The present invention relates to radiation emitting structures including photonic crystals for use in incandescent lamps. More particularly, the invention relates to radiation emitting structures including an active radiation emitter surrounded by a passive photonic crystal structure that is transparent to wavelengths of electromagnetic radiation within the visible region of the spectrum.
In conventional incandescent lamps, a filament is provided between two electrical contacts, and current is passed between the contacts through the filament. The electrical resistance of the filament material generates heat in the filament. Typical filaments in incandescent lamps operate between about 2500 K and about 3000 K. The heated filament emits electromagnetic radiation over a range of wavelengths, some of which are within the visible region of the electromagnetic spectrum. The emittance of conventional filaments at a given temperature may be approximated by Planck's equation for black body radiation.
Conventional incandescent lamps, while providing high quality, inexpensive lighting, are extremely inefficient. Only about five to ten percent of the energy supplied to a filament is converted into electromagnetic radiation at wavelengths within the visible region of the spectrum (i.e., about 380 nm to about 780 nm). A large amount of energy is converted to radiation in the infrared region of the spectrum (i.e., between about 780 nm to about 3000 nm), and wasted as heat.
From the time incandescent lamps were first invented by Thomas Edison, significant research has been conducted to find new methods, materials, and structures to increase the amount of electromagnetic radiation emitted in the visible region of the spectrum and minimize the amount of radiation emitted outside the visible region, thereby improving the efficiency of the lamp.
Tungsten, since its first use as an incandescent filament in 1911, continues to be the material of choice as a result of its emissive properties. True black bodies do not exist in nature. However, the radiation properties of materials may be described by including factors or variables for the material's emissivity into Planck's equations for black body radiation. Emissivity is the ratio of the spectral radiant emittance (i.e., emitted power per unit area per unit wavelength) of a material to the theoretical spectral radiant emittance of a true black body. The emissivity for a given material is not constant and may vary with wavelength, the angle of observation, and the temperature of the material. The emissivity of tungsten varies with wavelength and is higher in the visible region of the electromagnetic spectrum than in the infrared region (i.e., it radiates more electromagnetic radiation in the visible region than a true black body), which makes it the material of choice for use in incandescent lamps.
Other inventions directed to increasing the efficiency of incandescent lamps include coiling the filament into coiled structures, and filling the bulb of the lamp with halogen gas. In addition, coatings of materials that are transparent to radiation in the visible region, but reflective to radiation in the infrared region, have been applied to the bulb of incandescent lamps to reflect infrared radiation emitted by the filament back onto the filament itself, thereby further heating the filament.
Recently, the use of photonic crystals as incandescent emitters has been investigated. Photonic crystals are structures comprising at least two materials having different dielectric constants interspersed periodically throughout the structure. Photonic crystals may not emit radiation continuously over a range of wavelengths when the crystal is heated, as does a classical black body. Photonic crystals may emit strongly at certain wavelengths, but only weakly, if at all over a range of wavelengths at which the crystal would be expected to emit if it were a classical black body.
Although the efficiency of incandescent lamps has been improved over time, there remains a significant quantity of energy that is emitted as electromagnetic radiation outside the visible region of the spectrum. This energy is wasted and contributes to the inefficiency of conventional incandescent lamps.
The present invention, in a number of embodiments, includes radiation emitting structures that include an active radiation emitter and a passive photonic crystal structure surrounding the emitter. The passive photonic crystal structure is transparent to wavelengths of electromagnetic radiation within the visible region of the electromagnetic spectrum. The invention also includes incandescent lamps that include radiation emitting structures according to the invention disclosed herein.
The features, advantages, and alternative aspects of the present invention will be apparent to those skilled in the art from a consideration of the following detailed description taken in combination with the accompanying drawings.
While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, the advantages of this invention can be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings in which:
The present invention, in a number of embodiments, includes radiation emitting structures for use in incandescent lamps, and incandescent lamps including such structures. The radiation emitting structures disclosed herein include an active radiation emitter surrounded by a passive photonic crystal structure that is transparent to wavelengths of electromagnetic radiation within the visible region of the electromagnetic spectrum.
The exemplary embodiments of the invention disclosed herein decrease the amount of wasted energy emitted from an incandescent lamp as electromagnetic radiation outside the visible region of the spectrum.
An exemplary incandescent lamp 100 is shown in
A cross-sectional schematic view of the exemplary radiation emitting structure 110 is shown in
The radiation emitting structure 110 also includes a passive photonic crystal structure 114, which functions as an infrared reflector, circumferentially surrounding the active radiation emitter 111.
Photonic crystals are formed by dispersing a material having a first dielectric constant periodically within a matrix having a second, different dielectric constant such that dielectric periodicity is exhibited in a direction through the structure. A one-dimensional photonic crystal is a three-dimensional structure that exhibits dielectric periodicity in only one dimension. Bragg mirrors (distributed Bragg reflectors) are a known example of a one-dimensional photonic crystal. The alternating thin layers of a Bragg mirror have different dielectric constants. The combination of several thin layers forms a three-dimensional structure that exhibits dielectric periodicity in the direction orthogonal to the planes of the thin layers. No periodicity is exhibited in directions parallel to the planes of the layers.
A two-dimensional photonic crystal can be formed by periodically dispersing rods, columns, or fibers of a first material having a first dielectric constant within a matrix having a second, different dielectric constant. Two-dimensional photonic crystals may exhibit dielectric periodicity in the directions perpendicular to the longitudinal axis of the rods, columns, or fibers, but not in directions parallel to the longitudinal axis.
Finally, a three-dimensional photonic crystal can be formed by periodically dispersing small spheres or other spatially confined areas of a first material having a first dielectric constant within a matrix of a second material having a second, different dielectric constant. Three-dimensional photonic crystals may exhibit dielectric periodicity in all directions within the crystal.
Photonic crystal structures may exhibit a photonic bandgap—a range of wavelengths for which radiation is forbidden to exist within the interior of the structure—due to Bragg scattering of incident radiation off the periodic dielectric interfaces. In other words, there is a range of wavelengths of radiation that may be reflected by the crystal when the radiation is incident thereon in a direction in which the crystal exhibits dielectric periodicity.
The finite-difference time-domain method may be used to solve the full-vector time-dependent Maxwell's equations on a computational grid including the crystal's feature dimensions and corresponding dielectric constant within the features to determine what wavelengths may be forbidden to exist within the interior of any given crystal.
The passive photonic crystal structure 114 of the radiation emitting structure 110 may include a two-dimensional photonic crystal structure, formed by providing elongated passive fibers 115 extending through a matrix 116 parallel to the longitudinal axis of the active radiation emitter 111. The passive fibers 115 may be formed from, for example, dielectric materials such as carbon, silicon carbide, silica, alumina, titania, or any other dielectric material that may be formed into elongated filaments. Alternatively, the passive fibers 115 may be formed from, for example, a metal such as silver, gold, tungsten, copper, any other metal or metal alloy. Photonic crystal structures comprising metal materials may exhibit a broader bandgap than those formed from dielectric materials. However, metallic crystal structures may result in increased attenuation of visible radiation relative to crystal structures formed from dielectric materials. The passive fibers 115 may have a diameter between about 0.05 microns and about 8 microns. The matrix 116 may include, for example, air, silica, silicon carbide, silicon nitride, alumina, or any other material having a dielectric constant different from the dielectric constant of the material of the passive fibers 115, and exhibiting structural integrity at the required operating temperatures. Passive fibers 115 are dispersed periodically throughout the matrix 116 and may be separated from one another by an average distance between about 0.05 and about 8 microns.
An intermediate layer of material 117 may be disposed between the active radiation emitter 111 and the passive photonic crystal structure 114, as shown in
Referring to
The active radiation emitter 111 may be heated by connecting the incandescent lamp 100 to a power supply and passing electrical current through the active radiation emitter 111. The electrical resistance of the active radiation emitter 111 will generate heat. As the active radiation emitter 111 gets hot (e.g., approximately greater than 1500 K), it will emit radiation over a range of wavelengths including those in the visible region of the spectrum. The majority of the radiation, however, is emitted at wavelengths outside the visible region of the spectrum, typically in the infrared region. For example, when the active radiation emitter 111 is at a temperature of 2500 K, it may emit radiation approximately as shown by the line in
Electromagnetic radiation emitted by the active radiation emitter 111 at wavelengths within the photonic bandgap of the passive photonic crystal structure 114 (i.e., between about 700 nm and about 10000 nm) may be reflected internally thereby. Infrared radiation 118 is shown reflecting internally and visible radiation 119 is shown transmitting through the passive photonic crystal structure 114 in
The passive photonic crystal structure 114 may comprise a plurality of concentric tube-shaped regions (not shown), each tube-shaped region comprising passive fibers 115 having different diameters and different spacing therebetween. In such a configuration, each region may exhibit a photonic bandgap spanning a range of wavelengths different from the bandgaps of the other regions. By including a plurality of regions, the bandgaps of the plurality of regions may overlap, thereby broadening the effective bandgap of the passive photonic crystal structure 114 and improving the efficiency of the radiation emitting structure 110.
A cross-sectional schematic view of an exemplary radiation emitting structure 120 is shown in
The active photonic crystal emitter 121 may include a two-dimensional photonic crystal structure formed by providing elongated active fibers 122 extending through a matrix 123. The active fibers 122 may be formed from, for example, tungsten, tungsten alloy, carbon, silicon carbide, or any other material that may be formed into a fiber and that will emit radiation in the visible region when heated. The active fibers 122 may have a diameter between about 0.05 microns and about 8 microns. The matrix 123 may comprise air, silica, silicon nitride, or any other material having a dielectric constant different from the dielectric constant of the material of the active fibers 122. The active fibers 122 are dispersed periodically throughout the matrix 123 and separated from one another by an average distance of between about 0.05 and about 8 microns. Alternatively, the matrix 123 could comprise, for example, tungsten or tungsten alloy and the active fibers could comprise, for example, elongated columns of air, silica, or silicon nitride.
When heated, photonic crystal structures may not emit radiation at wavelengths within the photonic bandgap thereof. Radiation at these wavelengths would be emitted if the photonic crystal were a black body. For example, an active photonic crystal emitter may exhibit a spectral radiant emittance as shown in the graph of
However, even an active photonic crystal emitter may emit some radiation at wavelengths outside the visible region of the spectrum, such as in the infrared region. For example, the photonic bandgap of the active photonic crystal emitter may not span the entire range of the infrared region of the spectrum. In addition, the outermost layers of an active photonic crystal emitter may emit radiation approximating that emitted by a black body since no dielectric periodicity is experienced when the emitted radiation does not pass through at least two layers of the crystal. Therefore, radiation may be emitted by the outermost layers of an active photonic crystal emitter at wavelengths within the photonic bandgap, which is exhibited by the active photonic crystal emitter as a whole. The passive photonic crystal structure 114 may reflect at least some of this radiation at wavelengths outside the visible region of the spectrum emitted by the active photonic crystal emitter 121 of the radiation emitting structure 120.
The combination of the active photonic crystal emitter 121 with the surrounding passive photonic crystal structure 114, which operates as an infrared reflector, provides improved efficiency over both an active photonic crystal emitter alone and a conventional emitter surrounded by the passive photonic crystal structure 114. Infrared radiation 118 is shown reflecting internally and visible radiation 119 is shown transmitting through the passive photonic crystal structure 114 in
A cross-sectional schematic view of an exemplary radiation emitting structure 130 that may be used in the exemplary incandescent lamp 100 is shown in
The passive photonic crystal structure 134 may include a cylindrical Bragg mirror (i.e., distributed Bragg reflector) having alternating first material layers 135 and second material layers 136. The dielectric constant of the first material layers 135 should be different from the dielectric constant of the second material layers 136. The first material layers 135 may be formed from, for example, silicon carbide, carbon, titania, silver, gold, tungsten, copper, any other metal or metal alloy, or any other suitable material. The second material layers 136 may be formed from, for example, silica, silicon nitride, or any other suitable material having a dielectric constant different from the dielectric constant of the first material layers 135. The first material layers 135 and the second material layers 136 may have a thickness between about 0.05 microns and about 8 microns.
The passive photonic crystal structure 134 is a one-dimensional photonic crystal structure that may operate as an infrared reflector in the same manner as the passive photonic crystal structure 114 of
In addition, the passive photonic crystal structure 134 may comprise a plurality of concentric tube-shaped regions (not shown), the thickness of the first material layers 135 and second material layers 136 in each concentric tube-shaped region differing from the thickness of the layers in other regions. In such a configuration, each region may exhibit a photonic bandgap spanning a range of wavelengths different from the bandgaps of the other regions. By including a plurality of regions, the bandgaps of the plurality of regions may overlap, thereby broadening the effective bandgap of the passive photonic crystal structure 114 and improving the efficiency of the incandescent lamp 100.
The radiation emitting structures 110, 120, and 130 first may be formed as a filament bundle, including the emitter and surrounding passive photonic crystal structure, having cross-sectional dimensions greater than those required by the end product, but having the same dimensional proportions. Subsequently, the filament bundle may be drawn by known fiber or filament drawing techniques to decrease the overall dimensions of the structure to the required specifications. Such techniques are known in the art and discussed, for example, in U.S. Pat. No. 5,802,236 (“the '236 patent”) and U.S. Pat. No. 6,522,820 (“the '820 patent”), the contents of which are incorporated by reference herein.
For example, as discussed in the '236 patent, a preform can be formed by bundling hollow silica capillary tubes around a center silica glass rod, being sure to physically arrange them in a scaled version of the ultimate desired pattern. One or more silica overcladding tubes are then placed around the entire bundle and melted around the bundle to produce the desired preform. The preform is then drawn using conventional techniques to generate an optical fiber. The process may be slightly modified to form the radiating emitting structures 110, 120, and 130. For example, to form the radiation emitting structure 110, a first hollow silica cylinder may be surrounded by smaller, hollow silica capillary tubes, which are arranged in a periodic array. This structure may be placed within a second, thin silica tube of larger diameter, which holds the capillary tubes in place. This structure then may be sintered to bond the silica structures together. The interior of what was previously the first hollow silica cylinder may be filled with tungsten material to form the final preform of proper dimensional proportions. The preform may then be drawn as disclosed in the '236 patent. Upon drawing, the tungsten material will become active radiation emitter 111, the first hollow silica cylinder will become intermediate layer of material 117, and the array of capillary tubes will become passive photonic crystal structure 114. The radiation emitting structures 120 and 130 may be formed in a similar manner.
The '820 patent discloses an alternative method that may be used to form the radiating emitting structures 110, 120, and 130. As disclosed therein, a first silica preform may be produced and sliced into thin wafers. Features may be formed in and through each of thin wafers using known lithographic techniques. The thin wafers then may be aligned and bonded together to form a second preform, which can then be drawn into an elongated filament by known techniques to produce the radiation emitting structure. For example, to form the radiation emitting structure 120, the thinly-sliced silica wafers may be etched to form holes or voids at the center of each silica wafer, which can later be filled with tungsten material to form what will become the active photonic crystal emitter 121 after drawing. Holes or voids also may be formed near the outer peripheral edge of each silica wafer to form what will become the passive photonic crystal structure 114 after drawing. The radiation emitting structures 110 and 130 may be formed in a similar manner.
As shown in
An exemplary radiation emitting structure 140, shown in
The active photonic crystal emitter 141 (
The radiation emitting structure 140 may include a passive photonic crystal structure 144 surrounding the active photonic crystal emitter 141. The passive photonic crystal structure 144 also may be formed having the same three-dimensional lattice structure as the active photonic crystal emitter 141. The passive photonic crystal structure 144 may include passive rods 145 periodically arranged in alternating layers 149 within a matrix 146. In each layer 149, the passive rods 145 may be arranged parallel to one another, and may be separated from one another by an average distance of between about 0.05 microns and about 8 microns. Each passive rod 145 may be between about 0.05 microns and about 8 microns thick, and between about 0.05 microns and about 8 microns wide. The length of the passive rods 145 is not particularly important. The active rods 142 may be formed from, for example, silver, gold, silica, silicon nitride, silicon carbide, carbon, titania, or any other suitable material. The matrix 146 of the passive photonic crystal structure 144 may be air, silica, silicon nitride, silicon carbide, carbon, or titania. However, the material of the passive rods 145 should have a dielectric constant different from the dielectric constant of the material of the matrix 146. Alternatively, the radiation emitting structure 140 could include the passive photonic crystal structure 114 of
Electrical contacts 147 (
The passive photonic crystal structure 144 is a three-dimensional photonic crystal structure that may operate as an infrared reflector in the same manner as the passive photonic crystal structure 114 of
An exemplary radiation emitting structure 150 is shown in
The passive photonic crystal structure 154 may have the same three-dimensional lattice structure as the passive photonic crystal structure 144 (described previously in relation to the radiation emitting structure 140 of
Electrical contacts 147 that are electrically continuous with the active photonic crystal emitter 141 may be provided on the ends of the radiation emitting structure 150 for connection thereof to the electrical contacts 106 of the incandescent lamp 100 (
The passive photonic crystal structure 154 is a three-dimensional photonic crystal structure that may operate as an infrared reflector in the same manner as the passive photonic crystal structure 114 of
The radiation emitting structure 140 and the radiation emitting structure 150 may be formed by conventional microelectronic fabrication techniques on a support substrate such as, for example, a silicon wafer, partial wafer, or a glass substrate. Examples of techniques for depositing material layers include, but are not limited to, molecular beam epitaxy (MBE), atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), sputter deposition and other known microelectronic layer deposition techniques. Photolithography may also be used to form structures in individual layers. In addition, holographic lithography may be used to construct the radiation emitting structures. Examples of techniques that can be used for selectively removing portions of the layers include, but are not limited to, wet etching, dry etching, plasma etching, and other known microelectronic etching techniques. Such techniques are known in the art and discussed, for example, in U.S. Pat. No. 6,611,085 (“the '085 patent”), the contents of which are incorporated by reference herein.
The '085 patent discloses a method for forming a photonically engineered incandescent emitter. The emitter is formed by repetitive deposition and etching of multiple dielectric films in a layer-by-layer method. To form the radiation emitting structures 140 and 150, the method disclosed in the '085 patent may be modified to include the step of depositing layers of silica, or regions of silica in layers having a photonic crystal structure when necessary to form the intermediate layers of material 117. As a final step, the electrical contacts 147 may be formed on the ends of the active photonic crystal emitter 144.
In alternative embodiments of the invention (not illustrated), an emitter such as active photonic emitter 141 may be enclosed by a material having a spherical-shape, the material forming a layer similar to intermediate layer of material 117. A filament can then be wound about the exterior surface of the spherical-shaped material to produce an outer, two-dimensional passive photonic crystal structure that may function as a filter for electromagnetic radiation outside the visible region of the electromagnetic spectrum in a manner similar to passive photonic crystal structure 114. The filament can be formed from dielectric materials such as carbon, silicon carbide, silica, alumina, titania, or from a metal such as, for example, silver, gold, tungsten, copper, any other metal or metal alloy.
Lamps including radiation emitting structures embodying the invention disclosed herein may provide increased efficiency over known incandescent lamps and filaments.
Although the foregoing description contains many specifics, these are not to be construed as limiting the scope of the present invention, but merely as providing certain exemplary embodiments. Similarly, other embodiments of the invention may be devised which do not depart from the spirit or scope of the present invention. The scope of the invention is, therefore, indicated and limited only by the appended claims and their legal equivalents, rather than by the foregoing description. All additions, deletions, and modifications to the invention, as disclosed herein, which fall within the meaning and scope of the claims are encompassed by the present invention.
Number | Name | Date | Kind |
---|---|---|---|
5335240 | Ho et al. | Aug 1994 | A |
5440421 | Fan et al. | Aug 1995 | A |
5600483 | Fan et al. | Feb 1997 | A |
5684817 | Houdre et al. | Nov 1997 | A |
5739945 | Tayebati | Apr 1998 | A |
5771253 | Chang-Hasnain et al. | Jun 1998 | A |
5784400 | Joannopoulos et al. | Jul 1998 | A |
5802236 | DiGiovanni et al. | Sep 1998 | A |
5814840 | Woodall et al. | Sep 1998 | A |
5990850 | Brown et al. | Nov 1999 | A |
5997795 | Danforth et al. | Dec 1999 | A |
5998298 | Fleming et al. | Dec 1999 | A |
6058127 | Joannopoulos et al. | May 2000 | A |
6134043 | Johnson et al. | Oct 2000 | A |
6274293 | Gupta et al. | Aug 2001 | B1 |
6339030 | Constant et al. | Jan 2002 | B1 |
6522820 | Wang | Feb 2003 | B2 |
6555948 | Noll | Apr 2003 | B1 |
6583350 | Gee et al. | Jun 2003 | B1 |
6611085 | Gee et al. | Aug 2003 | B1 |
6711200 | Scherer et al. | Mar 2004 | B1 |
6768256 | Fleming et al. | Jul 2004 | B1 |
20030071564 | Hirayama | Apr 2003 | A1 |
20040239228 | Perlo et al. | Dec 2004 | A1 |
20050168147 | Innocenti et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
WO03058676 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060071585 A1 | Apr 2006 | US |