The present application claims priority to Chinese Patent Application No. 202110392900.5, filed Apr. 13, 2021, the entire content of which is incorporated herein by reference as if set forth fully herein.
The present disclosure generally relates to the field of antennas, and more specifically, the present disclosure relates to radiating elements and to multi-band base station antennas.
With the development of wireless communication technology, the requirements on integration and miniaturization of antennas become higher and higher, and it is usually necessary to arrange a large number of radiating elements operating in a variety of different frequency bands within a space as small as possible. This may cause radiating elements operating in different frequency bands to affect radiation performance of one another, making it challenging for multi-band antennas to maintain high performance while improving integration and miniaturization. For example, in some multi-band antenna applications, a low frequency band may be the 617 MHz to 960 MHz frequency range or a part thereof, a middle frequency band may be the 1.7 GHz to 2.7 GHz frequency range or a part thereof, and a high frequency band may be the 3.3 GHz to 4.2 GHz frequency range or a part thereof. In the limited space inside the antenna, the size of a low-band radiating element is often larger than the size of a mid-band radiating element which, in turn, is larger than the size of a high-band radiating element. As a result, in a case where a large number of radiating elements need to be arranged, a higher band radiating element sometimes has to be blocked by a lower band radiating element, potentially leading to significant deterioration of the radiation pattern of the higher band radiating element (and potentially the lower band radiating element as well).
According to an aspect of the present disclosure, a radiating element is provided which includes a feed stalk and a radiator mounted on the feed stalk, the radiator including: a first dipole arranged along a first axis and including a first dipole arm and a second dipole arm; and a second dipole arranged along a second axis perpendicular to the first axis and including a third dipole arm and a fourth dipole arm, wherein each of the first dipole arm to the fourth dipole arm includes a trunk conductive segment and a branch conductive segment at one end of which is connected to the trunk conductive segment and at the other end of which being open, the branch conductive segment is configured such that a current induced by radiation in a preselected frequency range higher than an operating frequency range of the radiating element in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment.
In some embodiments, the branch conductive segments are connected to the respective trunk conductive segment of each of the first dipole arm to the fourth dipole arm at respective positions at which the current induced in the trunk conductive segment of the dipole arm by the radiation in the preselected frequency range higher than the operating frequency range of the radiating element reaches a maximum value.
In some embodiments, the branch conductive segment of each of the first dipole arm to the fourth dipole arm has a length between one-eighth to a quarter of a wavelength corresponding to a center frequency of the preselected frequency range higher than the operating frequency range of the radiating element.
In some embodiments, the number of branch conductive segments included in each of the first dipole arm to the fourth dipole arm is an even number.
In some embodiments, the branch conductive segments of each of the first dipole arm and the second dipole arm are arranged symmetrically about the first axis, and the branch conductive segments of each of the third dipole arm and the fourth dipole arm are arranged symmetrically about the second axis.
In some embodiments, the first dipole arm to the fourth dipole arm are rotationally symmetrical about an intersection of the first axis and the second axis.
In some embodiments, the branch conductive segments of each of the first dipole arm to the fourth dipole arm are all arranged inside a boundary defined by the trunk conductive segment of the dipole arm; or the branch conductive segments of each of the first dipole arm to the fourth dipole arm are all arranged outside the boundary defined by the trunk conductive segment of the dipole arm; or some of the branch conductive segments of each of the first dipole arm to the fourth dipole arm are arranged outside the boundary defined by the trunk conductive segment of the dipole arm, while others are arranged inside the boundary defined by the trunk conductive segment of the dipole arm; or the branch conductive segment of at least one of the first dipole arm to the fourth dipole arm overlaps with the trunk conductive segment of the dipole arm in length direction thereof.
In some embodiments, the branch conductive segment of each of the first dipole arm to the fourth dipole arm includes a first sub-branch conductive segment and a second sub-branch conductive segment, the first sub-branch conductive segment and the second sub-branch conductive segment are connected to the trunk conductive segment of the dipole arm at the same position, and wherein: the first sub-branch conductive segment is arranged inside a boundary defined by the trunk conductive segment of the dipole arm and the second sub-branch conductive segment is arranged outside the boundary defined by the trunk conductive segment of the dipole arm; or the first sub-branch conductive segment and the second sub-branch conductive segment are both arranged outside the boundary defined by the trunk conductive segment of the dipole arm; or the first sub-branch conductive segment and the second sub-branch conductive segment are both arranged inside the boundary defined by the trunk conductive segment of the dipole arm; or the first sub-branch conductive segment is arranged inside or outside the boundary defined by the trunk conductive segment of the dipole arm and the second sub-branch conductive segment overlaps with the trunk conductive segment of the dipole arm in length direction thereof.
In some embodiments, the trunk conductive segment of each of the first dipole arm to the fourth dipole arm comprises a single closed conductive segment.
In some embodiments, the trunk conductive segment of each of the first dipole arm to the fourth dipole arm comprises a first conductive segment and a second conductive segment which are connected to each other at their first ends proximal to the feed stalk and separated by a gap at their second ends opposite to the first ends.
In some embodiments, the first conductive segment and the second conductive segment collectively define an annular shape.
In some embodiments, the radiator further comprises a dielectric substrate, and wherein: the trunk conductive segment and the branch conductive segment are arranged on a same surface of the dielectric substrate; or the trunk conductive segment and the branch conductive segment are arranged on different surfaces of the dielectric substrate; or the dielectric substrate is a multilayer dielectric substrate, and the trunk conductive segment and the branch conductive segment are arranged on a same layer or different layers of the multilayer dielectric substrate.
In some embodiments, the radiator further comprises a dielectric substrate, and the trunk conductive segment comprises a plurality of portions, and wherein: the plurality of portions of the trunk conductive segment is arranged on a same surface of the dielectric substrate; or the plurality of portions of the trunk conductive segment is arranged on different surfaces of the dielectric substrate; or the dielectric substrate is a multilayer dielectric substrate, and the plurality of portions of the trunk conductive segment is arranged on a same layer or different layers of the multilayer dielectric substrate.
In some embodiments, the first dipole and the second dipole are sheet metal dipoles.
In some embodiments, each of the first dipole arm and the second dipole arm has a length on the first axis between 0.6 times to 0.7 times a wavelength corresponding to a center frequency of the operating frequency range of the radiating element, and/or each of the third dipole arm and the fourth dipole arm has a length on the second axis between 0.6 times to 0.7 times the wavelength corresponding to the center frequency of the operating frequency range of the radiating element.
In some embodiments, the branch conductive segment of at least one of the first dipole arm to the fourth dipole arm is configured such that a current induced by radiation in a preselected first frequency range higher than the operating frequency range of the radiating element in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment, and the branch conductive segment of at least another one of the first dipole arm to the fourth dipole arm is configured such that a current induced by radiation in a preselected second frequency range higher than the operating frequency range of the radiating element in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment, wherein the first frequency range is higher than the second frequency range.
In some embodiments, the branch conductive segment of each of the first dipole arm to the fourth dipole arm is configured such that a current induced by radiation in a respective one of a preselected plurality of frequency ranges higher than the operating frequency range of the radiating element in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment, the respective ones of the plurality of frequency ranges being different from each other.
According to another aspect of the present disclosure, a multi-band base station antenna is provided which includes: a reflector; a first radiating element mounted on the reflector, the first radiating element being configured to operate in a first operating frequency range; and a second radiating element mounted on the reflector, the second radiating element being configured to operate in a second operating frequency range which is higher than the first operating frequency range, wherein, the first radiating element is the radiating element according to any one of embodiments of the aforementioned aspect of the present disclosure, and the branch conductive segment of each dipole arm of the first radiating element is configured such that a current induced by radiation in the second operating frequency range in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment.
In some embodiments, a radiator of the first radiating element is farther from the reflector than a radiator of the second radiating element, and when viewed from a direction perpendicular to the surface of the reflector, the radiator of the first radiating element covers at least a part of the radiator of the second radiating element.
In some embodiments, the multi-band base station antenna includes a plurality of first radiating elements and a plurality of second radiating elements, and the plurality of first radiating elements and the plurality of second radiating elements are arranged such that, when viewed from a direction perpendicular to the surface of the reflector, each first radiating element at least partially overlaps with one or more second radiating elements.
In some embodiments, when viewed from a direction perpendicular to the surface of the reflector, each of the one or more second radiating elements with which each first radiating element at least partially overlaps is located below a corresponding dipole arm of that first radiating element.
In some embodiments, the second radiating element is a patch dipole radiating element.
In some embodiments, the multi-band base station antenna further includes a third radiating element mounted on the reflector, and the third radiating element is configured to operate in a third operating frequency range which is lower than the first operating frequency range.
In some embodiments, the third radiating element is configured to be cloaked to radiation in the first operating frequency range and/or the second operating frequency range.
In some embodiments, the third radiating element is the radiating element according to any one of embodiments of the aforementioned aspect of the present disclosure, and the branch conductive segment of each dipole arm of the third radiating element is configured such that a current induced by radiation in the first operating frequency range and/or the second operating frequency range in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment.
In some embodiments, the third radiating element includes a cross dipole radiator, each dipole arm of the cross dipole radiator includes respective conductive segments and respective inductor capacitor circuits, and the inductor capacitor circuit defines a filter which is configured to allow radiation in the first operating frequency range and/or the second operating frequency range to pass.
In some embodiments, the third radiating element includes a cross dipole radiator, each dipole arm of the cross dipole radiator includes a plurality of dipole segments and chokes arranged between adjacent dipole segments of the plurality of dipole segments, and the chokes are configured to minimize the effect of current induced in the dipole arm of the third radiating element by radiation in the first operating frequency range and/or the second operating frequency range.
In some embodiments, a radiator of the third radiating element is farther from the reflector than a radiator of the first radiating element, the radiator of the first radiating element is farther from the reflector than a radiator of the second radiating element, and when viewed from a direction perpendicular to the surface of the reflector, the radiator of the third radiating element covers at least a part of the radiator of the first radiating element, and the radiator of the first radiating element covers at least a part of the radiator of the second radiating element.
In some embodiments, the multi-band base station antenna includes a plurality of first radiating elements, a plurality of second radiating elements, and a plurality of third radiating elements, and the plurality of first radiating elements, the plurality of second radiating elements, and the plurality of third radiating elements are arranged such that, when viewed from a direction perpendicular to the surface of the reflector, each third radiating element at least partially overlaps with one or more first radiating elements, and each first radiating element at least partially overlaps with one or more second radiating elements.
In some embodiments, when viewed from a direction perpendicular to the surface of the reflector, each of the one or more first radiating elements with which each third radiating element at least partially overlaps is located below a corresponding dipole arm of that third radiating element, and each of the one or more second radiating elements with which each first radiating element at least partially overlaps is located below a corresponding dipole arm of that first radiating element.
In some embodiments, a radiator of the third radiating element is farther from the reflector than a radiator of the first radiating element and is farther from the reflector than a radiator of the second radiating element, and when viewed from a direction perpendicular to the surface of the reflector, at least one of the dipole arms of the radiator of the third radiating element covers at least a part of the radiator of the first radiating element, and at least another one of the dipole arms of the radiator of the third radiating element covers at least a part of the radiator of the second radiating element, wherein the branch conductive segment of the at least one of the dipole arms of the radiator of the third radiating element is configured such that a current induced by radiation in the first operating frequency range in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment, and the branch conductive segment of the at least another one of the dipole arms of the radiator of the third radiating element is configured such that a current induced by radiation in the second operating frequency range in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment.
In some embodiments, the first operating frequency range is at least a portion of 1.7 GHz to 2.7 GHz frequency range, the second operating frequency range is at least a portion of 3.3 GHz to 4.2 GHz frequency range, and the third operating frequency range is at least a portion of 617 MHz to 960 MHz frequency range.
Note, in the embodiments described below, the same signs are sometimes used in common between different attached drawings to denote the same parts or parts with the same functions, and repeated descriptions thereof are omitted. In some cases, similar labels and letters are used to indicate similar items. Therefore, once an item is defined in one attached drawing, it does not need to be further discussed in subsequent attached drawings.
For ease of understanding, the position, dimension, and range of each structure shown in the attached drawings and the like may not indicate the actual position, dimension, and range. Therefore, the present disclosure is not limited to the positions, dimensions, and ranges disclosed in the attached drawings and the like.
Various exemplary embodiments of the present disclosure will be described in detail below by referencing the attached drawings. It should be noted: unless otherwise specifically stated, the relative arrangement, numerical expressions and numerical values of components and steps set forth in these embodiments do not limit the scope of the present disclosure.
The following description of at least one exemplary embodiment is actually only illustrative, and in no way serves as any limitation to the present disclosure and its application or use. In other words, the structure and method herein are shown in an exemplary manner to illustrate different embodiments of the structure and method in the present disclosure. However, those skilled in the art will understand that they only illustrate exemplary ways of implementing the present disclosure, rather than exhaustive ways. In addition, the attached drawings are not necessarily drawn to scale, and some features may be enlarged to show details of specific components.
In addition, the technologies, methods, and equipment known to those of ordinary skill in the art may not be discussed in detail, but where appropriate, the technologies, methods, and equipment should be regarded as part of the granted Specification. \
In all examples shown and discussed herein, any specific value should be construed as merely exemplary value and not as limiting value. Therefore, other examples of the exemplary embodiment may have different values.
In a multi-band antenna, radiating elements of different frequency bands may interfere with each other. Wireless communication technology has gradually developed from early 2G antennas that included only one or two RF ports to current 5G antennas that include dozens of RF ports. As more RF ports are included in an antenna, the requirements on integration become higher and higher. At the same time, it is also expected to maintain the miniaturization of the antenna while increasing the degree of integration of the antenna. These requirements result in an extremely complex electromagnetic field environment in the limited space inside the antenna. In particular, there is mutual interference between signals of different frequency bands, resulting in a distortion of the radiation pattern of the radiating elements operating in each frequency band, which may degrade the overall performance of the antenna.
The present disclosure provides a radiating element, which is capable of being “cloaked” to radiation in a frequency range different from the operating frequency range of the radiating element (“being cloaked” means that the radiating element has no effect or has significantly reduced effect on radiation in a frequency range different from the operating frequency range of the radiating element). Therefore, when such a radiating element and a radiating element operating in another frequency band are together in a narrow internal space of the antenna, the radiating element will not affect or has little effect on the performance of the radiating element operating in the other frequency band.
Each of the first dipole arm to the fourth dipole arm may include a trunk conductive segment and a branch conductive segment at one end of which connected to the trunk conductive segment and at the other end of which being open. The trunk conductive segment and the branch conductive segment may be, for example, formed of any suitable conductive material such as metal. As shown in
Each branch conductive segment may be configured such that a current induced by radiation in a preselected frequency range higher than the operating frequency range of the radiating element 100 in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment. In the Specification, the currents opposite to each other may mean that the angle between the directions of the two currents is equal to 180° or an obtuse angle. For example, the angle between the directions of the two currents may be 180°±45°, preferably 180°±30°, more preferably 180°±15°, furthermore preferably 180°±5°.
Referring to
In some embodiments, branch conductive segments may be connected to the respective trunk conductive segments 121a, 121b, 122a, and 122b of each of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, and 122B at respective positions at which the current induced in the trunk conductive segment of the dipole arm by the radiation in the preselected frequency range higher than the operating frequency range of the radiating element 100 reaches a maximum value. The current induced in the trunk conductive segment of the dipole arm by the radiation in the preselected frequency range higher than the operating frequency range of the radiating element 100 may have one or more maximum values, and the branch conductive segment(s) may be connected at one or more of one or more positions of the trunk conductive segment of the dipole arm corresponding to the one or more maximum values. In some examples, the branch conductive segment may be connected at a position of the trunk conductive segment of the dipole arm corresponding to the largest maximum value of the one or more maximum values.
In some embodiments, the trunk conductive segment of each of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, and 122B may comprise a single closed conductive segment (e.g., as shown by
It also should be noted that, although the trunk conductive segments are illustrated in most of the drawings as being closed conductive segments, this is only exemplary and not restrictive. In some embodiments, the trunk conductive segment of each of the first dipole arm to the fourth dipole arm may comprise a first conductive segment and a second conductive segment which are connected to each other at their first ends proximal to the feed stalk and separated by a gap at their second ends opposite to the first ends. For example, as shown in
In some embodiments, the trunk conductive segment of each of the first dipole arm 121A and the second dipole arm 121B may be symmetrical about the first axis or substantially symmetrical about the first axis, and the trunk conductive segment of each of the third dipole arm 122A and the fourth dipole arm 122B may be symmetrical about the second axis or substantially symmetrical about the second axis. In some embodiments, the trunk conductive segments of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, and 122B may be rotationally symmetrical or substantially rotationally symmetrical about an intersection of the first axis and the second axis. The symmetry can be advantageous to the radiation pattern of the radiating element 100 which uses these trunk conductive segments as dipole arms.
In some embodiments, each of the first dipole arm 121A and the second dipole arm 121B may have a length on the first axis A1 between 0.6 times to 0.7 times a wavelength corresponding to a center frequency of the operating frequency range of the radiating element 100, and/or each of the third dipole arm 122A and the fourth dipole arm 122B may have a length on the second axis A2 between 0.6 times to 0.7 times the wavelength corresponding to the center frequency of the operating frequency range of the radiating element 100. In some embodiments, each of the first dipole arm 121A and the second dipole arm 121B may have an electrical length which is about three quarters of the wavelength corresponding to the center frequency of the operating frequency range of the radiating element 100, and/or each of the third dipole arm 122A and the fourth dipole arm 122B may have an electrical length which is about three quarters of the wavelength corresponding to the center frequency of the operating frequency range of the radiating element 100. In such case, the dipoles of the radiator 120 of the radiating element 100 may be high impedance dipoles which may have significantly reduced adverse influence on patterns of radiation within a frequency range lower than the operating frequency range of the radiating element 100, which may be due to the effectively suppressed common mode resonance phenomenon.
In addition, the length of the branch conductive segment of each of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, and 122B may be associated with a wavelength corresponding to a center frequency of the preselected frequency range to which the radiating element 100 is desired to be cloaked. Generally, the longer the branch conductive segment is, the lower the frequency range permitted to pass. In some embodiments, the branch conductive segment of each of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, and 122B has a length between about one-eighth to about a quarter of the wavelength corresponding to the center frequency of the preselected frequency range higher than the operating frequency range of the radiating element 100. The term “about” herein may mean equal to the value described by the term or within ±20% of the value described by the term, preferably within ±10%, more preferably within ±5%, most preferably within ±1%. Such a branch conductive segment can cancel the effect of an adjacent trunk conductive segment portion on radiation of a higher frequency band.
In some embodiments, the branch conductive segment of at least one of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, 122B may be configured such that a current induced by radiation in a preselected first frequency range higher than the operating frequency range of the radiating element in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment, and the branch conductive segment of at least another one of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, 122B may be configured such that a current induced by radiation in a preselected second frequency range higher than the operating frequency range of the radiating element in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment, wherein the first frequency range may be higher than the second frequency range. In some examples, the branch conductive segment of the at least one of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, 122B that is configured for the first frequency range may have a length shorter than that of the branch conductive segment of the at least another one of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, 122B that is configured for the second frequency range. In some embodiments, the branch conductive segment of each of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, 122B may be configured such that a current induced by radiation in a respective one of a preselected plurality of frequency ranges higher than the operating frequency range of the radiating element in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment, the respective ones of the plurality of frequency ranges may be different from each other.
For example, as shown by
Each of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, and 122B may include one or more branch conductive segments. In some embodiments, the number of branch conductive segments included in each of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, and 122B may be an even number. In some embodiments, the branch conductive segments of each of the first dipole arm 121A and the second dipole arm 121B may be arranged symmetrically about the first axis or may be arranged substantially symmetrically about the first axis, and the branch conductive segments of each of the third dipole arm 122A and the fourth dipole arm 122B may be arranged symmetrically about the second axis or may be arranged substantially symmetrically about the second axis. In some embodiments, the first dipole arm to the fourth dipole arm 121A, 121B, 122A, and 122B may be rotationally symmetrical or substantially rotationally symmetrical about the intersection of the first axis and the second axis. The symmetry of the arrangement of the branch conductive segments is advantageous to prevent the radiation pattern of the radiating element 100, which uses a trunk conductive segment to which the branch conductive segment is connected as a dipole, from being adversely affected by the addition of the branch conductive segments.
In the present disclosure, the dipoles of the radiating element 100 may adopt any appropriate form. In some embodiments, the first dipole and the second dipole of the radiator 120 of the radiating element 100 may be sheet metal dipoles. For example, the trunk conductive segment and the branch conductive segment of the radiating element 100 may be cut from a stamped sheet metal. The trunk conductive segment and the branch conductive segment may be formed integrally, or may be separate parts that are physically and electrically connected together by welding, via conductive connecting member(s), or in other suitable manner. In some embodiments, the radiator 120 of the radiating element 100 may further include a dielectric substrate on which the trunk conductive segment and the branch conductive segment may be disposed. For example,
In some embodiments, the branch conductive segments of each of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, and 122B may be all arranged inside a boundary defined by the trunk conductive segment of the dipole arm. For example, as shown in
In some embodiments, the branch conductive segment of each of the first dipole arm to the fourth dipole arm 121A, 121B, 122A, and 122B may include a first sub-branch conductive segment and a second sub-branch conductive segment, the first sub-branch conductive segment and the second sub-branch conductive segment may be connected to the trunk conductive segment of the dipole arm at the same position, and wherein: the first sub-branch conductive segment is arranged inside the boundary defined by the trunk conductive segment of the dipole arm and the second sub-branch conductive segment is arranged outside the boundary defined by the trunk conductive segment of the dipole arm, or the first sub-branch conductive segment and the second sub-branch conductive segment are both arranged outside the boundary defined by the trunk conductive segment of the dipole arm, or the first sub-branch conductive segment and the second sub-branch conductive segment are both arranged inside the boundary defined by the trunk conductive segment of the dipole arm, or the first sub-branch conductive segment is arranged inside or outside the boundary defined by the trunk conductive segment of the dipole arm and the second sub-branch conductive segment overlaps with the trunk conductive segment of the dipole arm in length direction thereof. For example, as shown in
The above-described arrangements of the branch conductive segments are merely exemplary and not restrictive. The branch conductive segments may be specifically arranged on the trunk conductive segment according to the operating frequency range of the radiator 120 and the frequency range to which the radiating element 100 needs to be cloaked.
In addition, although the branch conductive segments and the trunk conductive segments are illustrated as being on a same surface of the dielectric substrate 123 in most of
In addition, although the trunk conductive segments are illustrated as being on one surface of the dielectric substrate 123 in
It will also be appreciated that, for embodiments of sheet metal dipole radiators, for example, the trunk conductive segment and the branch conductive segment may not necessarily be located in a same plane, and if the trunk conductive segment comprises a plurality of portions, the plurality of portions of the trunk conductive segment may not necessarily be located in a same plane.
Adding the branch conductive segment to the dipole arm of the radiating element can be helpful in making the radiating element cloaked to the desired frequency range, and adding the branch conductive segment to the dipole arm of the radiating element in a symmetrical manner about the axis of the dipole arm of the radiating element can further make the radiating element cloaked to the desired frequency range with its own radiation performance unaffected. The radiating element according to the present disclosure may be advantageous to form a multi-band antenna together with radiating elements operating in other operating frequency ranges without affecting or having little effect on the performance of the radiating elements operating in other operating frequency ranges.
The present disclosure further provides a multi-band base station antenna, which may include the aforementioned radiating element, so that including radiating elements of different frequency bands in the multi-band base station antenna does not cause deterioration of antenna performance, especially radiation pattern.
A multi-band base station antenna 10 according to some embodiments of the present disclosure will be described in detail with reference to
The multi-band base station antenna 10 may include a reflector 11, a first radiating element 100 mounted on the reflector 11, and a second radiating element 200 mounted on the reflector 11. The first radiating element 100 may be configured to operate in a first operating frequency range. The second radiating element 200 may be configured to operate in a second operating frequency range which is higher than the first operating frequency range. The first radiating element 100 may be the radiating element 100 according to any of the aforementioned embodiments of the present disclosure, and the branch conductive segment of each dipole arm of the first radiating element 100 may be configured such that a current induced by radiation in the second operating frequency range of the second radiating element 200 in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment.
In order to miniaturize the multi-band base station antenna 10, the first radiating element and the second radiating element may be arranged more compactly. In some embodiments, as can be seen more clearly from
In order to further reduce the effect on the second radiating element 200, in some embodiments in which the radiator of the first radiating element 100 includes a dielectric substrate, the dielectric substrate of the radiator of the first radiating element 100 may be at least partially hollowed out. The hollowing out of the dielectric substrate may be performed according to the contours of the trunk conductive segment and the branch conductive segment. Specifically, some or all of the portion of the dielectric substrate of the radiator of the first radiating element 100 that does not include the trunk conductive segment and the branch conductive segment may be removed (for example, removing the portion of the dielectric substrate inside the boundary defined by the trunk conductive segment where no branch conductive segments are provided), so that the portion of the dielectric substrate used as a support is retained, and the attenuation of signals radiated by the second radiating element 200 blocked by the first radiating element 100 is reduced as much as possible.
In a conventional multi-band base station antenna, when a radiator of a lower frequency band radiating element covers a radiator of a higher frequency band radiating element, it may cause serious distortion in the radiation pattern of the higher frequency band radiating element. This condition between a high-band (for example, 3.3 GHz to 4.2 GHz or a part thereof) radiating element and a mid-band (for example, 1.7 GHz to 2.7 GHz or a part thereof) is even worse than that between a mid-band (for example, 1.7 GHz to 2.7 GHz or a part thereof) radiating element and a low-band (for example, 617 MHz to 960 MHz or a part thereof) radiating element. Therefore, lower frequency band radiating elements are generally arranged outside an array of higher frequency band radiating elements, or the spacing between the radiating elements is increased to avoid as much as possible the higher frequency band radiating elements being covered by the lower frequency band radiating elements to result in the distortion of the radiation pattern. However, this usually increases the size of the antenna, and this situation becomes more severe when the number of radiating elements included in the antenna increases and the operating frequency bands of the antenna increase. In contrast, in the multi-band base station antenna 10 according to the present disclosure, since the existence of the first radiating element 100 does not have an effect or has little effect on the radiation in the second operating frequency range, the radiation pattern of the second radiating element 200 will not be significantly affected even if the radiator 120 of the first radiating element 100 covers at least a part of the radiator 220 of the second radiating element 200.
In order to show the excellent performance of the multi-band base station antenna 10 according to the present disclosure,
Since the existence of the first radiating element 100 in the multi-band base station antenna 10 according to the present disclosure does not affect or has little effect on the operation of the second radiating element 200, the arrangement of the first radiating element 100 and the arrangement of the second radiating element 200 can be freely considered separately without worrying that an overlapping layout of the two will affect the operating performance of each other. Therefore, the multi-band base station antenna 10 according to the present disclosure can maintain high performance while achieving high integration and miniaturization.
In addition, in order to alleviate or eliminate the effect of the second radiating element 200 of a higher frequency band on the operation of the first radiating element 100 of a lower frequency band, in some embodiments, the second radiating element 200 may be a patch dipole radiating element. As shown in
The multi-band base station antenna 10 according to the present disclosure exemplarily includes radiating elements of two frequency bands. However, the present disclosure is not limited thereto, and may include more kinds of radiating elements of different frequency bands. In some embodiments, the multi-band base station antenna according to the present disclosure may further include a third radiating element mounted on the reflector, and the third radiating element may be configured to operate in a third operating frequency range which is lower than the first operating frequency range. In some embodiments, the third radiating element may be configured to be cloaked to radiation in the first operating frequency range of the first radiating element and/or the second operating frequency range of the second radiating element.
For example,
The third radiating element 300 may be configured to be cloaked to radiation in the first operating frequency range of the first radiating element 100 and/or the second operating frequency range of the second radiating element 200. In other words, the third radiating element 300 may be configured to allow radiation in the first operating frequency range of the first radiating element 100 and/or the second operating frequency range of the second radiating element 200 to pass substantially unaffected.
In some embodiments, as shown in
Of course, the example of the third radiating element is not limited to the third radiating element 300 shown in
In some other embodiments, as shown in
In order to miniaturize the multi-band base station antenna 20, the first radiating element, the second radiating element, and the third radiating element may be arranged more compactly. In some embodiments, as can be seen more clearly from
As previously mentioned, in a conventional multi-band base station antenna, when a high-band (for example, 3.3 GHz to 4.2 GHz or a part thereof) radiating element covers a mid-band (for example, 1.7 GHz to 2.7 GHz or a part thereof) radiating element and a mid-band (for example, 1.7 GHz to 2.7 GHz or a part thereof) radiating element covers a low-band (for example, 617 MHz to 960 MHz or a part thereof) radiating element, then the radiation pattern of the blocked radiating element of a higher frequency band will be severely distorted, leading to significant deterioration of the performance of the multi-band base station antenna. Therefore, lower frequency band radiating elements are generally arranged outside an array of higher frequency band radiating elements, or the spacing between the radiating elements is increased to avoid as much as possible the higher frequency band radiating elements being covered by the lower frequency band radiating elements to result in the distortion of the radiation pattern. However, this usually increases the size of the antenna, and this situation becomes more severe when the number of radiating elements included in the antenna increases and the operating frequency bands of the antenna increase. In contrast, in the multi-band base station antenna 20 according to the present disclosure, since the first radiating element 100 is cloaked to the radiation in the second operating frequency range of the second radiating element 200, and the third radiating element 300 is cloaked to the radiation in the first operating frequency range of the first radiating element 100 and/or the second operating frequency range of the second radiating element 200, the radiation patterns of the first radiating element 100 and the second radiating element 200 may not be significantly affected even if the radiator 120 of the first radiating element 100 covers at least a part of the radiator 220 of the second radiating element 200 and the radiator 320 of the third radiating element 300 covers at least a part of the radiator 120 of the second radiating element 100.
In some embodiments, a radiator of the third radiating element is farther from the reflector than a radiator of the first radiating element and is farther from the reflector than a radiator of the second radiating element, and when viewed from a direction perpendicular to the surface of the reflector, at least one of the dipole arms of the radiator of the third radiating element may cover at least a part of the radiator of the first radiating element, and at least another one of the dipole arms of the radiator of the third radiating element may cover at least a part of the radiator of the second radiating element, wherein the branch conductive segment of the at least one of the dipole arms of the radiator of the third radiating element may be configured such that a current induced by radiation in the first operating frequency range in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment, and the branch conductive segment of the at least another one of the dipole arms of the radiator of the third radiating element may be configured such that a current induced by radiation in the second operating frequency range in a portion, to which the branch conductive segment is connected, of the trunk conductive segment of the dipole arm is opposite to a current induced in the branch conductive segment.
For example, as shown in
In addition, in some embodiments, in order to reduce the effect of the first radiating element 100 on the third radiating element 300, a common mode tuning circuit design may also be used in the feed stalk 110 of the first radiating element 100, as shown in
In the multi-band base station antenna 20 according to the present disclosure, the existence of the first radiating element 100 does not affect or has little effect on the operation of the second radiating element 200, and the existence of the third radiating element 300 does not affect or has little effect on the operation of the first radiating element 100 and the second radiating element 200. Therefore, the arrangement of the first radiating element 100, the arrangement of the second radiating element 200, and the arrangement of the third radiating element 300 can be freely considered separately without worrying that an overlapping layout of them will affect the operating performance of one other. Therefore, the multi-band base station antenna 20 according to the present disclosure can maintain high performance while achieving high integration and miniaturization.
The terms “left”, “right”, “front”, “rear”, “top”, “bottom”, “upper”, “lower”, “high”, “low” in the descriptions and claims, if present, are used for descriptive purposes and not necessarily used to describe constant relative positions. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present disclosure described herein, for example, can operate on other orientations that differ from those orientations shown herein or otherwise described. For example, when the device in the drawing is turned upside down, features that were originally described as “above” other features can now be described as “below” other features. The device may also be oriented by other means (rotated by 90 degrees or at other locations), and at this time, a relative spatial relation will be explained accordingly.
In the Specification and claims, when an element is referred to as being “above” another element, “attached” to another element, “connected” to another element, “coupled” to another element, or “contacting” another element”, the element may be directly above another element, directly attached to another element, directly connected to another element, directly coupled to another element, or directly contacting another element, or there may be one or multiple intermediate elements. In contrast, if an element is described “directly” “above” another element, “directly attached” to another element, “directly connected” to another element, “directly coupled” to another element or “directly contacting” another element, there will be no intermediate elements. In the Specification and claims, a feature that is arranged “adjacent” to another feature, may denote that a feature has a part that overlaps an adjacent feature or a part located above or below the adjacent feature.
As used herein, the word “exemplary” means “serving as an example, instance, or illustration” rather than as a “model” to be copied exactly. Any realization method described exemplarily herein is not necessarily interpreted as being preferable or advantageous over other realization methods. Moreover, the present disclosure is not limited by any expressed or implied theory given in the technical field, background art, summary of the invention, or specific implementation methods.
As used herein, the word “substantially” means comprising any minor changes caused by design or manufacturing defects, device or component tolerances, environmental influences, and/or other factors. The word “substantially” also allows the gap from the perfect or ideal situation due to parasitic effects, noise, and other practical considerations that may be present in the actual realization.
In addition, for reference purposes only, “first”, “second” and similar terms may also be used herein, and thus are not intended to be limitative. For example, unless the context clearly indicates, the words “first”, “second” and other such numerical words involving structures or elements do not imply a sequence or order.
It should also be understood that when the term “include/comprise” is used in this text, it indicates the presence of the specified feature, entirety, step, operation, unit and/or component, but does not exclude the presence or addition of one or more other features, entireties, steps, operations, units and/or components and/or combinations thereof.
In the present disclosure, the term “provide” is used in a broad sense to cover all ways of obtaining an object, so “providing an object” includes but is not limited to “purchase”, “preparation/manufacturing”, “arrangement/setting”, “installation/assembly”, and/or “order” of the object, etc.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. The terms used herein are only for the purpose of describing specific embodiments, and are not intended to limit the present disclosure. As used herein, the singular forms “a”, “an” and “the” are also intended to include the plural forms, unless the context clearly dictates otherwise.
Those skilled in the art should realize that the boundaries between the above operations are merely illustrative. A plurality of operations can be combined into a single operation, which may be distributed in the additional operation, and the operations can be executed at least partially overlapping in time. Also, alternative embodiments may include multiple instances of specific operations, and the order of operations may be changed in other various embodiments. However, other modifications, changes and substitutions are also possible. Aspects and elements of all embodiments disclosed above may be combined in any manner and/or in conjunction with aspects or elements of other embodiments to provide multiple additional embodiments. Therefore, the Specification and attached drawings hereof should be regarded as illustrative rather than limitative.
Although some specific embodiments of the present disclosure have been described in detail through examples, those skilled in the art should understand that the above examples are only for illustration rather than for limiting the scope of the present disclosure. The embodiments disclosed herein can be combined arbitrarily without departing from the spirit and scope of the present disclosure. Those skilled in the art should also understand that various modifications can be made to the embodiments without departing from the scope and spirit of the present disclosure. The scope of the present disclosure is defined by the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
2021103929005 | Apr 2021 | CN | national |