The present invention relates to a metamorphic multijunction solar cell for a space radiation environment, sometimes referred to as an air mass zero (AM0) environment. Such solar cells are used as power sources by many satellites.
The desire for higher conversion efficiency has driven the development of multijunction solar cells, that is solar cells having two or more solar subcells with different band gaps and arranged in order of decreasing band gap so that high energy radiation is absorbed by the first solar subcell, and less energetic photons pass through the first solar subcell and are absorbed by a subsequent solar subcell. To provide an increased number of solar subcells in each solar cell, it is known to use different materials for different solar subcells, in which case the solar cell is referred to as a metamorphic multijunction solar cell if materials having differing lattice constants are used. Each solar subcell has an associated short circuit current, and conventionally the solar cell is designed to match the short circuit currents for each solar subcell to achieve maximum conversion efficiency.
The fabrication of inverted metamorphic solar cell structures, such as described in M. W. Wanlass et al., Lattice Mismatched Approaches for High Performance, III-V Photovoltaic Energy Converters (Conference Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Jan. 3-7, 2005, IEEE Press, 2005), involves growing the solar subcells on a growth substrate in reverse order, i.e. from the highest band gap solar subcell to the lowest band gap solar subcell, and then removing the growth substrate.
US 2010/0122724 A1, the whole contents of which are hereby incorporated herein by reference, discusses a four junction inverted metamorphic multijunction solar cell.
A key requirement of solar cells intended for space applications is the ability to withstand exposure to electron and proton particle radiation. Previous electron radiation studies conducted on InGaAs solar subcells have demonstrated lower radiation resistance relative to InGaP and GaAs, see M. Yamaguchi, “Radiation Resistance of Compound Semiconductor Solar Cells”, J. Appl. Phys. 78, 1995, pp 1476-1480. Accordingly, the performance of InGaAs solar subcells will deteriorate in an AM0 environment faster than InGaP or GaAs solar subcells. Thus, incorporating an InGaAs subcell into a “radiation hard” multijunction solar cell presents a challenge.
The present invention aims to improve the performance of a metamorphic multijunction solar cell having at least two InGaAs solar subcells in an AM0 environment. In accordance with the present invention, a mismatch is introduced into the short circuit currents associated with the solar subcells of the solar cell at beginning of life to allow for greater deterioration of the conversion efficiency of the at least two InGaAs solar subcells during deployment of the solar cell in an AM0 environment, resulting in a higher end of life conversion efficiency for the multijunction device.
An embodiment of the present invention provides a multijunction solar cell comprising: a first solar subcell composed of InGaP having a first band gap and a first short-circuit current; a second solar subcell composed of GaAs disposed over the first solar subcell and having a second band gap less than the first band gap and a mismatched second short-circuit current, wherein the first short-circuit current is less than the second short-circuit by an amount up to 8%; a third solar subcell composed of InGaAs disposed over the second solar subcell and having a third band gap less than the second band gap and a third short-circuit current substantially matched to the second short-circuit current; and a fourth solar subcell composed of InGaAs disposed over the third solar subcell and having a fourth band gap less than the third band gap and a fourth short-circuit current substantially matched to the third short-circuit current. As used herein, a short-circuit current that is “substantially matched” to a reference short-circuit current means that the short-circuit current is within ±4% of the reference short-circuit current. The first to fourth short circuit currents are set so that at an end of life state of the multijunction solar cell in an AM0 space environment the short-circuit current of each of the subcells are substantially matched. The end of life state may correspond to a period of use in an AM0 space environment of at least 15 years, or to exposure to a fluence of 1×1015 1-MeV electrons per square centimeter.
Details of the present invention will now be described, including exemplary aspects and embodiments thereof. Referring to the drawings and the following description, like reference numbers are used to identify like or functionally similar elements, and are intended to illustrate major features of exemplary embodiments in a highly simplified diagrammatic manner. Moreover, the drawings are not intended to depict every feature of actual embodiments nor the relative dimensions of the depicted elements, and are not drawn to scale.
An InGaP solar subcell 3 is deposited on the growth substrate 1, and a GaAs solar subcell 5 is deposited on the InGaP solar subcell 3 such that the InGaP solar subcell 3 is between the growth substrate 1 and the GaAs solar subcell 5. The InGaP solar subcell 3 and the GaAs solar subcell 5 are lattice-matched to the growth substrate 1.
A first graded interlayer 7 is interposed between the GaAs solar subcell 5 and a first InGaAs solar subcell 9 on the side of the GaAs solar subcell 5 opposing the InGaP solar subcell 3. The first graded interlayer 7 is a metamorphic layer for bridging the difference between the lattice constants of the GaAs solar subcell 5 and the first InGaAs solar subcell 9.
A second graded interlayer 11 is interposed between the first InGaAs solar subcell 9 and a second InGaAs solar subcell 13 on the side of the first InGaAs solar subcell 9 opposing the first graded interlayer 7. The second graded interlayer 11 is a metamorphic layer for bridging the difference between the lattice constants of the first InGaAs solar subcell 9 and the second InGaAs solar subcell 13.
The InGaP solar subcell 3 has a band gap of 1.91±0.05 eV; the GaAs solar subcell 5 has a band gap of 1.41±0.05 eV; the first InGaAs solar subcell 9 has a band gap of 1.02±0.05 eV; and the second InGaAs solar subcell 13 has a band gap of 0.65±0.05 eV. Accordingly, the plurality of solar subcells are arranged in order of decreasing band gap from the growth substrate. In this way, when solar radiation impinges from the growth substrate side (following removal of the growth substrate 1), photons having an energy in excess of 1.91 eV are generally absorbed by the InGaP solar subcell 3, photons having an energy between 1.41 eV and 1.91 eV are generally absorbed by the GaAs solar subcell 5, photons having an energy between 1.02 eV and 1.41 eV are generally absorbed by the first InGaAs solar subcell 9 and photons having an energy between 0.65 eV and 1.02 eV are generally absorbed by the second InGaAs solar subcell 13. This results in a theoretical conversion efficiency of 40.8%.
A key requirement for solar cells intended for space applications is the ability to withstand exposure to electron and proton particle radiation. As mentioned previously, InGaAs solar cells are known to have lower radiation resistance than InGaP solar cells and GaAs solar cells. Accordingly, the short circuit current associated with InGaAs solar cells will fall at a faster rate than the short circuit current associated with InGaP solar cells and GaAs solar cells.
Conventionally, multijunction solar cells are designed such that at the beginning of the life of the solar cell, the short circuit currents for all the solar subcells are substantially identical. In this embodiment, to take account of the fact that the short circuit current for the first InGaAs solar subcell 9 and the second InGaAs solar subcell 13 will fall more quickly than that of the InGaP solar subcell 3 and the GaAs solar subcell 5, the short circuit currents for the solar subcells at the beginning of the life of the solar cell include a mismatch such that the short circuit current at the end of life of the solar cell are substantially matched. In this way, the total energy conversion over the lifetime of the solar cell is improved.
As expected, the first InGaAs solar subcell 9 and the second InGaAs solar subcell 13 exhibit lower radiation resistance that the InGaP solar subcell 3 and the GaAs solar subcell 5. Surprisingly, however, the second InGaAs solar subcell 13 exhibits higher radiation resistance than the first InGaAs solar subcell 9. This was not expected because the expectation was that the higher InAs content in the second InGaAs solar subcell 13 would result in a higher degree of degradation in that subcell in comparison with the first InGaAs solar subcell 9.
One theory that may explain the higher radiation resistance of the second InGaAs solar subcell 13 in comparison with the first InGaAs solar subcell 9 is that the diffusion length at the beginning of life of the second InGaAs solar subcell 13 is much longer than that of the first InGaAs solar subcell 9, which would be due to the higher minority carrier concentration in InAs relative to GaAs. Accordingly, although the change in diffusion length once subjected to electron radiation of the second InGaAs solar subcell 13 may be larger than that of the first InGaAs solar subcell 9, the net diffusion length at end of life is still longer in the second InGaAs solar subcell.
The desired current mismatch between the solar subcells at beginning of life may be accomplished by varying the subcell thicknesses and the subcell band gap. In this embodiment, the additional current required by the GaAs solar subcell 5 is achieved by thinning the InGaP solar subcell 3 in comparison to the width required for current matching, while the additional current required by the first and second InGaAs solar subcells is generated by a slight reduction in band gap, resulting in an increase in the absorption band in comparison to the band gaps for current matching.
Following optimisation of the fabrication procedure, the IMM4J solar cell exhibited at beginning of life an AM0 conversion efficiency of about 34%. This was a small decrease in comparison with an equivalent IMM4J solar cell that is current-matched at beginning of life but, as shown in
Although the solar cell described above is a four junction solar cell, it is envisaged that the present invention can also apply to other multijunction solar cells, for example five junction or six junction metamorphic solar cells (IMM5J or IMM6J solar cells).
This application is a continuation of application Ser. No. 13/941,936, filed Jul. 15, 2013, which is a continuation-in-part of application Ser. No. 13/491,390, filed Jun. 7, 2012, each of which is incorporated herein by reference in its entirety.
This invention was made with government support under Contracts Nos. FA 9453-04-09-0371 and FA 9453-04-2-0041 awarded by the U.S. Air Force. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
Parent | 13941936 | Jul 2013 | US |
Child | 15823127 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13491390 | Jun 2012 | US |
Child | 13941936 | US |