Radiation-curing coating systems

Information

  • Patent Grant
  • 6593393
  • Patent Number
    6,593,393
  • Date Filed
    Friday, October 19, 2001
    22 years ago
  • Date Issued
    Tuesday, July 15, 2003
    20 years ago
Abstract
Radiation-curing coating systems which contain a silanized silica, where the silane is hexamethyldisilazane, 3-methacryloxypropyltrialkoxysilane and/or glycidyloxypropyltrialkoxysilane as the silanizing agent. The radiation-curing coating systems can be used for coating derived timber boards, solid wood, wood veneers, parquet, decorative papers, decorative films, thermoplastics and thermosetting plastics, mineral and polymeric glasses, metals (for example aluminium, high-grade steel, phosphated, chromated and galvanized steel sheets, copper), lacquered surfaces, printing inks and leather.
Description




INTRODUCTION AND BACKGROUND




The present invention relates to radiation-curing coating systems, a process for their preparation and their use.




Radiation-curing coating systems are used to coat surfaces of wood, metals and plastics.




In some formulations the known radiation-curing coating systems have the disadvantage that the surface hardness is inadequate.




It is therefore an object of the present invention to develop radiation-curing coating systems which do not have these disadvantages.




SUMMARY OF THE INVENTION




The above and other objects of the present invention can be achieved by radiation-curing coating systems, which are characterized in that they comprise at least one silanized silica, where a silane from the group consisting of hexamethyldisilazane, 3-methacryloxypropyltrialkoxysilane and/or glycidyloxypropyltrialkoxysilane is used as the silanizing agent.




In a preferred embodiment of the invention, the silanized silica can be structurally modified. A silica such as described in the document EP 0 808 880 A2 can be used as the silanized silica. This document is incorporated herein by reference. The silica according to EP 0 808 880 A2 is a silanized silica with the following physico-chemical properties:






















Specific surface area (BET)




m


2


/g




80-400







Primary particle size




nm




7-40







Tamped density




g/l




50-300







pH





3-10







Carbon content




%




0.1-15







DBP (dibutylphthalate) number




%




<200















This silanized silica is prepared by a process in which a silica is sprayed optionally first with water or dilute acid and then with a surface modification reagent or a mixture of several surface modification reagents in a suitable mixing vessel, with intensive mixing, the components are re-mixed for 15 to 30 minutes and heat-treated at a temperature of 100 to 400° C. over a period of 1 to 6 h, and the silanized silica is then destructured/compacted by mechanical effects and re-ground in a mill.




A silica prepared pyrogenically by the route of flame hydrolysis of SiCl


4


can preferably be employed as the silica. Hexamethyldisilazane, for example, can be employed as the surface modification reagent.




The coating according to the invention which can be cured by radiation comprises a reactive binder which contains double bonds in the terminal position or in the β-position relative to a reactive group which can be polymerized by free radicals. The double bonds can cure or polymerize under the influence of UV light or electrons. Copolymerizable reactive thinners (monomers) can be used to lower the viscosity.




Further components can be fillers, flatting agents and/or pigments. If required, wetting agents, flow control and degassing agents and other additives can be used in radiation-curing systems.




In UV technology, photoinitiators or photosensitizers are used to initiate the polymerization. In the case of curing by electron beams, the high-energy radiation itself forms the initiator radicals for the polymerization reaction.




The invention also provides a process for the preparation of the radiation-curing coating systems according to the invention, which is characterized in that 1 to 20%, preferably 2 to 10% of silanized pyrogenic silica, depending on the rheology of the system, is stirred into the coating system.




DETAILED DESCRIPTION OF INVENTION




The coating systems according to the invention can be used for coating a wide variety of surfaces such as derived timber boards, solid wood, wood veneers, parquet, decorative papers, decorative films, thermoplastics and thermosetting plastics, mineral and polymeric glasses, metals (for example aluminium, high-grade steel, phosphated, chromated and galvanized steel sheets, copper), lacquered surfaces, surfaces coated with printing inks and leather.




The radiation-curing coating systems according to the invention have the following advantages:




Improvement in the surface hardness, in particular scratch resistance, without impairment of the application properties, and in the optical properties of the crosslinked coating films.




According to the invention, the pyrogenically prepared silicas according to table 1 can be employed as the silica for the silanization.




Physico-chemical Data of Aerosil
























AEROSIL




AEROSIL




AEROSIL




AEROSIL




AEROSIL




AEROSIL




AEROSIL




AEROSIL






Test method




90




130




150




200




300




380




OX50




TT600
























Behaviour towards




hydrophilic






water






Appearance




loose white powder




















BET surface area


1)






m


2


/g




90 ± 15




130 ± 25




150 ± 15




200 ± 25




300 ± 30




380 ± 30




50 ± 15




200 ± 50






Average primary




Nm




20




16




14




12




7




7




40




40






particle size






Tamped density




g/l




80




50




50




50




50




50




130




60






approx. values


2)








compacted goods




g/l




120




120




120




120




120




120






(added “V”)






VV goods




g/l






50/75




50/75




50/75






(added “VV”)


12)






g/l







120




120






Loss on drying


3)






%




<1.0




<1.5




<0.5


9)






<1.5




<1.5




<2.0




<1.5




<2.5






(2 hours at 105° C.) on






leaving supply works






Loss on ignition


4)7)






%




<1




<1




<1




<1




<2




<2.5




<1




<2.5






(2 hours at 1000° C.)






pH


5)







3.7-4.7




3.7-4.7




3.7-4.7




3.7-4.7




3.7-4.7




3.7-4.7




3.8-4.8




3.6-4.5






SiO


2




8)






%




>99.8




>99.8




>99.8




>99.8




>99.8




>99.8




>99.8




>99.8






Al


2


O


3




8)






%




<0.05




<0.05




<0.05




<0.05




<0.05




<0.05




<0.08




<0.05






Fe


2


O


3




8)






%




<0.003




<0.003




<0.003




<0.003




<0.003




<0.003




<0.01




<0.003






TiO


2




8)






%




<0.03




<0.03




<0.03




<0.03




<0.03




<0.03




<0.03




<0.03






HCl


8)10)






%




<0.025




<0.025




<0.025




<0.025




<0.025




<0.025




<0.025




<0.025






Sieve residue


8)


(Mocker




%




<0.05




<0.05




<0.05




<0.05




<0.05




<0.05




<0.2




<0.05






method, 45 μm)






Drum size (net)


11)






Kg




10




10




10




10




10




10




10




10













1)


in accordance with DIN 66131












2)


in accordance with DIN ISO 787/XI, JIS K 5101/18 (not sieved)












3)


in accordance with DIN ISO 787/II, ASTM D 280. JIS K 5101/21












4)


in accordance with DIN 55921, ASTM D 1208, JIS K 5101/23












5)


in accordance with DIN ISO 787/IX, ASTM D 1208, JIS K 5101/24












6)


in accordance with DIN ISO 787/XVIII, JIS K 5101/20












7)


based on the substance dried for 2 hours at 105° C.












8)


based on the substance ignited for 2 hours at 1000° C.












9)


special packaging protecting against moisture












10)


HCI content is a constituent of the loss on ignition












11)


V goods are supplied in sacks of 20 kg












12)


VV goods are currently supplied only from the Rheinfelden works




















EXAMPLES




Example 1




A silanized silica is prepared in accordance with example 1 of EP 0 808 880 A2. Aerosil® 200 (silica) is mixed with 4.3 parts water and 18.5 parts HMDS (hexamethyldisilazane) and the mixture is heat-treated at 140° C. The silanized silica is then compacted to approx. 250 g/l on a continuously operating vertical ball mill. Thereafter, the silica is re-ground by means of an air jet mill. The silica obtained has the following properties:





























DBP






Exam-




BET




Tamped





C




Loss on




Loss on




number






ple




m


2


/g




density




pH




content




drying %




ignition %




%











VT




145




188




7.3




2.7




2.4




0.3




90






1128/1














Example 2




Aerosil® 200 is mixed with 4 parts water and 18 parts 3-methacryloxypropyltrimethoxysilane and the mixture is heat-treated at 140° C. under an inert gas. The silanized silica is then compacted to approx. 250 g/l on a continuously operating vertical ball mill. The silica obtained has the following properties:





















BET [m


2


/g]




138







Tamped density [g/l]




242







pH




4.6







C content




5.7







Loss on drying [%]




0.6







Loss on ignition [%]




8.9







DBP number [%]




122















Experiments With Silica According to Example 2 in UV-curing Binders




Experiment 1




10 % silica according to example 2 are stirred into the binder (ethoxylated pentaerythritoltetracrylate), with a dissolver and then predispersed for 5 min at 3000 rpm (disc Ø 45 mm). The mixture is dispersed in a laboratory bead mill for 20 min at 2500 rpm and a pump output of 40%. 1 mm glass beads are used as the beads. The dispersing quality is checked with a grindometer, 25 μm, in accordance with DIN ISO 1524. It must be smaller than 10 μm.




3% photoinitiator is stirred into the coating. Application is carried out with the aid of a spiral doctor blade (amount applied 36 μm) on black-lacquered metal sheets. Curing is carried out with a UV unit (current uptake of the UV lamp (mercury vapour lamp) 7.5-10 mA, belt speed 10 m/min, irradiation intensity 1 W/cm).




Experiment 2




10% silica according to example 2 are stirred into the binder 2 (Epoxyacrylate A) with a dissolver and then predispersed for 5 min at 3000 rpm (disc Ø45 mm). The mixture is dispersed in a laboratory bead mill for 15 min at 2500 rpm and a pump output of 40%. 1 mm glass beads are used as the beads. The dispersing quality is checked with a grindometer, 25 μm, in accordance with DIN ISO 1524. It must be smaller than 10 μm.




3% photoinitiator is stirred into the coating. Application is carried out with the aid of a spiral doctor blade (amount applied 36 ,μm) on black-lacquered metal sheets. Curing is carried out with a UV unit (current uptake of the UV lamp (mercury vapour lamp) 7.5-10 mA, belt speed 10 m/min, irradiation intensity 1 W/cm)




Experiment 3




16% silica according to example 2 are stirred into the binder 3 (Epoxyacrylate B) with a dissolver and then predispersed for 5 min at 3000 rpm (disc Ø45 mm). The mixture is dispersed in a laboratory bead mill for 15 min at 2500 rpm and a pump output of 40%. 1 mm glass beads are used as the beads. The dispersing quality is checked with a grindometer, 25 μ, in accordance with DIN ISO 1524. It must be smaller than 10 μm.




3% photoinitiator is stirred into the coating. Application is carried out with the aid of a spiral doctor blade (amount applied 36 pm) on black-lacquered metal sheets. Curing is carried out with a UV unit (current uptake of the TV lamp (mercury vapour larnp) 7.5-10 mA, belt speed 10 m/min, irradiation intensity 1 W/cm).












TABLE 1











Grindometer values, Brookfield viscosities:
















Viscosity








Grindo-meter




[mPa s]




SV
















value [μm]




6 rpm




60 rpm




6/60



















binder 1









160




158




1.0






binder 1 + silica according




<10




451




389




1.1






to example 2






binder 2









481




468




1.0






binder 2 + silica according




<10




1,000




950




1.1






to






example 2






binder 3









521




494




1.1






binder 3 + silica according




<10




902




842




1.1






to






example 2














Scratching Experiments




The metal sheets are scoured with a quartz/water slurry (100 g water+1 g Marlon A 350, 0.25%+5 g Sikron F500) with 100 strokes with the aid of a scouring and washing resistance testing machine (Erichsen). The shine before and 10 min after scouring is determined with a reflectometer (20° incident angle).












TABLE 2











Reflectometer values before and after scratching:














20°








reflectometer








value




Residual shine















before




after




[%]




















binder 1




82.0




50.0




61.0







binder 1 + silica




80.5




65.2




81.0







according to example 2







binder 2




89.6




46.5




51.9







binder 2 + silica




87.8




67.4




76.8







according to example 2







binder 3




88.9




62.0




69.7







binder 3 + silica




87.3




71.4




81.8







according to example 2















Example 3




Aerosil® 200 is mixed with 4 parts water and 18 parts 3-methacryloxypropyl-trimethoxysilane (for example DYNASILAN MEMO) and the mixture is heat-treated at 140 ° C. under an inert gas. The silica obtained has the following properties:





















BET [m


2


/g]




138







Tamped density [g/l]




52







pH




4.6







C content




5.7







Loss on drying [%]




0.8







Loss on ignition [%]




9.7







DBP number [%]




228















Example 4




Aerosil® 200 is mixed with 3 parts water and 16 parts 3-glycidyloxypropyltrimethoxysilane (for example DYNASILAN GLYMO) and the mixture is heat-treated at 140° C. under an inert gas.




The silica obtained has the following properties:





















BET [m


2


/g]




165







Tamped density [g/l]




53







pH




4.9







C content




5.5







Loss on drying [%]




1.5







Loss on ignition [%]




8.7







DBP number [%]




242















Further variations and modifications of the foregoing will be apparent to those skilled in the art and are intended to be encompassed by the claims appended hereto.




European priority application 00 122 956.6 of Oct. 21, 2000 is relied on and incorporated herein by reference.



Claims
  • 1. A radiation-curing coating composition comprising:at least one silanized silica, and a polymerizable reactive binder containing double bonds, wherein said silanized silica is prepared by a process comprising: spraying silica with a silane selected from the group consisting of hexamethyldisilazane, 3-methacryloxypropyltrialkoxysilane, glycidyloxypropyltrialkoxysilane, and mixtures thereof, mixing the silica sprayed with silane to form a mixture, heat-treating said mixture at a temperature of 100 to 400° C. over a period of 1 to 6 h to form silanized silica, compacting the silanized silica, and grinding the silanized silica.
  • 2. The radiation-curing coating composition according to claim 1, wherein the silanized silica is structurally modified.
  • 3. The radiation-curing coating composition according to claim 1 which has a grindometer value of less than 10 m.
  • 4. A process for the preparation of a radiation-curing coating composition, comprising:combining at least one silanized silica, and a polymerizable reactive binder containing double bonds, wherein said silanized silica is prepared by a process comprising: spraying silica with a silane selected from the group consisting of hexamethyldisilazane, 3-methacryloxypropyltrialkoxysilane, glycidyloxypropyltrialkoxysilane, and mixtures thereof, mixing the silica sprayed with silane to form a mixture, heat-treating said mixture at a temperature of 100 to 400° C. over a period of 1 to 6 h to form silanized silica, compacting the silanized silica, and grinding the silanized silica.
  • 5. A process for the protection of a surface comprising coating a surface with the composition of claim 1 and subjecting the surface to radiation-curing to produce a cured coating on said surface.
  • 6. The radiation-curing coating composition according to claim 1, wherein said silica comprises pyrogenic silica.
  • 7. The radiation-curing coating composition according to claim 6, wherein 1-20% silanized silica is used.
  • 8. The process according to claim 4, wherein said silica comprises pyrogenic silica.
  • 9. The process according to claim 8, wherein 1-20% silanized silica is used.
Priority Claims (1)
Number Date Country Kind
00122956 Oct 2000 EP
US Referenced Citations (10)
Number Name Date Kind
4482656 Nguyen et al. Nov 1984 A
4822828 Swofford Apr 1989 A
5260350 Wright Nov 1993 A
5296295 Perkins et al. Mar 1994 A
5374483 Wright Dec 1994 A
5470616 Uenishi et al. Nov 1995 A
5494645 Tayama et al. Feb 1996 A
5607729 Medford Mar 1997 A
5614321 Medford et al. Mar 1997 A
5959005 Hartmann et al. Sep 1999 A
Foreign Referenced Citations (5)
Number Date Country
36 15 790 Nov 1986 DE
44 17 141 Dec 1994 DE
0 808 880 Nov 1997 EP
2 177 093 Jan 1987 GB
WO 8102579 Sep 1981 WO
Non-Patent Literature Citations (2)
Entry
Copy of International Search Report for counterpart application No. EP 00 12 2956 dated May 4, 2001.
L.N. Lewis, D. Katsamberis: “uv-Curable, Abrasion-Resistant and Weatherable Coatings with Improved Adhesion”, J. Appl. Polym. Sci., Bd 42, Nr. 6, 1991, Seiten 1551-1556, XP002165547.