1. Field of the Invention
The present invention relates to the field of radiation beam focusing and, more specifically, an embodiment of the present invention relates to a method and a system for the two-dimensional collimation of an x-ray beam.
2. Background of the Invention.
Accelerator-produced high-energy x-ray beams often must be collimated to produce a narrow beam having parallel planar boundaries.
In most situations, a large fraction of the beam incident on the collimator must be blocked by the collimator. This results in large amounts of heat being deposited in the collimator which requires a means to carry heat away from the collimator.
Sometimes it is necessary to install separate collimators with plates that narrow a beam (initially traveling, say, in the z direction) first in the x direction and then in the y direction (or in any two orthogonal directions) so as to allow adjustment of the separation between the plates. This sequential arrangement requires the sacrifice of valuable space in the experimental area, space that can otherwise be populated by instruments and components to enhance research.
Slits are widely used throughout the Advanced Photon Source beam lines at Argonne National Laboratory (Argonne, Ill.), and other x-ray facilities around the world, to both define the size of the x-ray beam and to vary the overall heat load on downstream optical components. White beam slits in particular, require cooled beam absorbing surfaces, to intercept the beam at some incident angle determined by the beam profile. As this angle gets smaller, the mask must get longer to maintain the same effective inlet aperture. There are many different designs in operation and in most cases, a single x-ray beam requires the opposing horizontal and vertical edges of two separate mask bodies to define it.
A typical beamline has one or two undulators installed inline at the straight section between bending magnets in the accelerator storage ring. A canted undulator beamline uses additional magnets to cant the electrons 5 mrad outboard through the first undulator, then inboard 1 mrad through the second undulator which creates two independent beams 1 mrad apart. A third corrector magnet steers the electrons back into the storage ring.
To define the beam in both the horizontal and vertical, an L-type design is typically employed. These slits are basically comprised of a pair of movable masks, in line with the beam, that work together. Each mask will define one horizontal and one vertical beam edge. In many cases, these mask bodies are identical, with one flipped upside down in relation to the other to define opposing edges.
The problem with this traditional design is that each beam requires two masks separated by a bellows to allow for independent motion. In the case of a canted undulator beamline, the independent manipulation of both beams would require four separate masks which would eat up a large portion of valuable beamline real estate.
A need exists in the art for a method and a system for independently varying each beam of a multi radiation beam line. For example, in a dual beam line geometry, the method and system should allow for varying the size of one electron beam while allowing the second beam to pass through unaffected. The method and system should be compact compared to traditional designs. Also, the method and system should involve no moving slits relative to each other so as to minimize maintenance and alignment issues.
An object of the invention is to introduce a rapid and adjustable slit/collimation system for radiation (x-rays, electrons, protons, neutrons) beams that overcomes many of the disadvantages of the prior art.
Another object of the invention is to provide a device for facilitating two-dimensional collimation along the same segment of a radiation beam. A feature of this invention is the use of collimators (orthogonally and immovably positioned relative to each other) and both positioned along an axis for the system (e.g., the z axis) intended to coincide with the incident radiation beam, with each collimator defining two elongated surfaces generally at some incident angle to the z axis. An advantage of this invention is very compact collimation of a radiation beam.
Another object of the invention is to facilitate adjustable two-dimensional collimation on the same segment of a radiation beam. A feature of this invention is an isosceles trapezoidal cross-section for each of the collimator apertures (which are immovable relative to each other) in a plane perpendicular to the z axis (with said isosceles trapezoid cross sections dimensioned so as to allow simultaneous positioning of the apertures in directions parallel and perpendicular to said z axis as well as rotation about an axis perpendicular to the z axis. An advantage of this invention is that the simultaneous positioning of the orientation of the apertures relative to the incident beam allows for two-dimensional adjustment of the collimation of the beam.
Yet another object of the invention is to facilitate rapid two-dimensional collimation along the same segment of a radiation beam. A feature of this invention is the use of two orthogonal collimators, with each collimator defining passageways parallel to the z axis, with means to simultaneously impart to each passageway rectilinear motion along the z axis and along a first direction perpendicular to the z axis as well as rotational motion around a second direction perpendicular to said z axis and to the first direction; and finally with means to impart to the juxtaposed collimators rotational motion around the x and y axes. An advantage of this invention is the ability to control rapidly and remotely the collimation of a radiation beam without physically modifying the size, absolute dimensions, or shapes of the collimator's apertures, surfaces or passageways.
Still another object of the present invention is to provide a method for collimating beam lines that requires no physical modification of collimator apertures, channels or slit widths. A feature of the invention is that a monolith defining a collimator is positioned relative to incoming radiation beams to allow the collimator to open and close symmetrically about the x-ray beam. An advantage of the invention is that no moving parts are associated with the collimator; rather, the collimators is static and integrally molded with the monolith so as to afford a compact collimator. Rather, the whole monolith is moved to provide variable collimation.
In brief, the invention provides a method for collimating a radiation beam, the method comprising subjecting the beam to a collimator aperture that has no moving parts. An embodiment of the method subjects the beam to a collimator that yaws (i.e., moves side to side), and pitches (i.e., tilts up and down), or both simultaneously, relative to the incident angle of the beam. The pitching axis and the yawing axis rotate about each other at their intersection point.
Also provided is a system for collimating radiation beams, the system comprising a collimator body, and a stage for pitching the body (i.e. moving the body along an arc through a horizontal plane), yawing the body (i.e., moving the body along an arc through a vertical plane) and simultaneously pitching and yawing the body. The pitching axis and the yawing axis rotate about each other at their intersection point. The invention further provides a system for collimating a medium, the system comprising a collimator body; and a collimator body support surface for pitching or yawing or pitching and yawing the body.
The invention together with the above and other objects and advantages will be best understood from the following detailed description of the preferred embodiment of the invention shown in the accompanying figures, wherein:
The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, will be better understood when read in conjunction with the appended drawings.
As used herein, an element or step recited in the singular and preceded with the word “a” or “an” should be understood as not excluding plural said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
The present invention provides a dynamic x-ray slit/collimator system enabling two-directional positioning x-ray beam collimation using a plurality of collimators statically arranged relative to each other and to the incoming radiation beam. The collimators may or may not be simultaneously manipulated relative to each other in relation to an incident radiation beam. In an embodiment of the invention, a single mask body provides all of the necessary motion for collimation of a single x-ray beam. In another embodiment of the invention, a two collimator system has been developed to use in canted undulator beamlines, whereby one beam is collimated and another, passing through the same mask body, is not collimated. Rather, that second beam is collimated by a second mask body arranged “downstream” of the first mask body or monolith, if necessary.
A collimator slit is defined by an aperture extending through the monolith thereby forming a tunnel through the monolith. As such, the tunnel has a first upstream end and a second downstream end. The upstream end itself is defined by usually four edges at orthogonal angles to each other. Each of the edges are termination points for surfaces that extend relatively parallel to the axis of the beam line. The edges and therefore the surfaces are positioned relative to the beam line by first being frozen in space relative to each other such that the surfaces are integrally molded or affixed to the same monolith or bulk heat sink structure. Two opposing surfaces collimate an incoming beam in the x-direction and two opposing surfaces collimate the beam in the y-direction. The collimation system works by simultaneously pivoting both pairs of edges on an axis centered between internal opposing edges in both the horizontal (P axis as shown in
A relief cut along the length of all four adjacent surfaces of each of the slits provides thermal stress relief. An additional feature is that the horizontal and vertical edges of each of the substrates forming the surfaces of each of the collimator passageways are staggered. This results in the beam cavity defining sharp corners, sans the rounded corners associated with even the most accurate of machining techniques. (Rounded corners are unavoidable if both the horizontal and adjacent vertical edge were in the same plane because of some minimum machinable radius. The disadvantage to this is that there would be a stress concentration at the corner.)
Linear actuators acting as a lever arm at a fixed distance from the center of rotation, provide precise control of the aperture. Resolution is around 13 μm, depending on the specific motor. One mask body can thereby define all four edges of the x-ray beam, taking up half the space of conventional slits.
Collimator Monolith
Detail
As the collimator 20 opens and closes, the incident strike angle changes, which greatly affects the thermal loading of the component. The angular travel from fully open to fully closed is 3 degrees. The angle of one opposing surface increases as the other decreases in both the horizontal and vertical directions. In the open position, the opposing surfaces are at 2° and 5° to the x-ray beam. As the slit closes, these angles invert to 5° and 2° respectively.
Another feature of the system is isolating and manipulating each beam independent of the other. Canted undulator slits were designed to reside in a typical APS canted beamline immediately after the front end exit table in the first optical enclosure. As noted supra a second adjacent aperture molded with the monolith is a pass through aperture 18 and allows the other canted beam to pass through unaffected. Since the canted beams diverge by 1 mrad, the distance between the two apertures is designed to allow the second beam to pass unaffected when installed in a range of about 27 to about 28 meters from the source (where the beams are separated by about 27 to about 28 mm due to the 1 mrad divergence). This beam bypass 18 is also tapered in such a way that as the monolith 12 is rotated about the vertical (y-axis) and horizontal (x-axis) plane, the overall size of the bypass aperture 18 is virtually unaffected. The taper of the bypass channel assures that its sides do not pass into the line of travel of the beam.
Another consideration is that while the slit is rotating, the edge of the inlet aperture moves closer to the incoming beam at which point the component would see normal incidence and the material may fail. As such, the taper of the by-pass port 18 assures that its sides do not pass into the beam, therefore preventing the sides from overheating and failing. This problem is compounded when the slit is used for scanning. Hence, the geometry of the slits is optimized to allow for +/−3 mm of travel in both H and V with the slits fully closed (or at a minimum aperture size suitable for scanning across the beam profile.) So, with the bypass port 18 and collimator slit 20 fully closed, there is still approximately +/−3 mm of space before the x-ray beam would hit the edge of the inlet aperture.
The monolith as featured defines the bypass port 18 and the collimator slit 20. As discussed supra, the bypass port is adapted to receive a second media stream such as a radiation beam for collimation downstream of the monolith. However, if only one media stream is in the offing, then the collimator need not have a bypass port 18 but rather define just a single collimator aperture 20.
An embodiment of the monolith is shown as comprising two pieces. Thermal conductivity and overall yield strength are the relevant factors in choosing materials comprising the monolith. Suitable construction materials for the monolith is metal or metal matrix composite alloys having high thermal conductivity and high strength at temperatures exceeding 1000 C. Suitable materials include, but are not limited to tungsten, copper, or copper-based metal matrix composites (MMC) such as GlidCop® (North American Hoganas, Inc., Hollsopple, Pa.), Glidcop® has a high thermal conductivity as it is mostly copper, but has a much higher yield strength. Optionally, the monolith constituents may include compounds to increase the metal's resistance to thermal softening while enhancing strengths of the metal at high temperatures. One such suitable additive is aluminum oxide ceramic.
Internal surfaces of the monolith define cooling channels. Inasmuch as it is preferred that all regions of the monolith be cooled equally, a feature of the cooling means is that the channels are linked internally between adjacent surfaces with only one external jumper 21 across the braze joint (
Preferably, the opposing slit edges reach an overlapping condition at some incident angle to the beam.
In instances requiring a hard beam defining edge, a suitably-sized hole (e.g. 5/16 inch) hole is drilled through the edge and slightly above tangent to the beam strike surface after the main machining was completed on the two halves. As depicted in
Fabrication Example
When electronic discharge is used on GlidCop® Al-15 the resulting surfaces are too rough for direct application of braze material on faying surfaces. The surfaces need to be conditioned by grinding or machining to facilitate UHV vacuum tight joints.
Test brazes with 50/50 Au Cu foil were conducted. The best results were achieved with machined surfaces and a 0.004 thick continuous foil applied to the joint. Sample brazes were sectioned and polished and revealed good fusion to the parent metal. There appears to be some non-continuous centerline porosity; however the fusion was excellent, with small amounts of gold diffusing into the GlidCop®.
The brazing was conducted in a positive pressure dry hydrogen retort. The brazing was done by applying a 50/50 AuCu paste to the tungsten to GlidCop® joint, and a 0.004 thick 50/50 Au Cu foil to the body halves. The joint faces of the slit were held at 45 degrees with the flow vertical down to avoid excess material on the beam absorbing surfaces.
The braze cycle consisted of rapid preheat to 850° C., held at preheat until the components stabilized, then a brazing spike to 990° C. with a 3 minute hold, then furnace cooling.
A second cycle was repeated to braze the stainless steel (SS) flange adapters, oxygen free copper (OFC) cooling covers and SS cooling tubes to the previously brazed GlidCop® body. Joints used 50/50 Au/Cu paste, 50/50 foil, and the same furnace cycle to accomplish water tight joints. Once the 50/50 alloy melts and fuses on GlidCop® to OFC surfaces, the re-melt temperature of the joint is high due to diffusion of gold into the base metal and copper into the braze joint. The inventors found that 50/50 gold copper joints, subject to re-braze cycles as high as 1040° C. and held for 20 minutes, will not significantly degrade.
Monolith Stage
Adjustment Detail
Beams are often collimated in the x and y directions at different points along the beam trajectory within the invented system. A salient feature of the invention is that while the beam bypass port 18 and collimator 20 have no moving parts, they are moved in unison when the monolith 12 is moved by its support stage 16.
Adjustment of the width of the beam that exits the slit/collimator system can be performed by imparting rotational motion to each collimation aperture.
Also, the width of the beam in any direction can be adjusted by rotation of the slit/collimation system about an axis perpendicular to the radiation beam and complete flexibility is provided with means imparting rotation to the entire slit/collimation system around two axes orthogonal to the z axis that intersect the z axis at a pivot point, heretofore designated as point 26 located approximately at a point three quarters of the collimator length downstream from the input. This pivot point is defined by the intersection of the pitch (P) and yaw (Y) axes, discussed supra.
Also, independent rotation and rectilinear motion of the jaws allows bringing the system to a configuration identical to that produced by rotation of the system as a whole around the pivot point 26.
To provide rotation about the vertical axis, while maintaining precise positional tolerances, an embodiment of the monolith's support stage 16 incorporates one or a plurality of bearings 17 offset by some distance to provide axial rigidity. Several suitable commercially available hub bearings satisfy this requirement with Timkin Bearing Co. (Canton, Ohio) providing a large number of different bearing designs to OEM manufacturers with an exemplary bearing being a 2000 Chevrolet Blazer front hub bearing. Generally, suitable bearings are manufactured from cast steel, and twin tapered. A flange to flange offset as much as 2 inches can be accommodated.
Generally, any commercially available precision rotation or positioning stage is suitable as a means for moving the monolith. Exemplary stages are those available from Kohzu Precision Co., Ltd., Kanagawa, Japan, and Physik Instrumente LP, Auburn, Mass.
In operation, the beam is centered on the aperture with the heat distributed across four separate surfaces so as to minimize both temperature and stress. Optionally, wire coil inserts 25 in one or more of the cooling passages enhances heat transfer. The coils are a means for providing turbulence within the cooling channel, thereby increasing thermal convection at the cooling channel walls.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other.
In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. While the dimensions and types of materials described herein are intended to define the parameters of the invention, they are by no means limiting, but are instead exemplary embodiments. For example, a high heat load monolith is enabled with the instant specification by merely increasing the length of monoliths during fabrication, the lengths initially determined empirically. An additional benefit to increasing monolith length is that any extension of the front of the monolith would provide a larger inlet aperture, provided the angle of incidence remains constant. It should be appreciated that the invented collimator can be used to manipulate a myriad of media, including low level, high level radiation, neutrons, x-rays, and even fluids. The only constraint is that the collimator be constructed of a material having a strength to thermally and structurally withstand the forces imposed by the radiation, media or fluid during collimation events.
Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
The present methods can involve any or all of the steps or conditions discussed above in various combinations, as desired. Accordingly, it will be readily apparent to the skilled artisan that in some of the disclosed methods certain steps can be deleted or additional steps performed without affecting the viability of the methods.
As will be understood by one skilled in the art, for any and all purposes, particularly in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood by one skilled in the art all language such as “up to,” “at least,” “greater than,” “less than,” “more than” and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. In the same manner, all ratios disclosed herein also include all subratios falling within the broader ratio.
One skilled in the art will also readily recognize that where members are grouped together in a common manner, such as in a Markush group, the present invention encompasses not only the entire group listed as a whole, but each member of the group individually and all possible subgroups of the main group. Accordingly, for all purposes, the present invention encompasses not only the main group, but also the main group absent one or more of the group members. The present invention also envisages the explicit exclusion of one or more of any of the group members in the claimed invention.
The United States Government has rights to this invention pursuant to Contract No. DE-AC02-06CH11357 between the United States Government and UChicago Argonne, LLC representing Argonne National Laboratory.
Number | Name | Date | Kind |
---|---|---|---|
4035522 | Hatzakis | Jul 1977 | A |
5081659 | Dobbins, III | Jan 1992 | A |
7440546 | Liu et al. | Oct 2008 | B2 |
8017926 | Norman et al. | Sep 2011 | B2 |
20110268247 | Shedlock et al. | Nov 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20150055759 A1 | Feb 2015 | US |