the background of the invention and which is known to those of ordinary skill in the art, applicant elects to focus on components not previously disclosed and why those components render the instant invention superior.
The increased radiation efficiency is accomplished by a heating wing 30 on any of the above-identified radiant heaters 100 described above, in the background of the invention or any other radiant heater. Each heating wing 30 has a wing proximal end 31 and a wing distal end 32 in relation to its width 330 (see
Each wing proximal end 31 extends from an exterior surface 27 of the partial enclosure device 14 at a predetermined distance (referred to as the contact point 16) above the radiant heater's respective terminal end 18. The contact point 16 can be (1) an identical predetermined distance on every side 190R, 190L (and optionally 190P, and 190D if the end caps are used and heating wings are positioned thereon) as illustrated at
As also illustrated at
From the contact point 16, heating wing 30, overall, obliquely extends (a) outwardly in relation to the partial enclosure device 14 and (b) toward the first direction. Admittedly, the heating wing 30 could be straight (see
In view of the above-identified position restrictions concerning the heating wing 30, the distal end 32 terminates along the radiation reference plane 19 (see
The predetermined spacing can be filled with air or conventional insulation used in the radiant heating industry. It is preferred, however, the predetermined spacing be filled with air to maximize the reflecting capacity of the heating wings 30.
The wing 30 attaches to the partial enclosure device 14 by adhesives, screws, clamps, welding, rivets, tongue-in-slot configuration, snaps, hook/loop, other known fastening components, or combinations thereof on any desired side surface, which can be surfaces 190R, 190L, 190D, 190T, and/or 190P (as illustrated at
The wing 30 can be made of the same reflective material as the partial enclosure device 14, 14a or a different reflective material as the partial enclosure device 14, 14a; or be a plurality of wings 30 spaced apart from or overlapping each other wing 30. The wing 30 can be a single reflector piece extending the length of the partial enclosure device 14 (see
One may wonder why this embodiment is superior to the embodiments illustrated in the cited prior art Figures. Notice that the terminal ends of the partial enclosure device illustrated in the cited prior art Figures have the ends terminate with a lip—that protrudes upward in a direction opposite the first direction—or, as not illustrated, no lip. The lip and no lip embodiments permit some radiant energy (arrows 370 in
The wing 30 may also seem, on first blush, to be a simple invention that seems rather obvious. Nothing could be further from the truth. As identified in the above-identified background of the invention, those of ordinary skill in the radiant heating art have attempted to increase heating efficiency in many ways—adding insulation to the reflector's exterior surface, providing air gaps or insulation between the reflector and the hood, corrugating the reflectors to direct the radiant heat in the desired direction, and adding insulation immediately above the heating elements. None of those prior embodiments, however, re-direct the turbulent radiant energy in the first direction.
The objective of the wing is to re-direct that turbulent radiant energy toward the first direction 33. Admittedly, the wings 30 appear to be a simple solution, but it is contrary to what has been done in prior known radiant heaters that have either a lip or no lip. Moreover, the radiant heating efficiency of the instant invention is remarkably superior to the radiant heating efficiency of the prior-known radiant heaters—as illustrated in
As confirmed above, the increased radiant heating efficiency is obtained through the heating wings. These results are applicable to the radiant heaters being parallel with the ground or angled in relation to the ground.
The above-identified heating wings can be applied to existing radiant heaters without wings (there are none to the applicant's knowledge) to obtain the desired increased radiant heating efficiency.
The radiant efficiency measurement apparatus—that abides to a conventional industry standard described in a manual identified as CAN/ANSI/AHRI 1330-2015, Performance Rating for Radiant Output of Gas Fire Infrared Heaters and is a radiometer wherein, as of filing this application, the sole manufacturer of the radiometer is DVGW Forschungsstelle, am Engler-Bunte-Institut, des Karlsruher Instituts für Technologie (KIT), Prueflaboratorium Gas, Engler-Bunte-Ring 7, D-76131 Karlsruhe (Germany) (www.dvgw-ebi.de)—is positioned a predetermined distance below a radiation reference plane (a.k.a., reference plane 199) of the radiant heating device 100. The predetermined distance can be any distance below the radiation reference plane, which is preferably about 100 mm below the radiation reference plane. The radiant efficiency measurement apparatus is, for example, a radiometer that measures radiant energy transmitted from the radiant heating device 100. The radiant efficiency is determined by dividing the radiant heating device's radiant output by the radiant heating device's heat input. For example,
The present invention increases the radiant efficiency, as defined above, by 3-4% points. In order to achieve that 3-4% increase in radiant efficiency the heating wings 30 of the radiant heating device 100 are applied. The invention provides a cost effective and easy to apply method to increase an infrared heaters efficiency increasing comfort and fuel savings to the end user.
The foregoing description of exemplary embodiments provides illustration and description, but is not intended to be exhaustive or to limit the embodiments described herein to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of the embodiments as illustrated at