The use of radiation therapy to treat cancer is well known. Typically, radiation therapy involves directing a beam of high energy proton, photon, ion, or electron radiation (“therapeutic radiation”) into a target or target volume (e.g., a volume that includes a tumor or lesion).
Before a patient is treated with radiation, a treatment plan specific to that patient is developed. The plan defines various aspects of the therapy using simulations and optimizations based on past experiences. In general, the purpose of the treatment plan is to deliver sufficient radiation to the unhealthy tissue while minimizing exposure of surrounding healthy tissue to the radiation.
The planner's goal is to find a solution that is optimal with respect to multiple clinical goals that may be contradictory in the sense that an improvement toward one goal may have a detrimental effect on reaching another goal. For example, a treatment plan that spares the liver from receiving a dose of radiation may result in the stomach receiving too much radiation. These types of tradeoffs lead to an iterative process in which the planner creates different plans to find the one plan that is best suited to achieving the desired outcome.
A recent radiobiology study has demonstrated the effectiveness of delivering an entire, relatively high therapeutic radiation dose to a target within a single, short period of time. For example, each beam can deliver at least four grays (Gy) in less than one second, and may deliver as much as 20 Gy to 50 Gy or as much as 100 Gy or more in less than one second. This type of treatment is referred to generally herein as FLASH radiation therapy (FLASH RT).
Evidence to data suggests that FLASH RT advantageously spares normal, healthy tissue from damage when that tissue is exposed to a high radiation dose for only a very short period of time. FLASH RT thus introduces important constraints that are not considered in or achieved with conventional radiation treatment planning.
In radiation therapy techniques in which the intensity of the particle beam is either constant or modulated across the field of delivery, such as in intensity modulated radiation therapy (IMRT) and intensity modulated particle therapy (IMPT), beam intensity is varied across each treatment region (target volume) in a patient. Depending on the treatment modality, the degrees of freedom available for intensity modulation include beam shaping (collimation), beam weighting (spot scanning), and angle of incidence (which may be referred to as beam geometry). These degrees of freedom lead to an effectively infinite number of potential treatment plans, and therefore consistently and efficiently generating and evaluating high-quality treatment plans is beyond the capability of a human and relies on the use of a computer system, particularly considering the time constraints associated with the use of radiation therapy to treat ailments like cancer, as well as the large number of patients that are undergoing or need to undergo radiation therapy during any given time period.
Embodiments according to the present invention provide an improved method of radiation treatment planning, and improved radiation treatment based on such planning, for FLASH radiation therapy (FLASH RT).
In embodiments, a dose rate-volume histogram (different from a dose-volume histogram) is generated for a target volume. The dose rate-volume histogram indicates dose rates and percentages of the target volume that receive the dose rates. The dose rate-volume histogram can be stored in computer system memory and used to generate a radiation treatment plan. Values of parameters that can have an effect on dose rate can be adjusted until the dose rate-volume histogram satisfies objectives associated with the radiation treatment plan.
In embodiments, the parameters include a number of irradiations of the target volume, a duration of each of the irradiations, and a dose deposited in each of the irradiations. In an embodiment, the parameters also include directions of beams to be directed into the target volume, and beam energies for each of the beams. In an embodiment, the parameters also include a period of time during which the irradiations are applied (e.g., the irradiations are intermittently applied over a period of time, such as an hour), and an interval of time between each of the periods of irradiations (e.g., each hour-long period is separated by a day).
In embodiments, an irradiation time-volume histogram (also different from a dose-volume histogram) is generated for the target volume. The irradiation time-volume histogram indicates irradiation times (durations) and percentages of the target volume that are irradiated for those amounts of time. The irradiation time-volume histogram can be stored in computer system memory and used to generate a radiation treatment plan. Values of parameters that can have an effect on irradiation time can be adjusted until the irradiation time-volume histogram satisfies objectives associated with the radiation treatment plan.
Both a dose rate-volume histogram and an irradiation time-volume histogram, or only a dose rate-volume histogram, or only an irradiation time-volume histogram, can be generated, evaluated, and used to generate a radiation treatment plan, with or without a dose-volume histogram.
In embodiments, the radiation treatment plan that is based on dose rate as just described is used as the basis for treating a patient using a radiation treatment system.
Embodiments according to the invention improve radiation treatment planning and the treatment itself by expanding FLASH RT to a wider variety of treatment platforms and target sites (e.g., tumors). Treatment plans generated as described herein are superior for sparing healthy tissue from radiation in comparison to conventional techniques for FLASH dose rates by optimizing the balance between the dose rate delivered to unhealthy tissue (e.g., a tumor) in a target volume and the dose rate delivered to surrounding healthy tissue. When used with FLASH dose rates, management of patient motion is simplified because the doses are applied in a short period of time (e.g., less than a second). Treatment planning, while still a complex task, is improved relative to conventional treatment planning.
In summary, embodiments according to this disclosure pertain to generating and implementing a treatment plan that is the most effective (relative to other plans) and with the least (or most acceptable) side effects (e.g., a lower dose rate outside of the region being treated). Thus, embodiments according to the invention improve the field of radiation treatment planning specifically and the field of radiation therapy in general. Embodiments according to the invention allow more effective treatment plans to be generated quickly. Also, embodiments according to the invention help improve the functioning of computers because, for example, by reducing the complexity of generating treatment plans, fewer computational resources are needed and consumed, meaning also that computer resources are freed up to perform other tasks.
In addition to radiation techniques such as IMRT and IMPT, embodiments according to the invention can be used in spatially fractionated radiation therapy including high-dose spatially fractionated grid radiation therapy and microbeam radiation therapy.
These and other objects and advantages of embodiments according to the present invention will be recognized by one skilled in the art after having read the following detailed description, which are illustrated in the various drawing figures.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description that follows. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
The accompanying drawings, which are incorporated in and form a part of this specification and in which like numerals depict like elements, illustrate embodiments of the present disclosure and, together with the detailed description, serve to explain the principles of the disclosure.
Reference will now be made in detail to the various embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. While described in conjunction with these embodiments, it will be understood that they are not intended to limit the disclosure to these embodiments. On the contrary, the disclosure is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the disclosure as defined by the appended claims. Furthermore, in the following detailed description of the present disclosure, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be understood that the present disclosure may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present disclosure.
Some portions of the detailed descriptions that follow are presented in terms of procedures, logic blocks, processing, and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. In the present application, a procedure, logic block, process, or the like, is conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those utilizing physical manipulations of physical quantities. Usually, although not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as transactions, bits, values, elements, symbols, characters, samples, pixels, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present disclosure, discussions utilizing terms such as “determining,” “accessing,” “generating,” “representing,” “applying,” “indicating,” “storing,” “using,” “adjusting,” “including,” “computing,” “controlling,” “directing,” “monitoring,” or the like, refer to actions and processes (e.g., the flowcharts of
Portions of the detailed description that follows are presented and discussed in terms of methods. Although steps and sequencing thereof are disclosed in figures herein (e.g.,
Embodiments described herein may be discussed in the general context of computer-executable instructions residing on some form of computer-readable storage medium, such as program modules, executed by one or more computers or other devices. By way of example, and not limitation, computer-readable storage media may comprise non-transitory computer storage media and communication media. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or distributed as desired in various embodiments.
Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, random access memory (RAM), read only memory (ROM), electrically erasable programmable ROM (EEPROM), flash memory or other memory technology, compact disk ROM (CD-ROM), digital versatile disks (DVDs) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and that can accessed to retrieve that information.
Communication media can embody computer-executable instructions, data structures, and program modules, and includes any information delivery media. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency (RF), infrared and other wireless media. Combinations of any of the above can also be included within the scope of computer-readable media.
The system 100 also includes input device(s) 124 such as keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s) 126 such as a display device, speakers, printer, etc., are also included.
In the example of
In the example of
The treatment planning tool set 310 searches through the knowledge base 302 (through the patient records 304) for prior patient records that are similar to the current patient record 312. The statistical models 308 can be used to compare the predicted results for the current patient record 312 to a statistical patient. Using the current patient record 312, a selected treatment type 306, and selected statistical models 308, the tool set 310 generates a radiation treatment plan 322.
More specifically, based on past clinical experience, when a patient presents with a particular diagnosis, stage, age, weight, sex, co-morbidities, etc., there can be a treatment type that is used most often. By selecting the treatment type that the planner has used in the past for similar patients, a first-step treatment type 314 can be chosen. Patient outcomes, which can include normal tissue complication probability as a function of dose rate and patient-specific treatment-type outcomes (e.g., local recurrent failure, and overall survival as a function of a dose rate-volume histogram (
In embodiments according to the present invention, the optimizer model 150 uses a dose prediction model to provide, for example, a 3D dose distribution, fluences, and dose rates, and associated dose-volume histograms and dose rate-volume histograms.
The discussion to follow refers to beams, target volumes, doses, dose rates, and other elements or values. The discussion below is in the context of modeled elements and calculated values in the treatment planning tool set 310 and the optimizer model 150 (
The beam system 404 generates and transports a beam 401. The beam 401 can be a proton beam, electron beam, photon beam, ion beam, or atom nuclei beam (e.g., carbon, helium, and lithium). In embodiments, depending on the type of beam, the beam system 404 includes components that direct (e.g., bend, steer, or guide) the beam system in a direction toward and into a nozzle 406. In embodiments, the radiation therapy system may include one or more multileaf collimators (MLCs); each MLC leaf can be independently moved back-and-forth by the control system 410 to dynamically shape an aperture through which the beam can pass, to block or not block portions of the beam and thereby control beam shape and exposure time. The beam system 404 may also include components that are used to adjust (e.g., reduce) the beam energy entering the nozzle 406.
The nozzle 406 is used to aim or direct the beam toward various locations (a target volume) within an object (e.g., a patient) supported on the patient support device 408 (e.g., a chair or table) in a treatment room. A target volume may be an organ, a portion of an organ (e.g., a volume or region within the organ), a tumor, diseased tissue, or a patient outline. A target volume may include both unhealthy tissue (e.g., a tumor) and healthy tissue.
The nozzle 406 may be mounted on or a part of a gantry that can be moved relative to the patient support device 408, which may also be moveable. In embodiments, the beam system 404 is also mounted on or is a part of the gantry. In another embodiment, the beam system is separate from (but in communication with) the gantry.
The control system 410 receives and implements a prescribed radiation treatment plan. In embodiments, the control system 410 includes a computer system having a processor, memory, an input device (e.g., a keyboard), and perhaps a display as in the example of
As noted above, the beam entering the nozzle 406 of
In radiation therapy techniques in which the intensity of the particle beam is either constant or modulated across the field of delivery, such as in intensity modulated radiation therapy (IMRT) and intensity modulated particle therapy (IMPT), beam intensity is varied across each treatment region (target volume) in a patient. Depending on the treatment modality, the degrees of freedom available for intensity modulation include beam shaping (collimation), beam weighting (spot scanning), and angle of incidence (which may be referred to as beam geometry). These degrees of freedom lead to an effectively infinite number of potential treatment plans, and therefore consistently and efficiently generating and evaluating high-quality treatment plans is beyond the capability of a human and relies on the use of a computer system, particularly considering the time constraints associated with the use of radiation therapy to treat ailments like cancer, as well as the large number of patients that are undergoing or need to undergo radiation therapy during any given time period.
In the
Each beam segment can deliver a relatively high dose rate (a relatively high dose in a relatively short period of time). For example, each beam segment can deliver at least four grays (Gy) in less than one second, and may deliver as much as 20 Gy to 50 Gy or 100 Gy or more in less than one second.
In operation, in embodiments, the beam segments are delivered sequentially. For example, the beam segment 504 of
In the example of
Although multiple beams are shown in
In the example of
In embodiments according to the present invention, a dose rate-volume histogram (which is different from, but may be used with, a dose-volume histogram) is generated for a target volume. The dose rate-volume histogram can be generated based on a proposed radiation treatment plan. The dose rate-volume histogram can be stored in computer system memory and used to generate a final radiation treatment plan that will be used to treat a patient. Values of parameters that can have an effect on dose rate can be adjusted until the dose rate-volume histogram satisfies objectives of or associated with treatment of the patient.
The target volume 604 may include different organs, for example, or it may include both healthy tissue and unhealthy tissue (e.g., a tumor). Accordingly, with reference to
The target volume 604 may be divided (virtually) into a number of voxels. A sub-volume can include a single voxel or multiple voxels.
In embodiments according to the present invention, an irradiation time-volume histogram (which is different from, but may be used with, a dose-volume histogram and/or a dose rate-volume histogram) is generated for the target volume. The irradiation time-volume histogram can be stored in computer system memory and used to generate a radiation treatment plan, in combination with or in lieu of a dose-volume histogram and/or a dose rate-volume histogram.
In block 802 of
Appropriate dose threshold curve(s) (e.g., normal tissue sparing dose versus dose rate or irradiation time) can be utilized in the optimization model 150 (
Dose limits can include, but are not limited to: a maximum limit on irradiation time for each sub-volume (voxel) in the target (e.g., for each voxel of target tissue, treatment time less than x1 seconds); a maximum limit on irradiation time for each sub-volume (voxel) outside the target (e.g., for each voxel of normal tissue, treatment time less than x2 seconds; x1 and x2 may be the same or different); a minimum limit on dose rate for each sub-volume (voxel) in the target (e.g., for each voxel of target tissue, dose rate greater than y1 Gy/sec); and a minimum limit on dose rate for each sub-volume (voxel) outside the target (e.g., f or each voxel of normal tissue, dose rate greater than y2 Gy/sec; y1 and y2 may be the same or different). In general, the limits are intended to minimize the amount of time that normal tissue is irradiated.
In block 804, in an embodiment, a dose rate-volume histogram is generated based on the values of the parameters in the proposed radiation treatment plan. A dose rate can be determined per sub-volume or voxel. The dose rate is the dose deposited in each irradiation divided by the sum of the durations of the irradiation, times the number of irradiations (e.g., number of fractions). The dose rate can be determined and recorded using a fine time index (e.g., time increments on the order of a millisecond); that is, for example, the dose to each sub-volume or voxel can be recorded for time increments on the order of per-millisecond per beam and per fraction. The dose rate is cumulative. The cumulative dose rate for some portions (e.g., sub-volumes or voxels) of the target volume may be higher than other portions, depending on the beam directions and energies, for example. The dose rate per sub-volume or voxel can be calculated to include ray tracing (and Monte Carlo-like simulations), where each beam particle is tracked to determine the primary, secondary, etc., scatters for each particle to get a realistic voxel-based or sub-volume-based dose rate over the course of each irradiation.
In an embodiment, an irradiation time-volume histogram is generated. An irradiation time-volume histogram can be generated essentially in the same manner as that just described for generating a dose rate-volume histogram. Both a dose rate-volume histogram and an irradiation time-volume histogram, or only a dose rate-volume histogram, or only an irradiation time-volume histogram, can be generated, in addition to or in lieu of a dose-volume histogram.
In block 806, the dose rate-volume histogram and/or the irradiation time-volume histogram can be evaluated by determining whether or not objectives (e.g., clinical goals) that are specified for treatment of a patient are satisfied by the proposed radiation treatment plan. The clinical goals or objectives may be expressed in terms of a set of quality metrics, such as target homogeneity, critical organ sparing, and the like, with respective target values for the metrics. Another way to evaluate the dose rate-volume histogram and/or the irradiation time-volume histogram is a knowledge-based approach that incorporates and reflects present best practices gathered from multiple previous, similar treatments of other patients. Yet another way to assist the planner is to use a multi-criteria optimization (MCO) approach for treatment planning. Pareto surface navigation is an MCO technique that facilitates exploration of the tradeoffs between clinical goals. For a given set of clinical goals, a treatment plan is considered to be Pareto optimal if it satisfies the goals and none of the metrics can be improved without worsening at least one of the other metrics.
As mentioned above, for FLASH RT, dose rates of at least 4 Gy in less than one second, and as much as 20 Gy to 50 Gy or 100 Gy or more in less than one second, may be used. Thus, another way to evaluate a dose rate-volume histogram is to define a dose rate threshold value (e.g., a minimum dose rate) based on the FLASH RT dose rates, and to also specify a target volume percentage threshold value for dose rate. A dose rate-volume histogram can be evaluated by determining whether the percentage of the target volume that receives a dose rate above the dose rate threshold value satisfies the percentage threshold value. For example, a dose-rate volume histogram may be considered to be satisfactory if 80 percent of the target volume (specifically, the portion of the target volume that includes the unhealthy tissue) receives a dose rate of at least 50 Gy per second.
Another way to evaluate an irradiation time-volume histogram is to define an irradiation time threshold value or values (e.g., a maximum limit on irradiation time for each sub-volume or voxel inside the target volume and/or a maximum limit on irradiation time for each sub-volume or voxel outside the target volume), and to also specify a target volume percentage threshold value or values for irradiation time inside and/or outside the target volume. An irradiation time-volume histogram can be evaluated by determining whether the percentage of the tissue inside the target volume that is irradiated for less than the corresponding irradiation time threshold value satisfies the corresponding percentage threshold value, and/or by similarly determining whether the percentage of the tissue outside the target volume that is irradiated for less than the corresponding irradiation time threshold value satisfies the corresponding percentage threshold value.
In block 808, in an embodiment, the information in the dose rate-volume histogram is used to determine and represent isolines of dose rate relative to a target volume 904 (e.g., a tumor) that includes or is surrounded by other (e.g., healthy) tissue, as shown in the example of
Isolines of irradiation time relative to a target volume can be similarly determined and represented.
In block 810 of
In block 812, the final set of parameter values is then included in the prescribed radiation treatment plan used to treat the patient.
Generally speaking, embodiments according to the invention optimize a radiation treatment plan based on dose rate and/or irradiation time. This is not to say that treatment plan optimization is based solely on dose rate and/or irradiation time. For example, a dose-volume histogram can be used in conjunction with a dose rate-volume histogram and/or irradiation time-volume histogram when developing a radiation treatment plan.
In block 1002 of
In block 1004 of
In block 1006 of
In block 1008, the dose rate-volume histogram and/or the irradiation time-volume histogram are/is used to generate a radiation treatment plan for treating the target volume.
In block 1102 of
In block 1104 of
In block 1106 of
In block 1202 of
In block 1204 of
In block 1206 of
In block 1208 of
In block 1210, in an embodiment, a dose rate-volume histogram for the target volume is determined using the dose rate for each sub-volume as previously described herein. In an embodiment, an irradiation time-volume histogram for the target volume is determined as previously described herein.
In block 1212, in an embodiment, a comparison is made between the dose rate-volume histogram and/or the irradiation time-volume histogram and the corresponding histogram(s) generated as part of the radiation treatment plan during the treatment planning process. That is, a comparison can be made between the dose rate-volume histogram and/or the irradiation time-volume histogram generated during treatment of a patient and the respective histogram that was predicted based on the prescribed radiation treatment plan.
In block 1214, in an embodiment, adjustments can be made to, for example, the beam direction and/or the beam energy based on the comparison (feedback) of block 1212.
While the operations in
In summary, embodiments according to the invention improve radiation treatment planning and the treatment itself by expanding FLASH RT to a wider variety of treatment platforms and target sites. Treatment plans generated as described herein are superior for sparing normal tissue from radiation during the treatment in comparison to conventional techniques even for non-FLASH dose rates by reducing, if not minimizing, the magnitude (and the integral in some cases) of the dose to normal tissue (outside the target) by design. When used with FLASH dose rates, management of patient motion is simplified because the doses are applied in a short period of time (e.g., less than a second). Treatment planning, while still a complex task of finding a balance between competing and related parameters, is simplified relative to conventional planning. The techniques described herein may be useful for stereotactic radiosurgery as well as stereotactic body radiotherapy with single or multiple metastases.
In addition to radiation therapy techniques in which the intensity of the particle beam is either constant or modulated across the field of delivery, such as IMRT and IMPT, embodiments according to the invention can be used in spatially fractionated radiation therapy including high-dose spatially fractionated grid radiation therapy and microbeam radiation therapy.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
This application is a continuation of U.S. patent application Ser. No. 17/031,699, filed Sep. 24, 2020, and a continuation of U.S. patent application Ser. No. 16/294,707, filed Mar. 6, 2019, both of which are incorporated herein in their entirety. This application is also related to U.S. patent application Ser. No. 16/294,693, filed Mar. 6, 2019, and to U.S. patent application Ser. No. 16/294,702, filed Mar. 6, 2019, both of which are incorporated herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4163901 | Azam et al. | Aug 1979 | A |
4914681 | Klingenbeck et al. | Apr 1990 | A |
5153900 | Nomikos et al. | Oct 1992 | A |
5267294 | Kuroda et al. | Nov 1993 | A |
5550378 | Skillicorn et al. | Aug 1996 | A |
5610967 | Moorman et al. | Mar 1997 | A |
5625663 | Swerdloff et al. | Apr 1997 | A |
5682412 | Skillicorn et al. | Oct 1997 | A |
5757885 | Yao et al. | May 1998 | A |
6198802 | Elliott et al. | Mar 2001 | B1 |
6222544 | Tarr et al. | Apr 2001 | B1 |
6234671 | Solomon et al. | May 2001 | B1 |
6260005 | Yang et al. | Jul 2001 | B1 |
6379380 | Satz | Apr 2002 | B1 |
6411675 | Llacer | Jun 2002 | B1 |
6445766 | Whitham | Sep 2002 | B1 |
6504899 | Pugachev et al. | Jan 2003 | B2 |
6580940 | Gutman | Jun 2003 | B2 |
6993112 | Hesse | Jan 2006 | B2 |
7268358 | Ma et al. | Sep 2007 | B2 |
7453983 | Schildkraut et al. | Nov 2008 | B2 |
7515681 | Ebstein | Apr 2009 | B2 |
7522706 | Lu et al. | Apr 2009 | B2 |
7560715 | Pedroni | Jul 2009 | B2 |
7590219 | Maurer, Jr. et al. | Sep 2009 | B2 |
7616735 | Maciunas et al. | Nov 2009 | B2 |
7623623 | Raanes et al. | Nov 2009 | B2 |
7778691 | Zhang et al. | Aug 2010 | B2 |
7807982 | Nishiuchi et al. | Oct 2010 | B2 |
7831289 | Riker et al. | Nov 2010 | B2 |
7835492 | Sahadevan | Nov 2010 | B1 |
7907699 | Long et al. | Mar 2011 | B2 |
8284898 | Ho et al. | Oct 2012 | B2 |
8306184 | Chang et al. | Nov 2012 | B2 |
8401148 | Lu et al. | Mar 2013 | B2 |
8406844 | Ruchala et al. | Mar 2013 | B2 |
8559596 | Thomson et al. | Oct 2013 | B2 |
8600003 | Zhou et al. | Dec 2013 | B2 |
8613694 | Walsh | Dec 2013 | B2 |
8636636 | Shukla et al. | Jan 2014 | B2 |
8644571 | Schulte et al. | Feb 2014 | B1 |
8716663 | Brusasco et al. | May 2014 | B2 |
8836332 | Shvartsman et al. | Sep 2014 | B2 |
8847179 | Fujitaka et al. | Sep 2014 | B2 |
8903471 | Heid | Dec 2014 | B2 |
8917813 | Maurer, Jr. | Dec 2014 | B2 |
8948341 | Beckman | Feb 2015 | B2 |
8958864 | Amies et al. | Feb 2015 | B2 |
8983573 | Carlone et al. | Mar 2015 | B2 |
8986186 | Zhang et al. | Mar 2015 | B2 |
8992404 | Graf et al. | Mar 2015 | B2 |
8995608 | Zhou et al. | Mar 2015 | B2 |
9018603 | Loo et al. | Apr 2015 | B2 |
9033859 | Fieres et al. | May 2015 | B2 |
9079027 | Agano et al. | Jul 2015 | B2 |
9149656 | Tanabe | Oct 2015 | B2 |
9155908 | Meltsner et al. | Oct 2015 | B2 |
9233260 | Slatkin et al. | Jan 2016 | B2 |
9258876 | Cheung et al. | Feb 2016 | B2 |
9283406 | Prieels | Mar 2016 | B2 |
9308391 | Liu et al. | Apr 2016 | B2 |
9330879 | Lewellen et al. | May 2016 | B2 |
9333374 | Iwata | May 2016 | B2 |
9468777 | Fallone et al. | Oct 2016 | B2 |
9517358 | Velthuis et al. | Dec 2016 | B2 |
9526918 | Kruip | Dec 2016 | B2 |
9545444 | Strober et al. | Jan 2017 | B2 |
9583302 | Figueroa Saavedra et al. | Feb 2017 | B2 |
9636381 | Basile | May 2017 | B2 |
9636525 | Sahadevan | May 2017 | B1 |
9649298 | Djonov et al. | May 2017 | B2 |
9656098 | Goer | May 2017 | B2 |
9694204 | Hårdemark | Jul 2017 | B2 |
9776017 | Flynn et al. | Oct 2017 | B2 |
9786054 | Taguchi et al. | Oct 2017 | B2 |
9786093 | Svensson | Oct 2017 | B2 |
9786465 | Li et al. | Oct 2017 | B2 |
9795806 | Matsuzaki et al. | Oct 2017 | B2 |
9801594 | Boyd et al. | Oct 2017 | B2 |
9844358 | Wiggers et al. | Dec 2017 | B2 |
9854662 | Mishin | Dec 2017 | B2 |
9884206 | Schulte et al. | Feb 2018 | B2 |
9931522 | Bharadwaj et al. | Apr 2018 | B2 |
9962562 | Fahrig et al. | May 2018 | B2 |
9974977 | Lachaine et al. | May 2018 | B2 |
9987502 | Gattiker et al. | Jun 2018 | B1 |
10007961 | Grudzinski et al. | Jun 2018 | B2 |
10022564 | Thieme et al. | Jul 2018 | B2 |
10071264 | Liger | Sep 2018 | B2 |
10080912 | Kwak et al. | Sep 2018 | B2 |
10092774 | Vanderstraten et al. | Oct 2018 | B1 |
10183179 | Smith et al. | Jan 2019 | B1 |
10188875 | Kwak et al. | Jan 2019 | B2 |
10206871 | Lin et al. | Feb 2019 | B2 |
10212800 | Agustsson et al. | Feb 2019 | B2 |
10232193 | Iseki | Mar 2019 | B2 |
10258810 | Zwart et al. | Apr 2019 | B2 |
10272264 | Ollila et al. | Apr 2019 | B2 |
10279196 | West et al. | May 2019 | B2 |
10293184 | Pishdad et al. | May 2019 | B2 |
10307614 | Schnarr | Jun 2019 | B2 |
10307615 | Ollila et al. | Jun 2019 | B2 |
10315047 | Glimelius et al. | Jun 2019 | B2 |
10413755 | Sahadevan | Sep 2019 | B1 |
10449389 | Ollila et al. | Oct 2019 | B2 |
10485988 | Kuusela et al. | Nov 2019 | B2 |
10525285 | Friedman | Jan 2020 | B1 |
10549117 | Vanderstraten et al. | Feb 2020 | B2 |
10603514 | Grittani et al. | Mar 2020 | B2 |
10609806 | Roecken et al. | Mar 2020 | B2 |
10636609 | Bertsche et al. | Apr 2020 | B1 |
10660588 | Boyd et al. | May 2020 | B2 |
10661100 | Shen | May 2020 | B2 |
10682528 | Ansorge et al. | Jun 2020 | B2 |
10702716 | Heese | Jul 2020 | B2 |
10758746 | Kwak et al. | Sep 2020 | B2 |
10814144 | Khuntia | Oct 2020 | B2 |
10870018 | Bartkoski et al. | Dec 2020 | B2 |
11534625 | Khuntia | Dec 2022 | B2 |
20070287878 | Fantini et al. | Dec 2007 | A1 |
20080023644 | Pedroni | Jan 2008 | A1 |
20090063110 | Failla et al. | Mar 2009 | A1 |
20090287467 | Sparks et al. | Nov 2009 | A1 |
20100119032 | Yan et al. | May 2010 | A1 |
20100177870 | Nord et al. | Jul 2010 | A1 |
20100178245 | Arnsdorf et al. | Jul 2010 | A1 |
20100260317 | Chang et al. | Oct 2010 | A1 |
20110006224 | Maltz et al. | Jan 2011 | A1 |
20110060602 | Grudzinski et al. | Mar 2011 | A1 |
20110091015 | Yu et al. | Apr 2011 | A1 |
20110135058 | Sgouros et al. | Jun 2011 | A1 |
20120076271 | Yan et al. | Mar 2012 | A1 |
20120157746 | Meltsner et al. | Jun 2012 | A1 |
20120171745 | Itoh | Jul 2012 | A1 |
20120197058 | Shukla et al. | Aug 2012 | A1 |
20130116929 | Carlton et al. | May 2013 | A1 |
20130150922 | Butson et al. | Jun 2013 | A1 |
20130177641 | Ghoroghchian | Jul 2013 | A1 |
20130231516 | Loo et al. | Sep 2013 | A1 |
20140177807 | Lewellen et al. | Jun 2014 | A1 |
20140185776 | Li et al. | Jul 2014 | A1 |
20140206926 | van der Laarse | Jul 2014 | A1 |
20140275706 | Dean et al. | Sep 2014 | A1 |
20150011817 | Feng | Jan 2015 | A1 |
20150202464 | Brand et al. | Jul 2015 | A1 |
20150306423 | Bharat et al. | Oct 2015 | A1 |
20160279444 | Schlosser | Sep 2016 | A1 |
20160310764 | Bharadwaj et al. | Oct 2016 | A1 |
20170189721 | Sumanaweera et al. | Jul 2017 | A1 |
20170203129 | Dessy | Jul 2017 | A1 |
20170281973 | Allen et al. | Oct 2017 | A1 |
20180021594 | Papp et al. | Jan 2018 | A1 |
20180043183 | Sheng et al. | Feb 2018 | A1 |
20180056090 | Jordan et al. | Mar 2018 | A1 |
20180099154 | Prieels | Apr 2018 | A1 |
20180099155 | Prieels et al. | Apr 2018 | A1 |
20180099159 | Forton et al. | Apr 2018 | A1 |
20180154183 | Sahadevan | Jun 2018 | A1 |
20180197303 | Jordan et al. | Jul 2018 | A1 |
20180207425 | Carlton et al. | Jul 2018 | A1 |
20180236268 | Zwart et al. | Aug 2018 | A1 |
20180311509 | Sjölund et al. | Nov 2018 | A1 |
20190022407 | Abel et al. | Jan 2019 | A1 |
20190022422 | Trail et al. | Jan 2019 | A1 |
20190054315 | Isola et al. | Feb 2019 | A1 |
20190060667 | Vanderstraeten et al. | Feb 2019 | A1 |
20190070435 | Joe Anto et al. | Mar 2019 | A1 |
20190168027 | Smith et al. | Jun 2019 | A1 |
20190255361 | Mansfield | Aug 2019 | A1 |
20190299027 | Fujii et al. | Oct 2019 | A1 |
20190299029 | Inoue | Oct 2019 | A1 |
20190351259 | Lee et al. | Nov 2019 | A1 |
20200001118 | Snider, III et al. | Jan 2020 | A1 |
20200022248 | Yi et al. | Jan 2020 | A1 |
20200030633 | Van Heteren et al. | Jan 2020 | A1 |
20200035438 | Star-Lack et al. | Jan 2020 | A1 |
20200069818 | Jaskula-Ranga et al. | Mar 2020 | A1 |
20200164224 | Vanderstraten et al. | May 2020 | A1 |
20200178890 | Otto | Jun 2020 | A1 |
20200197730 | Safavi-Naeini et al. | Jun 2020 | A1 |
20200254279 | Ohishi | Aug 2020 | A1 |
20200269068 | Abel et al. | Aug 2020 | A1 |
20200276456 | Swerdloff | Sep 2020 | A1 |
20200282234 | Folkerts et al. | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
101006541 | Jul 2007 | CN |
104001270 | Aug 2014 | CN |
104284697 | Jan 2015 | CN |
106730407 | May 2017 | CN |
107362464 | Nov 2017 | CN |
109966662 | Jul 2019 | CN |
111481840 | Aug 2020 | CN |
111481841 | Aug 2020 | CN |
010207 | Jun 2008 | EA |
0979656 | Feb 2000 | EP |
3338858 | Jun 2018 | EP |
3384961 | Oct 2018 | EP |
3421087 | Jan 2019 | EP |
3453427 | Mar 2019 | EP |
3586920 | Jan 2020 | EP |
2617283 | Jun 1997 | JP |
2019097969 | Jun 2019 | JP |
2007017177 | Feb 2007 | WO |
2010018476 | Feb 2010 | WO |
2013081218 | Jun 2013 | WO |
2013133936 | Sep 2013 | WO |
2014139493 | Sep 2014 | WO |
2015038832 | Mar 2015 | WO |
2015102680 | Jul 2015 | WO |
2016122957 | Aug 2016 | WO |
2017156316 | Sep 2017 | WO |
2017174643 | Oct 2017 | WO |
2018137772 | Aug 2018 | WO |
2018152302 | Aug 2018 | WO |
2019097250 | May 2019 | WO |
2019103983 | May 2019 | WO |
2019164835 | Aug 2019 | WO |
2019166702 | Sep 2019 | WO |
2019185378 | Oct 2019 | WO |
2019222436 | Nov 2019 | WO |
2020018904 | Jan 2020 | WO |
2020064832 | Apr 2020 | WO |
2020107121 | Jun 2020 | WO |
2020159360 | Aug 2020 | WO |
WO-2020180994 | Sep 2020 | WO |
Entry |
---|
Podesta, M. et al., “Dose rate mapping of VMAT treatments,” Physics in Medicine & Biology, vol. 61, pp. 4048-4060, 2016. |
Harald Paganetti, “Proton Beam Therapy,” Jan. 2017, Physics World Discovery, IOP Publishing Ltd, Bristol, UK, 34 pages, DOI: 10.1088/978-0-7503-1370-4. |
K. Petersson et al., “Dosimetry of ultra high dose rate irradiation for studies on the biological effect induced in normal brain and GBM,” ICTR-PHE 2016, p. S84, Feb. 2016, https://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/14c/aHROcDovL2FwaS51bHNIdmllci5jb20vY29udGVudC9hcnRpY2xIL3BpaS9zMDE2NzgxNDAxNjMwMTcyNA==.pdf. |
Imaging Technology News, “ProNova and medPhoton to Offer Next Generation Beam Delivery, Advanced Imaging for Proton Therapy,” Oct. 6, 2014, Wainscot Media, Link: https://www.itnonline.com/content/pronova-and-medphoton-offer-next-generation-beam-delivery-advanced-imaging-proton-therapy. |
Andrei Pugachev et al., “Pseudo beam's-eye-view as applied to beam orientation selection in intensity-modulated radiation therapy,” Int. J. Radiation Oncology Biol. Phys., vol. 51, Issue 5, p. 1361-1370, Dec. 1, 2001, DOI: https://doi.org/10.1016/S0360-3016(01)01736-9. |
N. Rama et al., “Improved Tumor Control Through T-cell Infiltration Modulated by Ultra-High Dose Rate proton Flash Using a Clinical Pencil Beam Scanning Proton System,” International Journal of Radiation Oncology, Biology, Physics, vol. 105, Issue 1, Supplement, S164-S165, Sep. 1, 2019, Mini Oral Sessions, DOI: https://doi.org/10.1016/j.ijrobp.2019.06.187. |
RaySearch Laboratories, “Leading the way in cancer treatment, Annual Report 2013,” RaySearch Laboratories (publ), Stockholm, Sweden, 94 pages, Apr. 2014, https://www.raysearchlabs.com/siteassets/about-overview/media-center/wp-re-ev-n-pdfs/brochures/raysearch-ar-2013 eng.pdf. |
Shinichi Shimizu et al., “A Proton Beam Therapy System Dedicated to Spot-Scanning Increases Accuracy with Moving Tumors by Real-Time Imaging and Gating and Reduces Equipment Size,” PLoS One, Apr. 18, 2014, vol. 9, Issue 4, e94971, https://doi.org/10.1371/journal.pone.0094971. |
P. Symonds et al., “Flash Radiotherapy: The Next Technological Advance in Radiation Therapy?”, Clinical Oncology, vol. 31, Issue 7, p. 405-406, Jul. 1, 2019, The Royal College of Radiologists, published by Elsevier Ltd., DOI: https://doi.org/10.1016/j.clon.2019.05.011. |
Alexei Trofimov et al., “Optimization of Beam Parameters and Treatment Planning for Intensity Modulated Proton Therapy,” Technology in Cancer Research & Treatment, vol. 2, No. 5, Oct. 2003, p. 437-444, Adenine Press. |
Bhanu Prasad Venkatesulu et al., “Ultra high dose rate (3p Gy/sec2 radiation does not spare the normal tissue in cardiac and splenic models of lymphopenia and gastrointestinal syndrome,” Sci Rep 9, 17180 (20192, published Nov. 20, 2019, DOI: <https://doi.org/10.1038/s41p98-019-p3p62-y>. |
M.-C. Vozenin et al., “Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken,” Clin Oncol (R Coll Radial). Author manuscript; available in PMC Nov. 1, 20192. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850216/ Published in final edited form as: Clin Oncol (R Coll Radiol). Jul. 2019; 31(7): 407-415. Published online Apr. 1, 20199. doi: 10.1016/j.clon.2019.04.001. |
Marie-Catherine Vozenin et al., “The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients,” Clinical Cancer Research, Author Manuscript published OnlineFirst Jun. 6, 2018, https://clincancerres.aacrjournals.org/content/clincanres/early/2018/06/06/1078-0432.CCR-17-3375.full.pdf. |
Steven Van De Water et al., “Towards Flash proton therapy: the impact of treatment planning and machine characteristics on achievable dose rates,” ACTA Oncologica, Jun. 26, 2019, vol. 58, No. 10, p. 1462-1469, Taylor & Francis Group, DOI: 10.1080/0284186X.2019.1627416. |
Damien C. Weber et al., “Radiation therapy Planning with Photons and Protons for early and advanced breast cancer: an overview,” Radial Oncol. 2006; 1: 22. Published online Jul. 20, 2006, doi: 10.1186/1748-717X-1-22. |
Lamberto Widesott et al., “Intensity-Modulated Proton Therapy Versus Helical Tomotherapy in Nasopharynx Cancer: Planning Comparison and NTC5 Evaluation,” Int. J. Radiation Oncology Biol. Phys., vol. 72, No. 2, pp. 589-596, Oct. 1, 2008, Available online Sep. 13, 2008, DOI: <https://doi.org/10.1016/j.ijrobp.2008.05.065>. |
Joseph D. Wilson et al., “Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold?”, Frontiers in Oncology, Jan. 17, 2020, vol. 9, Article 1563, 12 pages, doi: 10.3389/fonc.2019.01563. |
Bjorn Zackrisson, “Biological Effects Of High Energy Radiation And Ultra High Dose Rates,” UMEA University Medical Dissertations, New series No. 315—ISSN 0346-6612, From the Department of Oncology, University of Umea, Umea, Sweden, ISBN 91-7174-614-5, printed in Sweden by the printing Office of Umea University, Umea, 1991. |
Abdullah Muhammad Zakaria et al., “Ultra-High Dose-Rate, pulsed {FLASH) Radiotherapy with Carbon Ions: Generation of Early, Transient, Highly Oxygenated Conditions in the Tumor Environment,” Radiation Research, Dec. 1, 2020, vol. 194, Issue 6, pp. 587-593, Radiation Research Society, Published: Aug. 27, 2020, doi: https://doi.org/10.1667/RADE-19-00015.1. |
Xiaodong Zhang et al., “Intensity-Modulated Proton Therapy Reduces the Dose to Normal Tissue Compared With Intensity-Modulated Radiation Therapy or Passive Scattering Proton Therapy and Enables Individualized Radical Radiotherapy for Extensive Stage IIIB Non-Small-Cell Lung Cancer: A Virtual Clinical Study,” Int. J. Radiation Oncology Biol. Phys., vol. 77, No. 2, pp. 357-366, 2010, Available online Aug. 5, 2009, DOI: https://doi.ora/10.1016/j.ijrobp.2009.04.028. |
O. Zlobinskaya et al., “The Effects of Ultra-High Dose Rate Proton Irradiation on Growth Delay in the Treatment of Human Tumor Xenografts in Nude Mice,” Radiation Research, 181(2):177-183. Published Feb. 13, 2014, DOI: <http://dx.doi.org/10.1667/RR13464.1>. |
Ivana Dokic et al., “Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams,” Oncotarget, Aug. 30, 2016, vol. 7, No. 35, pp. 56676-56689, published online: Aug. 1, 2016, doi: 10.18632/oncotarget. 10996. |
Emil Schuler et al., “Experimental platform for Ultra-high Dose Rate Flash Irradiation of Small Animals Using a Clinical Linear Accelerator,” International Journal of Radiation Oncology, Biology, physics, vol. 97, No. 1, Sep. 2016, pp. 195-203. |
Aetna Inc., “Proton Beam, Neutron Beam, and Carbon Ion Radiotherapy,” 2020, No. 0270, http://www.aetna.com/cpb/medical/data/200_299/0270.html. |
Alterego-admin, “Conventional Radiation Therapy May Not Protect Healthy Brain Cells,” International Neuropsychiatric Association—INA, Oct. 10, 2019, https://inawebsite.org/conventional-radiation-therapy-may-not-protect-healthy-brain-cells/. |
Muhammad Ramish Ashraf et al., “Dosimetry for FLASH Radiotherapy: A Review of Tools and the Role of Radioluminescence and Cherenkov Emission,” Frontiers in Oncology, Aug. 21, 2020, vol. 8, Article 328, 20 pages, doi: 10.3389/fphy.2020.00328. |
Susanne Auer et al., “Survival of tumor cells after proton irradiation with ultra-high dose rates,” Radiation Oncology 2011, 6:139, Published Oct. 18, 2011, DOI: https://doi.org/10.1186/1748-717X-6-139. |
Manuela Buonanno et al., “Biological effects in normal cells exposed to FLASH dose rate protons,” Radiother Oncol. Author manuscript; available in PMC Oct. 1, 2020. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728238/> Published in final edited form as: Radiother Oncol. Oct. 2019; 139: 51-55. Published online Mar. 5, 2019. doi: 10.1016/j.radonc.2019.02.009. |
Fredrik Carlsson, “Utilizing Problem Structure in Optimization of Radiation Therapy,” KTH Engineering Sciences, Doctoral Thesis, Stockholm, Sweden, Apr. 2008, Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology, Stockholm, Sweden, ISSN 1401-2294, https://www.raysearchlabs.com/globalassets/about-overview/media-center/wp-re-ev-n-pdfs/publications/thesis-fredrik light.pdf. |
Bazalova-Carter et al., “On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates,” Med. Phys. Dec. 2019; 46 (12):5690-5695, published Oct. 23, 2019, American Association of physicists in Medicine doi: 10.1002/mp.13858. Epub Oct. 23, 2019. PMID: 31600830. |
Chang-Ming Charlie Ma, “Physics and Dosimetric Principles of SRS and SBRT,” Mathews J Cancer Sci. 4(2): 22, 2019, published: Dec. 11, 2019, ISSN: 2474-6797, DOI: https://doi.org/10.30654/MJCS.10022. |
Nicholas W. Colangelo et al., “The Importance and Clinical Implications of FLASH Ultra-High Dose-Rate Studies for proton and Heavy Ion Radiotherapy,” Radial Res. Author manuscript; available in PMC Jan. 1, 2021. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949397/> Published in final edited form as: Radial Res. Jan. 2020; 193(1): 1-4. Published online Oct. 28, 2019. doi: 10.1667/RR15537.1. |
Yusuke Demizu et al., “Carbon lon Therapy for Early-Stage Non-Small-Cell Lung Cancer,” BioMed Research International, vol. 2014, Article ID 727962, 9 pages, Hindawi Publishing Corporation, published: Sep. 11, 2014, https://doi.org/10.1155/2014/727962. |
Valerie Devillaine, “Radiotherapy and Radiation Biology,” Institut Curie, Apr. 21, 2017, https://institut-curie.org/page/radiotherapy-and-radiation-biology. |
Eric S. Diffenderfer et al., “Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System,” International Journal of Radiation Oncology, Biology, Physics, vol. 106, Issue 2, Feb. 1, 2020, pp. 440-448, Available online Jan. 9, 2020, Published by Elsevier Inc., DOI: https://doi.org/10.1016/j.ijrobp.2019.10.049. |
Marco Durante et al., “Faster and safer? Flash ultra-high dose rate in radiotherapy,” Br J Radiol 2018; 91(1082): Jun. 28, 2017, British Institute of Radiology, Published Online: Dec. 15, 2017, https://doi.org/10.1259/bjr.20170628. |
Elette Engels et al., “Toward personalized synchrotron microbeam radiation therapy,” Scientific Reports, 10:8833, Jun. 1, 2020, 13 pages, DOI: https://doi.org/10.1038/s41598-020-65729-z. |
Fan et al., “Emission guided radiation therapy for lung and prostate cancers: A feasibility study on a digital patient,” Med phys. Nov. 2012; 39(11): 7140-7152. Published online Nov. 5, 2012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505203/ doi: 10.1118/1.4761951. |
Vincent Favaudon et al., “Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice,” Science Translational Medicine, Jul. 16, 2014, vol. 6, Issue 245, 245ra93, American Association for the Advancement of Science, DOI: 10.1126/scitranslmed.3008973. |
Favaudon et al., “Ultrahigh dose-rate, ”flash“ irradiation minimizes the side-effects of radiotherapy,” Cancer/Radiotherapy, vol. 19, Issues 6-7, Oct. 2015, pp. 526-531, Available online Aug. 12, 2015, https://doi.org/10.1016/j.canrad.2015.04.006. |
John R. Fischer, “PMB launches Flash radiotherapy system for use in clinical trials,” HealthCare Business News, Jun. 29, 2020, DOTmed.com, Inc., https://www.dotmed.com/news/story/51662. |
Tami Freeman, “Flash radiotherapy: from preclinical promise to the first human treatment,” Physics World, Aug. 1, 019 IOP publishing Ltd, https://physicsworld.com/a/flash-radiotherapy-from-preclinical-promise-to-the-first-human-treatment/. |
David P. Gierga, “Is Flash Radiotherapy coming?”, International Organization for Medical Physics, 2020, https://www.iomp.org/iomp-news2-flash-radiotherapy/. |
Swati Girdhani et al., “Abstract LB-280: FLASH: A novel paradigm changing tumor irradiation platform that enhances therapeutic ratio by reducing normal tissue toxicity and activating immune pathways,” proceedings: MCR Annual Meeting 2019; Mar. 29-Apr. 3, 2019; Atlanta, GA, published Jul. 2019, vol. 79, Issue 13 Supplement, pp. LB-280, American Association for Cancer Research, DOI: https://doi.org/10.1158/1538-7445.AM2019-LB-280. |
J. Groen, “FLASH optimisation in clinical IMPT treatment planning,” MSC Thesis, Jul. 1, 2020, Erasmus University Medical Center, department of radiotherapy, Delft University of Technology, 72 pages. |
Wenbo Gu et al., “Integrated Beam Orientation and Scanning-Spot Optimization in Intensity Modulated Proton Therapy for Brain and Unilateral Head and Neck Tumors,” Med Phys. Author manuscript; available in PMC Apr. 1, 2019 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904040/> Published in final edited form as: Med phys. Apr. 2018; 45 (4): 1338-1350. published online Mar. 1, 2018. doi: 10.1002/mp. 12788 Accepted manuscript online: Feb. 2, 2018. |
Heng Li et al., “Reducing Dose Uncertainty for Spot-Scanning Proton Beam Therapy of Moving Tumors by Optimizing the Spot Delivery Sequence,” International Journal of Radiation Oncology, Biology, physics, vol. 93, Issue 3, Nov. 1, 2015, pp. 547-556, available online Jun. 18, 2015, https://doi.org/10.1016/j.ijrobp.2015.06.019. |
Inserm Press Office, “Radiotherapy 'flashes' to reduce side effects,” Press Release, Jul. 16, 2014, https://presse.inserm.fr/en/radiotherapy-flashes-to-reduce-side-effects/13394/. |
Intraop Medical, Inc., “IntraOp and Lausanne University Hospital Announce Collaboration in Flash radiotherapy,” Jun. 18, 2020, https://intraop.com/news-events/lausanne-university-flash-radiotherapy-collaboration. |
Ion Beam Applications Sa, “Netherlands Proton Therapy Center Delivers First Clinical Flash Irradiation,” Imaging Technology News, May 2, 2019, Wainscot Media, <https://www.itnonline.com/content/netherlands-proton-therapy-center-delivers-first-clinical-flash-irradiation>. |
Efstathios Kamperis et al., “A Flash back to radiotherapy's past and then fast forward to the future,” J Cancer Prev Curr Res. 2019;10(6): 142-144. published Nov. 13, 2019, DOI: 10.15406/jcpcr.2019.10.00407. |
Cynthia E. Keen, “Clinical linear accelerator delivers Flash radiotherapy,” Physics World, Apr. 23, 2019, IOP Publishing Ltd, https://physicsworld.com/a/clinical-linear-accelerator-delivers-flash-radiotherapy/. |
Ryosuke Kohno et al., “Development of Continuous Line Scanning System Prototype for Proton Beam Therapy,” International Journal of Particle Therapy, Jul. 11, 2017, vol. 3, Issue 4, p. 429-438, DOI: 10.14338/IJPT-16-00017.1. |
Aafke Christine Kraan, “Range verification methods in particle therapy: underlying physics and Monte Carlo modeling,” Frontiers in Oncology, Jul. 7, 2015, vol. 5, Article 150, 27 pages, doi: 10.3389/fonc.2015.00150. |
M Kramer et al., “Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization,” Physics in Medicine & Biology, 2000, vol. 45, No. 11, pp. 3299-3317, doi: 10.1088/0031-9155/45/11/313. |
R. M. De Kruijff, “Flash radiotherapy: ultra-high dose rates to spare healthy tissue,” International Journal of Radiation Biology, 2020, vol. 96, No. 4, pp. 419-423, published online: Dec. 19, 2019, https://doi.org/10.1080/09553002.2020.1704912. |
Xiaoying Liang et al., “Using Robust Optimization for Skin Flashing in Intensity Modulated Radiation Therapy for Breast Cancer Treatment: A Feasibility Study,” Practical Radiation Oncology, vol. 10, Issue 1, pp. 59-69, published by Elsevier Inc., Oct. 15, 2019. |
A. Lomax, “Intensity modulation methods for proton radiotherapy,” Physics in Medicine & Biology, Jan. 1999, vol. 44, No. 1, pp. 185-205, doi: 10.1088/0031-9155/44/1/014. |
A.J Lomax et al., “Intensity modulated proton therapy: A clinical example,” Medical Physics, vol. 28, Issue 3, Mar. 2001, pp. 317-324, First published: Mar. 9, 2001, https://doi.org/10.1118/1.1350587. |
Bw Loo et al., “Delivery of Ultra-Rapid Flash Radiation Therapy and Demonstration of Normal Tissue Sparing After Abdominal Irradiation of Mice,” International Journal of Radiation Oncology, Biology, Physics, vol. 98, Issue 2, p. E16, Supplement: S Meeting Abstract: P003, published: Jun. 1, 2017, DOI: https://doi.org/10.1016/j.ijrobp.2017.02.101. |
P-H Mackeprang et al., “Assessing dose rate distributions in VMAT plans” (Accepted Version), Accepted Version: https://boris.unibe.ch/92814/8/dose_rate_project_revised_submit.pdf Published Version: 2016, Physics in medicine and biology, 61(8), pp. 3208-3221. Institute of Physics Publishing IOP, published Mar. 29, 2016, https://boris.unibe.ch/92814/. |
Peter G. Maxim et al., “FLASH radiotherapy: Newsflash or flash in the pan?”, Medical Physics, 46 (10), Oct. 2019, pp. 4287-4290, American Association of physicists in Medicine, First Published: Jun. 27, 2019, <https://doi.org/10.1002/mp>. 13685. |
S. E. McGowan et al., “Treatment planning optimisation in proton therapy,” Br J Radiol, 2013, 86, 20120288, The British Institute of Radiology, 12 pages, DOI: 10.1259.bjr.20120288. |
M. McManus et al., “The challenge of ionization chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams,” Sci Rep 10, 9089 (2020), published Jun. 3, 2020, <https://doi.org/10.1038/s41598-020-65819-y>. |
Mevion Medical Systems, “Focus On The Future: Flash Therapy,” Press Releases, Sep. 16, 2019, https://www.mevion.com/newsroom/press-releases/focus-future-flash-therapy. |
P. Montay-Gruel et al., “Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s,” Radiotherapy and Oncology, vol. 124, Issue 3, Sep. 2017, pp. 365-369, Available online May 22, 2017, doi: 10.1016/j.radonc.2017.05.003. |
P. Montay-Gruel et al., “Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species,” PNAS May 28, 2019, vol. 116, No. 22, p. 10943-10951; first published May 16, 2019, https://doi.org/10.1073/pnas.1901777116. |
Paul Morel et al., “Spot weight adaptation for moving target in spot scanning proton therapy,” Frontiers in Oncology, May 28, 2015, vol. 5, Article 119, 7 pages, doi: 10.3389/fonc.2015.00119. |
Wayne D. Newhauser et al., “The physics of proton therapy,” physics in Medicine & Biology, Mar. 24, 2015, 60 R155-R209, Institute of physics and Engineering in Medicine, IOP publishing, doi: 10. 1088/0031-9155/60/8/R155. |
Oncolink Team, “Radiation Therapy: Which type is right for me?”, Oncolink Penn Medicine, last reviewed 3 March 020, Trustees of the University of Pennsylvania, https://www.oncolink.org/cancer-treatment/radiation/introduction-to-radiation-therapy/radiation-therapy-which-type-is-right-for-me. |
Ibrahim Oraiqat et al., “An Ionizing Radiation Acoustic Imaging (iRAI) Technique for Real-Time Dosimetric Measurements for Flash Radiotherapy,” Medical Physics, vol. 47, Issue10, Oct. 2020, pp. 5090-5101, First Published: Jun. 27, 2020, https://doi.org/10.1002/mp.14358. |
Number | Date | Country | |
---|---|---|---|
20230125147 A1 | Apr 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17031699 | Sep 2020 | US |
Child | 18088164 | US | |
Parent | 16294707 | Mar 2019 | US |
Child | 17031699 | US |