The present invention relates to radiant heating and cooling devices.
Various solutions exist for heating and cooling spaces. Heating can be provided to a complete building, such as a residence, by a furnace that heats air, e.g. by combustion of a gas, which heated air is blown through vents into the building. Also, a boiler can heat water, oil, or other fluids, which circulate through pipes or radiators to heat rooms with radiant heat. Alternatively, electrical heaters can convert electricity to heat. Similarly, cooling can be provided with forced central air, chilled fluids that are pumped through pipes or radiators, and local electrical air conditioners.
Some radiant heating systems are standalone units. Others are installed in floors. Sometimes, they are also installed in walls and ceilings. Some more recent radiant heating systems use PEX (cross-linked polyethylene) pipes or other types of pipes that are placed throughout the floor, wall, or ceiling, and water circulates through the pipes to heat the surrounding space. However, when the pipes in which the water circulates cover a small portion of the surface area where they are installed, such radiant heating systems may result in slow or uneven heating, especially when objects such as couches, bookshelves, pictures, or clocks are placed in front of or over the top of the system. Furthermore, such systems can be difficult to construct, install, or repair. Additionally, radiant heating systems lack the ability to provide fresh air to a building.
In a first aspect, a system for heating or cooling a room is provided. A radiant panel with fluid conduit radiates energy to a room. A heat exchange device exchanges energy between the fluid in the radiant panel and an exchange medium. A vent allows fresh air to enter a room, moved by a fan. The fan propels the air through a chamber for heating or cooling the air, wherein the chamber at least partially comprises the radiant panel.
In a second aspect, the invention provides a method of heating or cooling air, including: heating and cooling a refrigerant within a heat pump; pumping a fluid from the heat pump, through a radiant panel, and back to the heat pump; receiving outdoor air through a vent; warming or cooling the outdoor air a first time by exchanging energy between the refrigerant and the outdoor air while simultaneously exchanging energy between the refrigerant and the fluid; and warming or cooling the outdoor air a second time by passing the outdoor air over the radiant panel.
In a third aspect, the invention is a system for passing heat through a single exterior wall of a building including a pump for pumping a fluid through a closed-loop system which includes a radiant panel and a heat exchange device. The fluid flows from the heat exchange device, makes a first pass through an interior sheet of the exterior wall within the first line, flows through the radiant panel, makes a second pass through the interior sheet of the exterior wall within the second line, and back to the heat exchange device. The invention also includes an enclosure for the heat exchange device which is less than 14.75 inches wide and less than 5 inches deep. The enclosure also has a vent to allow air from outside to enter the enclosure and a fan for moving air through the vent.
Further aspects and embodiments are provided in the foregoing drawings, detailed description and claims.
The following drawings are provided to illustrate certain embodiments described herein. The drawings are merely illustrative and are not intended to limit the scope of claimed inventions and are not intended to show every potential feature or embodiment of the claimed inventions. The drawings are not necessarily drawn to scale; in some instances, certain elements of the drawing may be enlarged with respect to other elements of the drawing for purposes of illustration.
The following description recites various aspects and embodiments of the inventions disclosed herein. No particular embodiment is intended to define the scope of the invention. Rather, the embodiments provide non-limiting examples of various compositions, and methods that are included within the scope of the claimed inventions. The description is to be read from the perspective of one of ordinary skill in the art. Therefore, information that is well known to the ordinarily skilled artisan is not necessarily included.
The following terms and phrases have the meanings indicated below, unless otherwise provided herein. This disclosure may employ other terms and phrases not expressly defined herein. Such other terms and phrases shall have the meanings that they would possess within the context of this disclosure to those of ordinary skill in the art. In some instances, a term or phrase may be defined in the singular or plural. In such instances, it is understood that any term in the singular may include its plural counterpart and vice versa, unless expressly indicated to the contrary.
As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. For example, reference to “a substituent” encompasses a single substituent as well as two or more substituents, and the like.
As used herein, “for example,” “for instance,” “such as,” or “including” are meant to introduce examples that further clarify more general subject matter. Unless otherwise expressly indicated, such examples are provided only as an aid for understanding embodiments illustrated in the present disclosure and are not meant to be limiting in any fashion. Nor do these phrases indicate any kind of preference for the disclosed embodiment.
As used herein, “contiguous,” as in “contiguous channels,” is generally meant to refer to the channels being separated by a common wall, although the key feature is that the channels are adjacent to each other.
As used herein, “heated,” as in “heated water,” is meant to refer to water that is above the ambient temperature of the room.
Likewise, as used herein, “cold” or “cooled,” as in “cold water” or “cooled water,” is meant to refer to water that is below the ambient temperature of the room.
As used herein, “radiant area” is defined as the total cross-sectional area of the heated or cooled fluid in the plane parallel to the surface of the wall. For example, if an array of circular pipes containing heated fluid was in a wall, the radiant area would be total length of pipe in the wall, times its diameter. Radiant area does not include transport piping or area of fluid outside the room being heated or cooled.
As used herein, “exchange medium” means matter which is an energy sink or an energy source depending on the needs of the system. For example, an exchange medium could comprise earth, air, water, refrigerant, etc. “Exchange medium” only refers to mediums of forced exchange rather than downstream uncontrolled energy exchange.
As used herein, a “closed-loop system” means a system of piping, channels, or other fluid containing tubular vessels which primarily reuses the same fluid rather than introducing new fluid during use of the system.
As used herein, the term “panel” is to be given a relatively broad meaning, referring to a component that has a depth smaller than the height and width. Preferably, the panels in this invention are flat and rectangular. Nevertheless, the panels may also be curved, bent, and have shapes other than rectangles. Panel may refer to one portion of a prebuilt wall, or it may refer to one portion of a wall that is built from scratch in place, or it may refer to a free-standing component.
As used herein, “thermal communication” refers to the exchange of energy between components, whether it be by conduction, convection, or radiation.
As used herein, “conduit” refers to a pathway for fluid to travel, whether it is traditional piping or the channels of twinwall or corrugated plastic.
As used herein, “heat exchange device” refers to a mechanism that exchanges energy from one medium to another, for example, a heat pump.
As used herein, “heat exchanger” refers to a mechanism that directly exchanges energy between one medium and another, for example, the condenser or the evaporator of an air conditioning unit.
As used herein, “fresh air” refers to air from outside or a different room than the space being heated or cooled.
Radiant heating, as opposed to convective heating, is popular due to its quiet nature and the fact that it does not spread allergens. It can also be more efficient than convective heating because it does not require heating up the air of the building before a user can feel the warmth. Similarly, radiant cooling, although not as popular as radiant heating, is a quiet, efficient, and nondisruptive way to cool a building. Radiant panels can be configured to run in a cooling mode when cooler temperatures are desired and a heating mode when warmer temperatures are desired.
Radiation is the transferring of electromagnetic energy in the form of infrared rays from one surface to the other surfaces around it. The amount of energy transferred depends on the both the temperature and area of the surface. A higher temperature and a larger surface area will increase heat transfer. Therefore, it is beneficial to increase the temperature and the surface area of a radiant heater. Or conversely, increasing the surface area can allow a radiant heater to operate at cooler temperatures, which may be useful when a source of heat is not hot enough to operate with a smaller surface area. It also can be safer. Similarly, a larger area for a radiative cooler can absorb more energy from the room as the objects in the room radiate to it, helping the room to cool down more quickly.
However, because radiant panels heat and cool a room without forced air, a separate system must be installed to introduce enough fresh air into the building to meet building codes. This adds extra cost in terms of equipment, building materials, and labor. It also takes up more space in the home in terms of equipment and ductwork. In one embodiment of the present invention, a heating or cooling system includes a radiant panel and a vent for fresh air. In another embodiment of the invention, the system not only heats or cools a fluid running through the radiant panel, but also heats or cools the fresh air. The fluid and the air may each have their own respective heaters or coolers, however, in the preferred embodiment of the invention, a single heater or cooler is used to heat or cool both the fluid and the air.
Further, radiant panels are difficult to install into a building or home after it is built. This is because the fluid running through the panel is usually piped to a heating or cooling source distant to the panel. Many radiant panels receive heated or cooled water from a boiler in a basement, a geothermal heat exchanger outside, or a heat pump at a distant location from the panel. Each of these setups can be extremely difficult to install after the building is complete.
Additionally, because the piping for radiant heating or cooling typically runs through a whole building, it can be difficult to give special attention to problem spots, such as hot sunny areas or cold drafty areas. Many times, a single thermostat controls the system for an entire house or for an entire section of a building. Small changes in air flow or sunlight can cause neighboring rooms to have vastly different temperatures. What is needed is a way to heat or cool a building with radiant panels that allows each room to be controlled individually.
Finally, heating and cooling systems typically suffers from energy losses from the piping and ductwork between source of energy and the destination. When the mechanism heating or cooling the water or air is located far away from the destination, the piping and ductwork absorb or lose heat to the air around the piping or ductwork during transfer. As length increases, the system gets more inefficient. Further, as piping and ductwork length increases, the more friction the fluid and air have to overcome, which requires more energy, making the system even more inefficient. Therefore, energy can be saved by making the piping and ductwork as short as possible.
The invention includes a heater or cooler coupled to a radiant panel which allows energy to be exchanged between a room and the outside air. The system exchanges energy with both a fluid running through the radiant panel and also a flow of air entering the building. This allows a user to add radiant panels with much less time, material, and cost of adding radiant panels the traditional way. It also allows problem rooms with hot spots or cold spots to be fixed without overheating or overcooling the entire building. Further, it minimizes the distance a fluid and air travel from the time they are heated or cooled to the time they reach their destination. This minimizes both heat loss and friction in the piping and ductwork.
In one embodiment of the invention, a radiant panel is disposed on the inside of an exterior wall of a building. A heat pump is placed within the wall behind the radiant panel. A vent may be in the exterior wall behind or near the heat pump so air can be exchanged with the heat pump and outside the building.
A heat pump located in the wall is a way for the radiant panel to be in close proximity to a source of heated or cooled fluid. For reasons previously discussed, the closer the source of heated or cooled water is to the radiant panel, the better. In one embodiment of the invention, the tubing that connects the radiant panel and the heat pump is less than ten feet. In another embodiment of the invention, the length is less than five feet. In yet another embodiment of the invention, the length is less than two feet. In yet another embodiment of the invention, the radiant panel connects directly to the heat pump.
The radiant panel itself may come in many configurations. It can be many different sizes and shapes and be made from different materials. Some configurations, such as a traditional pex or pvc water pipe in serpentine fashion provide less radiant area, but may be suitable for some applications. Other configurations, as discussed below provide much more radiant area. Further, the panel may contain additional layers such as insulation, foil, or a sound barrier.
In one embodiment of the present invention, the area of a radiant heater or cooler is maximized by running heated or cooled fluid through a panel made primarily of channels for fluid. One example is an extruded plastic panel of rectangle channels commonly called “corrugated plastic” or “twinwall.” The channels may be contiguous such that each channel shares a wall, or partition, with an adjacent channel. This way, most or all of the area of the panel is radiant area. This provides much more radiant area than a panel or wall with traditional pipes running through it. It also minimizes leaking and maintenance because fluid from a leaky channel may go into the adjacent channel. In some embodiments, the radiant area is preferably greater than 20% of the panel. Even more preferably, the radiant area is greater than 50% of the panel. Even more preferably, the radiant area is more than 90% of the panel. The greater the radiant area is, the smaller the heat differential between the heating or cooling fluid and the room needs to be.
Although the radiant area of the panel is maximized by using corrugated plastic, radiant panels may be made by other means as well. For example, they may be made with a pipe, such as PVC, PEX, or metal winding back and forth across the panel in a serpentine configuration. These typically are much thicker and heavier than corrugated plastic, in addition to giving or receiving less radiative energy.
The fluid used in the system to transfer energy into or out of the room could be any fluid that is not harmful to the system, including gases or liquids. Liquids, such as water, have many ideal characteristics, such as high emissivity, high specific heat, and low cost. However, water tends to allow growth of organisms and has the potential of freezing. Glycols, such as ethylene glycol or propylene glycol, are commonly added to water to lower the freezing point and prevent growth of organisms. However, glycol reduces the specific heat of the mixture, so more volume is required through the system than with water alone. There are many glycols which share similar physical properties and are suitable for use in the invention, but the preferred embodiment typically uses a mixture of water and propylene glycol because it is non-toxic and safer if there is a leak or spill. Preferably, the fluid is a water mixture with 20% to 45% glycol. Even more preferably, the fluid is a water mixture with 25% to 40% glycol. Even more preferably, the fluid is a water mixture with 30% to 32% glycol. In other embodiments, the fluid contains oil, such as diathermic oil, which has the additional benefit of remaining a liquid at higher temperatures than water.
In a preferred embodiment, the friction in a radiant panel made from corrugated plastic is reduced by dividing it into zones rather than alternating the fluid up and down each adjacent channel, wherein a zone is a multiple of adjacent channels where the fluid is travelling in the same direction. In one embodiment, zones are created by putting notches in the end of the partitions dividing the channels. This way, fluid is able to flow freely across the notches and then down the channels to the other side where it is directed to an adjacent zone. See
The invention also provides flexible installation options, including covering options. In one embodiment, the panel includes a finishable surface, such as the fibrous surface of drywall. In other embodiments, the panel includes a decorative surface, such as a wallpaper, paint, or a canvas with a printed image. These options will help to make the panel's appearance unnoticeable or stand out, as desired. The decorative covering preferably also has a low thermal conductivity but a high emissivity, such as a velvet wallpaper, to make the wall cooler to the touch while still warming the room through radiation.
In other embodiments, the panel has a layer of insulation, typically on the back side, either to reduce heat transfer toward the wall or to reduce noise from the outside, or both. Insulation could be traditional fiberglass or foamboard, or it could comprise a second channel layer configured to insulate. In one embodiment, one or more additional channel layers, preferably made of twinwall, may be used and is filled with sound damping material such as soil or barite. In other embodiments, additional channel layers may be used with a layer of air to discourage sound vibrations and heat transfer. In yet another embodiment, the layer of insulation is set at a distance behind the radiant panel to create a chamber for air to flow through. This is beneficial when the panel is used to heat or cool an air stream that is directed into the room while preventing energy from flowing through the wall on which the panel is hung.
One embodiment of the invention utilizes multiple channel layers configured to aid insulation, noise reduction, or reduce condensation by creating a vacuum in one of the layers. This is possible by using multiple sheets of extruded material which are placed adjacent to each other or a single panel of extruded material which has multiple channel layers within it. Channels of air make great insulators, but channels with a vacuum are better because there is no convection or conduction through an empty space. One embodiment of the invention has a single panel with three channel layers, as depicted in
The invention can be versatilely installed onto the wall of a building. It can be configured to be retrofit into established buildings, or it can be installed into new buildings. In one embodiment, it can be supported by the wall with hanging hardware. In another, it can replace drywall and be supported by a support structure, such as wooden studs. In one embodiment of the invention, a single panel is installed in a room. In other embodiments, more than one panel can be connected with fluid communication between the panels, which will increase the radiant area.
Another embodiment of the invention uses a reflective layer disposed within the panel to help direct heat transfer in a particular direction. Materials with very low emissivity, such as aluminum, brass, chromium, or silver, among others, may be placed on the back side of the panel in order to reduce radiation toward the exterior wall. In the preferred embodiment, a reflective layer will have an emissivity lower than 0.1 and be economically sourced, such as aluminum foil with an emissivity of approximately 0.04.
The heat exchange device may also take various forms. It may only provide either heated or cooled fluid, or it may have a reversing valve and be able to provide heated and cooled fluid, depending on the mode. It may also take different shapes and sizes. Further, it may be configured to heat or cool only one type of fluid, such as a liquid like water and/or glycol, or it may be able to heat or cool air in addition to a liquid. The heat exchange device may include a vent to the outside air either directly behind it or at another location. The vent may be covered or disguised so it is aesthetic or not noticeable from an outside viewer. Additionally, the heat exchange device may be outside the building and in fluid communication with the panel through an exterior wall.
The heat exchange device may comprise an enclosure that enables it to fit substantially within the wall of a building. One example embodiment includes an enclosure that is 14-14.5″ wide so it may be easily supported by a stud on each side. In other embodiments, the enclosure is smaller and uses adjustable brackets which take up the remaining space between two studs. In yet additional embodiments, the enclosure is supported by cross bars which mount between two studs, allowing the enclosure to be smaller. In yet additional embodiments, the enclosure is supported by an interior and/or exterior sheet of exterior wall, such as drywall or a sheet of wood. In a preferred embodiment, the wall is an exterior wall, so the energy from the room may be exchanged with air exterior to the building, however, the invention may be used strategically in an inner wall if there is enough of a heat sink available to provide or absorb heat to or from the room being heated or cooled.
In one embodiment of the invention, the enclosure fits substantially within the wall, meaning less than half of the enclosure protrudes from the front of the wall. In another embodiment, the enclosure is completely behind the front surface of the wall. In yet another embodiment, the enclosure fits behind the front surface of the wall except for a brim designed to cover the cut portion of the wall and/or a front cover plate.
The enclosure may also contain other characteristics which make it suitable to be installed within a wall. For example, it may contain vents in one or more of its walls to allow air to enter and exit the enclosure. In the preferred embodiment, one or more vents are in the back side of the enclosure so air can be vented directly through a hole in the building wall and into the enclosure without the need for additional air ducts. This also makes it easier to cut the hole in the external layer of the external wall for venting because it overlaps with the hole in the internal layer of the external wall. The enclosure may also contain one or more holes in the front cover to allow pipes for the fluid from the radiant panel to enter the enclosure.
The enclosure may also be used as a means to mount the radiant panel. It may comprise hardware, such as hooks protruding from the front of the enclosure into the room, which mate with receiving support structures on the panel, as shown in
In one embodiment of the invention, the heat exchange device is a heat pump. The heat exchange may take place at a condenser or an evaporator within the heat pump. In one embodiment, the heat pump contains a reversing valve, which allows it to provide heat to the radiant panel while in a heating mode and to receive heat from the radiant panel while in a cooling mode.
The heat exchange device may be coupled with a blower, or fan, to provide air to the room being heated or cooled. The blower may blow air over an evaporator or a condenser to heat or cool the air prior to flowing into the room. In another embodiment, the air is blown directly along the back side of the radiant panel to heat or cool the air before dispersing into the rest of the room. One variant of this embodiment is that the air received by the blower is recycled from the room, directed through the heat exchange device, and back to the room. Another variant is that fresh air is received from outside. Alternatively, the air may be from another room in the building.
Alternatively, another embodiment of the invention includes a recycled air stream that is heated or cooled by the radiant panel without entering the heat exchange device. A fan may be disposed behind or near a radiant panel that pulls air from the room so that it may flow through a chamber comprised of one side of the radiant panel and back into the room. This may help keep air-noise levels to a minimum because the cross-sectional area of an air-port to a heating or cooling chamber comprised of the radiant panel may be larger than the cross-sectional area of an air-port on the heat exchange device. Preferably, a tangential fan quietly blows air through the chamber, although other types of fans may be suitable. Further, filters may be added to the chamber to clean the air as it passes through.
In another embodiment of the invention, the heat exchange device is disposed exterior to the room being heated or cooled rather than inside the wall. A hole may need to be cut in an exterior wall through which to run fluid lines and air. To aide with installation, a transmission tube may be used, which creates an easy port through which to run fluid lines and an air duct, and which also may have other uses, such as a mounting the radiant panel and/or the heat exchange device.
The transmission tube may take any of a number of different shapes, sizes, and configurations. In one embodiment of the invention, the transmission tube is a circular duct that goes straight through the wall. In many instances a hole may be drilled from the inside of the wall, through the insulation, wall panel, and exterior surface, such as brick or siding, in one motion. This provides a quick installation option. It also allows for a single straight pipe or duct to be used as the transmission tube. In other embodiments, the hole through the interior wall and the hole through the exterior are drilled separately. This is especially necessary where the holes cannot be concentric, such as when there is a feature on the exterior of the house forbidding the heat pump to be directly behind the radiant panel. In some embodiments of the invention, flexible tubing may be used as the transmission tube.
The transmission tube provides a pathway for the fluid to travel between the radiant panel and a heat pump, but it also may serve other functions. In one embodiment of the invention, the heat pump receives electricity from a source external to the house. In another, a power cord passes through the transmission tube to the interior of the house. There, it may be plugged in or hard wired inside the wall. In yet another embodiment of the invention, the transmission tube allows the passage of air. It may be a duct that itself is capable of passing air, such as one that is air-tight and not conducive to corrosion. Or it may contain a separate air passage tube within it.
In one embodiment of the invention, the transmission tube is spool-shaped, wherein the tube includes two flanges and a pipe between them. This provides an efficient way to install the transmission tube in addition to providing cover plates to seal each side of the hole. One variant of this embodiment includes two threaded flanges that screw onto a pipe. Another variant includes two flanged pipes, each of which have mating threads so the flanges can screw together within the wall to make a spool shaped tube. As the pipes screw together, the flanges abut the inside wall and the outside wall.
The flanges of a spool shaped transmission tube may also serve as mounting plates for other components. For example, in one embodiment of the invention, the external flange includes pegs on which a heat pump could be hung. In another embodiment, the internal flange includes clips to fasten a cover. In another embodiment, the internal flange includes a mounting hook or fastener for the radiant panel. In yet another embodiment, the external flange is a part of the enclosure for the heat pump.
To make the invention even more efficient, energy from the air inside the air that is exiting the building may be transferred to new air entering the room through an energy recovery device. An energy recovery device, as depicted in
Now referring to
Now referring to
Now referring to
Now referring to
Now referring to
Now referring to
Now referring to
Now referring to
Now referring to
The heat pump in
All patents and published patent applications referred to herein are incorporated herein by reference. The invention has been described with reference to various specific and preferred embodiments and techniques. Nevertheless, it is understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.
The present application is a Continuation-In-Part application of U.S. application Ser. No. 16/424,465, filed May 28, 2019 and entitled “System for Heating and Cooling a Room Spaced from a Wall.” The entire disclosure of the prior application is incorporated herein by reference.