RADIATION SHIELDING STRUCTURE COMPOSITION

Information

  • Patent Application
  • 20100090168
  • Publication Number
    20100090168
  • Date Filed
    October 02, 2009
    15 years ago
  • Date Published
    April 15, 2010
    14 years ago
Abstract
Radiation structures formed from a composition including calcium silicate, magnesium or calcium oxides and an acid phosphate are provided. The composition may also include fly ash or kaolin with or without the calcium silicate.
Description
FIELD AND BACKGROUND OF THE INVENTION

The present invention relates generally to a composition useful in radiation shielding applications.


The use of radiation shielding structures is common, particularly in the nuclear technology field and in any radiation producing facility. Exemplary radiation sources include cosmic rays, x-rays in medical facilities, nuclear reactors, cathode ray tubes (e.g. TV and computer monitors) and the like. Radiation doses are carefully monitored in a wide variety of settings, and there are a number of regulatory standards for human exposure levels. Radiation shielding is also important for limiting exposure of sensitive equipment to radiation. For example, protection of a nuclear reaction vessel from gamma rays. Another example, is the protection of other medical devices from radiation from a medial device that emits radiation.


Concrete or cement is often a candidate material for use in radiation shielding. For example, U.S. Pat. No. 5,786,611 proposes containers for storing spent nuclear wastes. The containers comprise concrete with stable uranium oxide aggregate and a neutron absorbing material such as B7O3, HfO3 or Gd2O3. U.S. Pat. No. 4,727,257 proposes a radiation shielding composition comprising an aggregate-containing cement based mortar wherein the aggregate comprises floated gelata and a boron mineral. U.S. Publication No. 2002/0165082 proposes a phosphate ceramic radiation shielding composition comprises a magnesium, potassium and phosphorous binder, and means for dissipating heat such as B4C, Bi2O3, Fe2O3, Fe3O4, Pb metal and lead.


There is, however, a need for compositions for radiation shielding structures which are less expensive and less dependent on heavy metals while providing acceptable levels of shielding from radiation.


SUMMARY OF THE INVENTION

Radiation shielding structures are widely used for shielding of nuclear power plants, particle accelerators, research reactors, laboratory equipment, and radiation and x-ray medical facilities. An important aspect is selecting the specific shielding structure as the required attenuation coefficient or reduction factor. The Linear Attenuation Coefficient (μ) is dependent on the density of the shielding material. To obviate the effects of variations in the density of a material, the linear attenuation coefficient is expressed as a mass attenuation coefficient (μ/ρ) cm2g−1. It is the direct measure of the effectiveness of a shielding material based upon unit mass of a material.


To this end, the present invention provides a radiation shielding structure composition comprising calcium silicate, magnesium oxide and an acid phosphate. The radiation shielding structure has an improved attenuation coefficient as compared to ordinary concrete based on photon energies of 0.662 MeV (5 μCi Cs-137 source) and 1.173 MeV (1 μCi Co-60 source).


In another embodiment, the present invention provides a radiation shielding structure composition comprising magnesium or calcium oxide, an acid phosphate and fly ash and having an improved attenuation coefficient as compared to ordinary concrete based on photon energies of 0.662 MeV (5 μCi Cs-137 source) and 1.173 MeV (1 μCi Co-60 source).


In still another embodiment, the present invention provides a radiation curing structure composition comprising magnesium or calcium oxide, an acid phosphate and kaolin and having an improved attenuation coefficient as compared to ordinary concrete based on photon energies of 0.662 MeV (5 μCi Cs-137 source) and 1.173 MeV (1 μCi Co-60 source).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph of attenuation coefficients for the radiation shielding structure compositions of Examples 1-6 and ordinary concrete (“OC”) for 0.666 MeV photon energy using a 5 mCi Cs-137 source.



FIG. 2 is a graph of attenuation coefficients for the radiation shielding structure compositions of Examples 1-6 and ordinary concrete (“OC”) for 1.173 MeV photon energy using a 1 μCi Co-60 source.





DETAILED DESCRIPTION OF THE INVENTION

The foregoing and other aspects of the present invention will now be described in more detail with respect to other embodiments described herein. It should be appreciated that the invention can be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.


The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the embodiments of the invention and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items. Furthermore, the term “about,” as used herein when referring to a measurable value such as an amount of a compound, dose, time, temperature, and the like, is meant to encompass variations of 20 percent, 10 percent, 5 percent, 1 percent, 0.5 percent, or even 0.1 percent of the specified amount. Unless otherwise defined, all terms, including technical and scientific terms used in the description, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.


The radiation shielding structure comprises calcium silicate (wollastonite), magnesium oxide and an acid phosphate. In one embodiment, the composition comprises about 15 to 40 percent by weight calcium silicate, about 10 to 35 percent by weight magnesium oxide and about 25 to 45 percent by weight acid phosphate. Such a composition optionally may include kaolin or fly ash at a 0.1 to 40 percent by weight level.


In another embodiment the radiation shielding structure comprises magnesium or calcium oxide, an acid phosphate and fly ash. In one embodiment, the structure comprises 15 to 40 percent by weight calcined magnesium or calcium oxide, 25 to 55 percent by weight acid phosphate and 20 to 40 percent by weight fly ash.


In another embodiment, the radiation shielding structure comprises a magnesium or calcium oxide, an acid phosphate and kaolin. In one embodiment, the structure comprises 15 to 40 percent by weight calcined magnesium or calcium oxide, 20 to 55 percent by weight acid phosphate and 5 to 25 percent by weight kaolin


Exemplary acid phosphates include monopotassium phosphate, magnesium phosphate, sodium phosphate, aluminum phosphate, ammonium phosphate, iron phosphate, zinc phosphate, and combinations thereof. In the embodiments above, the acid phosphate may be monopotassium phosphate.


Suitable additives may be mixed with the radiation shielding structure composition and typically the amounts added may be from about 0.1 to about 30 percent by weight. Exemplary additives include flame retardants, vermiculite, perlite, fibers, emulsifiers, deflocculates, sequestrates, granular additives, coarse aggregates such as stone and sand, chemical additives such as boric acid, accelerators (e.g., Accelguard available from The Euclid Chemical Company, Cleveland, Ohio) colorants and pigments, fillers, aggregates, borax, silica materials, iron oxides, bonding adhesives (e.g., Eucopoxy Resin and Eucoweld available from The Euclid Chemical Company, Cleveland, Ohio, Flexcon, and Corr-bond) plasticizers, hardeners (e.g., Euco Diamond Hard available from The Euclid Chemical Company, Cleveland, Ohio), patching polymers (e.g., Eucorapid patch available from The Euclid Chemical Company, Cleveland, Ohio), micro silica fume (e.g., Eucoshot available from The Euclid Chemical Company, Cleveland, Ohio), setting retarders, surface softeners, and kaolins, curing compounds (e.g., Brownstone CS), water reducers (e.g., Accelguard, Eucon AC), and air entrainers (e.g., AEA and Air Mix).


Alternatively, neutron absorbers also may be added to the radiation shielding structure. Exemplary neutron absorbers include heavy metals and heavy metal compounds such as boron, B2O3, HfO3, Gd2O3, iron oxides, lead, and the like.


Alternatively, various reinforcement may be included in the composition or the composition may be applied to the reinforcement. Exemplary reinforcement includes steel (e.g. rebar), other metals (e.g., lead) carbon, glass, stone, basalt, and the like in fiber, particulate and/or fabric/mat form.


The radiation shielding structure composition can be mixed as a slurry and sprayed on an existing surface or substrate to improve the attenuation coefficient of that surface or the slurry can be sprayed, extruded, molded, and the like into a predetermined shape. Suitable structures include shielding for nuclear power plants, particle accelerators, research reactors, x-ray equipment, radiation equipment, and the like. Other structures include transport and storage vessels for containing waste capable of emitting harmful radiation such as described in U.S. Ser. No. ______, filed Oct. 2, 2009 [Attorney Docket No. 9591-8], the disclosure of which is incorporated herein by reference in its entirety.


The following examples are merely illustrative of the invention, and are not limiting thereon.


EXAMPLES

Examples 1-6 were formulated as follows:


Example 1


















Magnesium Oxide
23%



Monopotassium Phosphate
23%



Fly Ash
21%



Sand
33%











The sample tested had a thickness of 0.50 inches.


Example 2


















Magnesium Oxide
20%



Monopotassium Phosphate
23%



Calcium Silicate
24%



Sand
33%











The sample tested had a thickness of 1.25 inches.


Example 3

Example 1 was repeated with salt water. The sample tested had a thickness of 2.00 inches.


Example 4


















Magnesium Oxide
23%



Monopotassium Phosphate
23%



Fly Ash
11%



Kaolin
10%



Sand
33%











The sample tested had a thickness of 0.75 inches.


Example 5


















Magnesium Oxide
30%



Monopotassium Phosphate
34%



Calcium Silicate
36%











The sample tested had a thickness of 0.50 inches.


Example 6


















Magnesium Oxide
30%



Monopotassium Phosphate
31%



Fly Ash
28%



Sodium Bicarbonate
10%











The sample tested had a thickness of 1.00 inches.


Example 7

Example 1 was repeated and the sample tested had a thickness of 1.00 inches. The testing was conducted using a method for measuring attenuation coefficients developed by North Carolina State University.


As can be seen from FIGS. 1 and 2, the formulations for Examples 1-6 have significantly improved attenuation coefficients as compared to ordinary concrete.


Example 8

A formulation as follows was prepared.


















Magnesium Oxide
34%



Monopotassium Phosphate
31%



Fly Ash
17%



Kaolin
15%










Example 9


















Magnesium Oxide
34%



Monopotassium Phosphate
31%



Fly Ash
17%



Kaolin
15%



Sand
30%










Having thus described certain embodiments of the present invention, it is to be understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope thereof as hereinafter claimed.

Claims
  • 1. A radiation shielding structure composition comprising calcium silicate, magnesium oxide and an acid phosphate and having an improved attenuation coefficient as compared to ordinary concrete based on photon energies of 0.662 MeV (5 μCi Cs-137 source) and 1.173 MeV (1 μCi Co-60 source).
  • 2. The radiation shielding structure composition of claim 1 comprising 10 to 40 percent by weight calcium silicate, 10 to 35 percent by weight magnesium oxide and 15 to 45 percent by weight acid phosphate.
  • 3. The radiation shielding structure composition of claim 2, wherein the acid phosphate is monopotassium phosphate.
  • 4. A radiation shielding structure comprising the radiation shielding structure composition of claim 1 sprayed onto a substrate or formed into predetermined structure.
  • 5. A radiation shielding structure composition comprising a magnesium or calcium oxide, an acid phosphate and fly ash and having an improved attenuation coefficient as compared to ordinary concrete based on photon energies of 0.662 MeV (5 μCi Cs-137 source) and 1.173 MeV (1 μCi Co-60 source).
  • 6. The radiation shielding structure composition of claim 5 comprising 15 to 35 percent by weight calcined magnesium or calcium oxide, 15 to 55 percent by weight acid phosphate and 20 to 40 percent by weight fly ash.
  • 7. The radiation shielding structure composition of claim 6, wherein the acid phosphate is monopotassium phosphate.
  • 8. A radiation shielding structure comprising the radiation shielding structure composition of claim 5 sprayed onto a substrate or formed into predetermined structure.
  • 9. A radiation curing structure composition comprising magnesium or calcium oxide, an acid phosphate and kaolin and having an improved attenuation coefficient as compared to ordinary concrete based on photon energies of 0.662 MeV (5 μCi Cs-137 source) and 1.173 MeV (1 μCi Co-60 source).
  • 10. The radiation shielding structure composition of claim 5 comprising 15 to 35 percent by weight calcined magnesium or calcium oxide, 15 to 55 percent by weight acid phosphate and 20 to 40 percent by weight kaolin.
  • 11. The radiation shielding structure composition of claim 10, wherein the acid phosphate is monopotassium phosphate.
  • 12. A radiation shielding structure comprising the radiation shielding structure composition of claim 10 sprayed onto a substrate or formed into predetermined structure.
  • 13. A method of shielding a structure or substrate from radiation, the method comprising applying a composition comprising calcium silicate, magnesium oxide and an acid phosphate to the structure or substrate.
  • 14. The phosphate method of claim 13, wherein the composition comprises 10 to 40 percent by weight calcium silicate, 10 to 35 percent by weight magnesium oxide and 15 to 45 percent by weight acid phosphate.
  • 15. A method of shielding a structure or substrate from radiation, the method comprising applying a composition comprising magnesium or calcium oxide, an acid phosphate and fly ash to the structure or substrate.
  • 16. The method of claim 15, wherein the composition comprises 15 to 40 percent by weight calcined magnesium or calcium oxide, 15 to 55 percent by weight acid phosphate and 20 to 40 percent by weight fly ash.
  • 17. A method of shielding a structure or substrate from radiation, the method comprising applying a composition comprising magnesium or calcium oxide, an acid phosphate and kaolin to the structure or substrate.
  • 18. The method of claim 17, wherein the composition comprises 15 to 40 percent by weight calcined magnesium or calcium oxide, 15 to 55 percent by weight acid phosphate and 20 to 40 percent by weight kaolin.
RELATED APPLICATION

This application claims priority to U.S. Provisional Application Ser. No. 61/102,997, filed Oct. 6, 2008, the contents of which are hereby incorporated by reference as if recited in full herein.

Provisional Applications (1)
Number Date Country
61102997 Oct 2008 US