This disclosure relates generally to imaging devices that print images on media, and, more particularly, to heaters used to condition the media during printing operations.
In general, inkjet printing machines or printers include at least one printhead unit that ejects drops of liquid ink onto recording media or an imaging member for later transfer to media. Different types of ink may be used in inkjet printers. In one type of inkjet printer, phase change inks are used. Phase change inks remain in the solid phase at ambient temperature, but transition to a liquid phase at an elevated temperature. The printhead unit ejects molten ink supplied to the unit onto media or an imaging member. Once the ejected ink is on media, the ink droplets quickly solidify.
The media used in both direct and offset printers may be in sheet or web form. A media sheet printer typically includes a supply drawer that houses a stack of media sheets. A feeder removes a sheet of media from the supply and directs the sheet along a feed path past a printhead so the printhead ejects ink directly onto the sheet. In offset sheet printers, a media sheet travels along the feed path to a nip formed between the rotating imaging member and a transfix roller. The pressure and heat in the nip transfer the ink image from the imaging member to the media. In a web printer, a continuous supply of media, typically provided in a media roll, is entrained onto rollers that are driven by motors. The motors and rollers pull the web from the supply roll through the printer to a take-up roll. As the media web passes through a print zone opposite the printhead or heads of the printer, the printheads eject ink onto the web. Along the feed path, tension bars or other rollers remove slack from the web so the web remains taut without breaking.
Regardless of the type of media used, media heating helps transfer the ink more efficiently to the recording media. In web-fed printers, media heaters typically comprise one or more radiant heaters that are positioned along the media pathway. These heaters raise the temperature of the moving web. Adjusting the power supplied to the heaters controls the output of the radiant heaters. The printing system typically includes a thermal sensor positioned adjacent the media pathway to detect the temperature of the moving web and provide the detected temperatures to a controller. The controller may compare the detected temperatures to temperature thresholds to adjust the power provided to the heaters to maintain the temperature of the media web in appropriate temperature ranges at different locations along the feed path.
Existing radiant heaters used in printers generate heat using high-temperature lamps with one typical lamp having a filament configured to heat to 1200° C. with a surface temperature of 800° C. In operation, these lamps emit radiant energy with a range of wavelengths including portions of the visible spectrum at approximately 0.7 μm through portions of the infrared spectrum at 1.5 μm to 2.5 μm. Some of these lamps are relatively energy inefficient, and require separate reflector elements to redirect radiant energy toward the print media to bring the print media to an appropriate temperature. The energy consumption of the radiant heaters is one factor affecting the operating cost of the printing device. Thus, improvements to radiant heaters that can heat print media while reducing the power usage of printing devices are desirable.
In at least one embodiment, a radiant heater for heating a print medium in a printer has been developed. The radiant heater includes a ceramic foam substrate having a first edge and a second edge, an electrical conductor bonded to the ceramic foam substrate, and a cover layer bonded to the electrical conductor. The electrical conductor has a first electrical resistance in a first heating zone formed proximate the first edge and the second edge of the ceramic foam substrate and a second electrical resistance in a second heating zone between the first edge and the second edge to enable radiant energy at a first power density in the first heating zone and radiant energy at a second power density in the second heating zone to be emitted by the cover layer, the first power density being greater than the second power density.
In at least one other embodiment, a solid ink printer has been developed. The printer includes a media handling system configured to transport a continuous media web along a media pathway through the imaging device, the media pathway having a first edge and a second edge, a solid ink printing system positioned along the media pathway, a web heating system positioned along the media pathway, and a web heating controller. The solid ink printing system is configured to print images on the continuous media web moving along the media pathway. The web heating system is positioned along the media pathway at a location that enables the web heating system to heat the continuous media web after the solid ink printing system has printed an image on the continuous media web, the web heating system being configured to heat the continuous media web to a web heating temperature. The web heating system includes at least one radiant heating unit positioned adjacent the media pathway a pair of radiant heaters configured within the housing to emit radiant energy in accordance with a variable radiant power signal. The at least one radiant heating unit includes a housing adjacent to the media pathway. The housing has an opening proximate the media pathway. The pair of radiant heaters are configured to be positioned selectively in the housing to any one of a plurality of positions between and including a fully open position in which the pair of radiant heaters are positioned side by side in the opening of the housing to direct radiant energy towards the media pathway and a retracted position in which the pair of radiant heaters are positioned inside the housing and facing each other, a view factor of the pair of radiant heaters with respect to the media pathway being different for each position in the plurality of positions. Each radiant heater includes an electrical conductor bonded to a substrate, the electrical conductor forming a plurality of heating zones, a panel driver operatively connected to the pair of radiant heaters to enable the pair of radiant heaters to be positioned in at least one of the plurality of positions in response to a variable view factor signal, and at least one temperature sensor configured to detect a temperature of the continuous media web moving along the media pathway and to generate a temperature signal indicative of the detected temperature of the continuous media web. The at least one heating zone is configured to emit radiant energy at a first power density towards the first edge and the second edge of the media pathway, and at least one other heating zone configured to emit radiant energy at a second power density towards a central portion of the media pathway. The web heating controller is operatively connected to the panel driver and configured to generate a selected radiant power signal and the variable view factor signal for operation of the panel driver to position at least one radiant heater to heat the continuous media web to the web heating temperature. The web heating controller is configured to generate at least one of the radiant power signal signals and the variable view factor signals in accordance with the temperature signal generated by the at least one temperature sensor.
In at least another embodiment, a radiant heater panel has been developed. The radiant heater panel includes an electrical conductor having a first electrical resistance, and a cover layer configured to emit heat generated by an electrical current flowing through the electrical conductor. The emitted heat has a wavelength in a predetermined range.
For a general understanding of the environment for the system and method disclosed herein as well as the details for the system and method, the drawings are referenced throughout this document. In the drawings, like reference numerals designate like elements. As used herein the term “printer” refers to any device that is configured to eject a marking agent upon an image receiving member and include photocopiers, facsimile machines, multifunction devices, as well as direct and indirect inkjet printers, laser printers, thermal printers, LED printers, and any imaging device that is configured to form images on a print medium. As used herein, the term “process” direction refers to a direction of travel of an image receiving member, such as an imaging drum or print medium, and the term “cross-process’ direction is a direction that is perpendicular to the process direction along the surface of the image receiving member.
The term “artwork” refers to the size, shape, pattern, and arrangement of one or more electrical conductors formed in a heater panel. The electrical conductor generates heat in response to an electrical current flowing through the conductor. The configuration of the artwork may vary in different locations through the heater panel to change the power density of radiant energy emitted from the heater panel at each location. The term “power density” refers to an amount of radiant power emitted from a given area of a heater. For example, a 1 cm2 section of a heater that emits 10 Watts of power has a power density of 10 watts/cm2. As used herein, a “view factor” is defined as the proportion of the radiant energy emitted by a radiant heater that reaches a print medium in relation to the total amount of radiant energy emitted by the radiant heater.
As shown in
The printhead assembly 14 is appropriately supported to eject drops of ink directly onto the media web 20 as the web moves through the print zone 18. In alternative embodiments, the printhead assembly 14 may be configured to emit drops onto an intermediate transfer member (not shown), such as a drum or belt, for subsequent transfer to the media web. The printhead assembly 14 may be incorporated into either a carriage type printer, a partial width array type printer, or a page-width type printer, and may include one or more printheads. As illustrated, the printhead assembly includes four page-width printheads for printing full color images comprised of the colors cyan, magenta, yellow, and black.
The solid ink supply 24 supplies ink to the printhead assembly. Since the phase change printer 10 is a multicolor device, the ink supply 24 includes four sources 28, 30, 32, 34, representing four different colors CYMK (cyan, yellow, magenta, black) of phase change ink solid ink. Alternative embodiments of the printing system 10 may be configured to print ink having a single color, or to print various ink colors other than the CYMK colors, including spot colors and clear inks. The phase change ink system 24 also includes a solid phase change ink melting and control assembly or apparatus (not shown) for melting or phase changing the solid form of the phase change ink into a liquid form, and then supplying the liquid ink to the printhead assembly 14.
Once the drops of ejected ink form an image on the moving web, a fixing assembly 50 fixes the ink image to the web as the web passes through the assembly 50. In the embodiment of
A controller 40 operates and controls the various subsystems, components and functions of the printer 10. The controller 40 may be implemented as hardware, software, firmware or any combination thereof. In one embodiment, the controller 40 comprises a self-contained, microcomputer having a central processor unit (not shown) and electronic storage (not shown). The electronic storage may store data necessary for the controller such as, for example, the image data, component control protocols, etc. The electronic storage may be a non-volatile memory such as a read only memory (ROM) or a programmable non-volatile memory such as an EEPROM or flash memory. Of course, the electronic storage may be incorporated into the inkjet printer, or may be externally located. The controller 100 is configured to orchestrate the production of printed or rendered images in accordance with image data received from the image data source (not shown). The image data source may be any one of a number of different sources, such as a scanner, a digital copier, a facsimile device, etc. Pixel placement control is exercised relative to the media web 20 in accordance with the print data, thus, forming desired images per the print data as the media web is moved through the print zone.
The web heating system 100 comprises one or more radiant heating units 200 that direct radiant energy onto the web 20. The media web absorbs the radiant energy emitted from the units 200 at a color temperature suitable for heating the chosen media type, including a 3.0-4.0 um range for paper. Radiant heating units 200 may be positioned anywhere along the media pathway for emitting radiant energy toward the media web. In the embodiment of
In operation, web heating system 100 may heat the media web to any suitable temperature depending upon a number of factors including web speed, web type, ink type, position along the media pathway, etc. For example, when heating the media web, the web heating system may be configured to heat the media web and ink layers to approximately 65 to 70 degrees C. prior to fixing ink images to the web. The web heating system may include one or more noncontact IR temperature sensors 108 as known in the art for measuring the temperature of the moving web 20 at one or more locations associated with the web. Temperature sensors 108 may be non-contact type sensors, such as thermopile or similar IR sensors. In one embodiment, a temperature sensor 108A that is provided along the media pathway upstream from the radiant heating units 200 of the web heating system detects the temperature of the web prior to the web passing the radiant heating units. Another temperature sensor 108B may also be provided along the media pathway downstream from the radiant heating units 200 to detect the temperature of the web after the heating units heat the web. Each of the temperature sensors 108A and 108B may measure the temperature of the media web at various positions in the cross-process direction. These temperature measurements enable the heating controller 110 to identify whether portions of the web are inside or outside of the operational temperature range. In any case, the temperature sensors 108 are operable to relay signals indicative of the one or more measured temperatures to the web heating controller 110. Knowing temperatures before and after the heating unit enables the controller to adjust the view factor angle as the web passes the heating units 200 to control the exit paper temperature accurately.
Once the heater units have reached temperatures that are sufficient to heat print media, a relatively significant delay may occur between an adjustment of electrical power supplied to the panels and a corresponding change in the radiant power output of the panels. The web heating system 100 of the present disclosure includes a dual gain control system that regulates the radiant output of the panels by adjusting the delivery of electrical power to the panels (low gain control). The system 100 also controls the amount of radiant energy that reaches the media web from the panels by varying the view factor of the panels relative to the media web (high gain control). As described below, the view factor of the radiant panels to the web may be varied by adjusting the distance, angle and/or orientation of the panels of a heating unit with respect to the media web. View factor adjustments, thus, involve physical movement of the panels with respect to the media web. Therefore, depending on the method of moving the panels, view factor adjustments may be performed relatively quickly to facilitate rapid adjustments of the amount of radiant energy that reaches the media web.
Another development that facilitates the delivery of heat to a web is the construction of a heater panel that generates heat having a particular wavelength.
Referring to
The heating zones 208A, 208B, 212A, 212B, and 216 are arranged as seen in
In
As described above, the power density of heat emitted by the conductor in each heating zone is determined by the artwork of the electrically conductive heating element in each heating zone.
In
The artwork of the conductor 244A in the heating zone 212B is arranged with sinusoidal traces having a lower density, and a correspondingly lower power density in the heating zone 212B. In the configuration of
Heating zone 216 includes conductor section 316, which has the lowest relative density of sinusoidal traces, and the corresponding lowest power density. Conductor section 316 also has a lower electrical resistance per unit of length than either conductor section 308 or 312, but a greater overall electrical resistance because the conductor length is longer in this section. The reader should note that while heating zone 216 has the lowest power density of the heating zones depicted in
The arrangement of conductor 244A seen in
In one operational configuration, three-phase power source 240 supplies a one phase of a three-phase 480V electrical signal to each of the conductors 244A-244C. The heating zones 208A and 208B have a combined surface area of approximately 29.5 cm2, and the segments of the electrical conductors 244A-244C in heating zones 208A and 208B are configured to have an electrical resistance of 9.2Ω. Heating zones 212A and 212B have a combined surface area of approximately 32.6 cm2 with the segments of the electrical conductors 244A-244C in those zones having a resistance of 8.5Ω. The central heating zone 216 has a surface area of 403.9 cm2 with the segments of the electrical conductors 244A-244C in those zones having a resistance of 84Ω. Since each of the conductors 244A-244C forms a single series circuit with the power source 240, heating zones 208A-208B emit a total of 142.2 watts of radiant power, heating zones 212A-212B emit a total of 131.8 watts of radiant power, and heating zone 216 emits a total of 1297.7 watts of radiant power. Consequently, heating zones 208A-208B emit radiant energy with a power density of 4.8 watts/cm2, heating zones 212A-212B have a power density of 4.0 watts/cm2, and heating zone 216 has a power density of 3.2 watts/cm2. Thus, in this embodiment, heating zone 216 has the highest total radiant power output, while heating zones 208A-208B that direct radiant energy proximate to the edges of a print media have the highest power density.
The radiant heater 204 in
Support substrate 282 is embodied here as a ceramic foam panel. Ceramic foam is a porous material with numerous air pockets formed through the ceramic foam to form an efficient thermal insulator. The air in the ceramic foam and the foam itself both have low specific heat and low thermal conductivity. In the embodiment of
The heating element 244C generates heat in the radiant heater 204 when an electric current passes through the heating element. Epoxy layer 288 bonds the heating element 244C to the substrate layer 282. In the example embodiment of
A fiberglass cover layer 292 is bonded to the heater element 244C and substrate layer 282 by epoxy later 290. This fiberglass layer 292 absorbs and radiates the heat generated by the conductors of the heater panel. In one embodiment, the epoxy later 290 permeates a porous fiberglass material to form a fiberglass-epoxy matrix for the fiberglass cover layer 292. A fiberglass mesh such as a fiberglass scrim cloth is one form of fiberglass that forms a matrix with the epoxy. The fiberglass cover layer 292 emits heat through a bottom surface 294 with wavelengths of greater than 3.0 μm. In the embodiment of
The radiant heater 204 emits radiant energy concentrated at wavelengths that heat print media efficiently and selectively concentrate the radiant energy on portions of the print media that lose heat more quickly. Thus, radiant heater 204 heats print media to an operational temperature range more efficiently than previously known heaters, and the radiant heater 204 operates with a lower electrical energy input than previously known heaters since the print medium 224 absorbs a portion of the radiant energy emitted from radiant heater 204 that is sufficient to heat the medium to an operating temperature.
With reference to
The configuration of the radiant heater 204 depicted in
In operation, heating unit 200 receives variable radiant power signals and variable view factor signals from a controller, such as heater controller 110 described above. The variable view factor signal may be an electrical signal that directs actuators 404 to exert a predetermined amount of force in direction 430. The predetermined amount of force counteracts the forces exerted by gas springs 408 in direction 432. In the configuration of
As seen in
In the configuration of
The embodiment of heater unit 200 depicted in
It will be appreciated that variants of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems, applications or methods. For example, while the heater panels and radiant heater units depicted above are shown in the context of an inkjet printer, the foregoing heaters are suitable for heating print media to various operating temperatures in various embodiments of printers other than inkjet printers. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements may be subsequently made by those skilled in the art that are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4634837 | Ito et al. | Jan 1987 | A |
4697165 | Ishiguro et al. | Sep 1987 | A |
4914276 | Blair | Apr 1990 | A |
5022167 | Nakamura | Jun 1991 | A |
5046944 | Smith | Sep 1991 | A |
5634402 | Rudd et al. | Jun 1997 | A |
5856652 | Mayuzumi | Jan 1999 | A |
5916467 | Shimada | Jun 1999 | A |
6132038 | Szlucha | Oct 2000 | A |
6186612 | Maeda et al. | Feb 2001 | B1 |
6244700 | Kimura et al. | Jun 2001 | B1 |
6392197 | Natsuhara et al. | May 2002 | B2 |
6407366 | Yoshimura | Jun 2002 | B2 |
6671489 | Natsuhara et al. | Dec 2003 | B2 |
6950616 | Saito et al. | Sep 2005 | B2 |
7137694 | Ferran et al. | Nov 2006 | B2 |
7677715 | Uji et al. | Mar 2010 | B2 |
7702249 | Nishida | Apr 2010 | B2 |
7793117 | Smith | Sep 2010 | B2 |
7805102 | Kato | Sep 2010 | B2 |
7832852 | Leighton et al. | Nov 2010 | B2 |
20070047990 | Lemaster et al. | Mar 2007 | A1 |
20090021550 | Leighton et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
0798119 | Jan 1997 | EP |
Number | Date | Country | |
---|---|---|---|
20120206527 A1 | Aug 2012 | US |