1. Field of the Invention
The present invention relates to engine cooling radiators and, more particularly, to heavy duty radiator cores such as for large air compressors, diesel electric generators, and some construction and industrial equipment, which utilize plastic tanks.
2. Description of Related Art
Inlet and outlet tanks for engine cooling radiators have become increasingly designed as ribbed plastic moldings, usually injection molded of Nylon 6-6. This is almost universally true for tanks for automobile radiators, as the use of brazed aluminum radiator cores with plastic tanks has been found to provide significant cost savings over older designs using copper/brass cores with soldered drawn brass tanks. As might be expected, the quest for cost savings has caused the application of plastic tanks to spread to tanks for some radiators for heavy duty applications, such as for large air compressors, diesel electric generators, and some construction and industrial equipment.
Heavy duty radiators are usually larger than automobile radiators, consequently requiring larger tanks. These radiator tanks are usually comprised of a molded plastic attached to tabbed radiator core headers with rubber gaskets and are held in place by crimping the header tabs over a lip, or foot, surrounding the tanks, to provide compression on the gasket. As radiator tanks become larger, forces resulting from internal pressure during operation increase to the point where the tabs can relax, or unbend, losing their grip on the tank foot, releasing compression on the gasket, and allowing coolant leakage. In addition, as radiator tanks become larger, they become more susceptible to bulging and eventual rupture as a result of internal pressure.
A need exists for a system for fastening and retaining plastic tanks to heavy duty radiator cores which assures structural integrity and seal tightness without increasing tank wall thickness.
Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide an improved system for fastening and retaining plastic tanks to heavy duty radiator cores.
It is another object of the present invention to provide a system for fastening and retaining plastic tanks to heavy duty radiator cores which assures structural integrity and seal tightness without significantly increasing tank wall thickness.
A further object of the invention is to provide an improved system for fastening radiator tanks which allows the use of plastic tanks on large radiators, resulting in a cost savings over other designs.
It is yet another object of the present invention to provide an improved system for fastening and retaining plastic tanks to heavy duty radiator cores which provides force, in addition to that of crimped header tabs, to secure and seal a plastic tank to a radiator core header.
It is still yet another object of the present invention to provide a system for fastening plastic tanks to large radiator cores which provides restraint against bulging of the tank top and side walls under internal pressure.
It is still yet another object of the present invention to provide a system for fastening radiator tanks which provides a means in the field to increase gasket compression to eliminate a leak.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
The above and other objects, which will be apparent to those skilled in the art, are achieved in the present invention which is directed to a heat exchanger manifold, comprising a heat exchanger header having a header plate with a periphery, a plurality of tube openings within the header plate portion periphery adapted to connect to tubes of a heat exchanger core, a groove around the periphery of the header plate to receive a foot of a tank, and a fastener base extending inward from the header plate. The manifold further comprises a heat exchanger tank having an opening for mating with the header, a foot extending substantially around a periphery of the opening which is received in the header groove, and a fastener base extending from an inner surface of the tank. A resilient sealing gasket is positioned between the tank foot and the header groove to seal the tank to the header, and a plurality of tabs extending around the periphery of the header are crimped over the tank foot to make the seal between the header groove and the tank foot. A fastener secured between the header plate fastener base and the tank fastener base restricts movement of the tank away from the header during operation to maintain the seal between the header groove and the tank foot.
The fastener may be a threaded fastener and one of the header plate fastener base and the tank fastener base may have an opening complimentarily threaded to receive threads of the fastener. The tank may have a top with an opening therein to permit rotation of the threaded fastener to adjust force applied by the fastener to maintain compression on the seal between the header groove and the tank foot. The tank may be made of a polymer and the tank fastener base may be molded in and of one piece with the tank. The header plate and header plate fastener base may be made of aluminum and may be made of one piece, or may be separate pieces sealingly joined together.
The manifold may further include an opening in an outer surface of the tank at the tank fastener base to permit adjustment of the fastener from the exterior of the tank when tubes of a heat exchanger core are connected to the tube openings within the header plate periphery. The manifold may further include an opening in the tank fastener base to permit passage of one end of the fastener. The fastener may be a threaded fastener having a shoulder bearing against edges of the tank fastener base opening, and the manifold may further include a seal between the fastener shoulder and the opening in the tank fastener base.
The header plate fastener base may have an opening with corresponding internal threads to receive the threads of the fastener and secure it in the base and the fastener may be a threaded fastener having a shoulder bearing against edges of the header plate fastener base opening to provide a set amount of pressure to maintain the seal between the header groove and the tank foot. The tank may be made of a polymer and the tank fastener base may be molded in and of one piece with the tank. The tank may have a length, and the manifold may include a plurality of header plate fastener bases, tank fastener bases and fasteners therebetween spaced along the length of the tank.
In another aspect, the tank may have a top and opposite side walls extending from the top to the foot, and the manifold may further include a cross tie extending between interior surfaces of the tank side walls and restricting movement of the tank side walls away from each other during operation. The manifold may include recesses molded in and of one piece with the tank on interior surfaces of the tank side walls to receive and secure ends of the cross tie. The fastener extends through the cross tie and the cross tie may be secured to the header plate fastener base by the fastener.
The manifold with cross tie extending between interior surfaces of the tank side walls may include an opening in an outer surface of the tank at the tank fastener base to permit adjustment of the fastener from the exterior of the tank when tubes of a heat exchanger core are connected to the tube openings within the header plate periphery. The manifold may further include an opening in the tank fastener base to permit passage of one end of the fastener. The fastener may be a threaded fastener having a shoulder bearing against edges of the tank fastener base opening, and the manifold may further include a seal between the fastener shoulder and the opening in the tank fastener base.
The header plate fastener base may have an opening with corresponding internal threads to receive the threads of the fastener and secure it in the base, and the fastener may be a threaded fastener having a shoulder bearing against edges of the header plate fastener base opening to provide a set amount of pressure to maintain the seal between the header groove and the tank foot. The tank may be made of a polymer and the tank fastener base may be molded in and of one piece with the tank.
The tank may have a length, and the manifold may include a plurality of header plate fastener bases, tank fastener bases, cross ties and fasteners therebetween spaced along the length of the tank.
In yet another aspect, the present invention is directed to a method of sealing a heat exchanger manifold comprising: providing a heat exchanger header having a header plate with a periphery, a plurality of tube openings within the header plate portion periphery adapted to connect to tubes of a heat exchanger core, a groove around the periphery of the header plate to receive a foot of a tank, and a fastener base extending inward from the header plate. The method further includes providing a heat exchanger tank having an opening for mating with the header, a foot extending substantially around a periphery of the opening which is received in the header groove, and a fastener base extending from an inner surface of the tank. A resilient sealing gasket is positioned between the tank foot and the header groove to seal the tank to the header, and a plurality of tabs extending around the periphery of the header are crimped over the tank foot to make the seal between the header groove and the tank foot, and a fastener is provided between the header plate fastener base and the tank fastener base to restrict movement of the tank away from the header during operation to maintain the seal between the header groove and the tank foot. The method further comprises adjusting the fastener between the header plate fastener base and the tank fastener base to maintain the seal between the header groove and the tank foot.
The fastener may be a threaded fastener and one of the header plate fastener base and the tank fastener base may have an opening receiving threads of the fastener, and the tank may have a top with an opening therein to permit rotation of the threaded fastener. The method may comprise adjusting the fastener by rotating the fastener through the tank top opening to adjust force applied by the fastener to maintain compression on the seal between the header groove and the tank foot.
At least one of the header plate fastener base and the tank fastener base may have an edge surrounding the opening and the threaded fastener may have a shoulder bearing against the edge of the opening to provide a set amount of pressure to maintain the seal between the header groove and the tank foot.
The tank may have a top and opposite side walls extending from the top to the foot, and the method may further include providing a cross tie extending between interior surfaces of the tank side walls, the fastener extending through the cross tie, the cross tie restricting movement of the tank side walls away from each other during operation.
The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
In describing the embodiments of the present invention, reference will be made herein to
As used herein, a heat exchanger manifold consists of an inlet or outlet tank for passage of the heat exchanger coolant, a header for attachment to the tubes of a heat exchanger core, and a seal between the tank and header. Typically, the tank may be made of an otherwise conventional molded plastic such as glass-reinforced Nylon 6/6 material, and the header may be made of a metal such as aluminum. Other types of tank and header materials may also be employed. The radiator tank fastening system of the present invention may be used in heavy-duty truck or other motor vehicle heat exchangers and in some construction and industrial equipment, such as in large air compressors and diesel electric generators, or in other heat exchanger applications where strength, vibration resistance and long life are required.
The present invention is directed to a system and method for fastening and retaining plastic tanks to heavy duty radiator cores which assures structural integrity and seal tightness without increasing tank wall thickness. The radiator tank fastening system comprises internal mechanical restraints at critical points inside a large plastic radiator tank to aid in securing the tank to a tabbed radiator core header, to aid in providing compression on the rubber gasket, and to prevent bulging of the tank in at least two directions.
Certain terminology is used herein for convenience only and is not to be taken as a limitation of the invention. For example, words such as “upper,” “lower,” “left,” “right,” “horizontal,” “vertical,” “upward,” and “downward” merely describe the configuration shown in the drawings. For purposes of clarity, the same reference numbers may be used in the drawings to identify similar elements.
Referring now to
Disposed in the bottom of the header groove is a continuous ring-type elastomeric gasket 70. After placing gasket 70 in the bottom of the header groove, tank foot or lip 24 is received over the gasket so that the lower surface 28 of the foot contacts the upper surface of gasket 70. To secure the header to the tank, the tabs 43 are bent inwards so that they contact ridge 23 along the outer portion of the foot top surface 25. Ridge 23 provides a fulcrum for the bending of the retaining header tabs 43 during manifold assembly. As the tabs 43 are crimped over the tank foot 24, the foot lower surface 28 is forced down against the top of elliptical cross section gasket 70 toward the groove bottom surface 46. These forces cause the elliptical gasket to be deformed so that the gasket fills essentially the entire region between the groove walls 42, 44, 46 and the tank foot lower surface 28. Sealing stress is created as the rubber pushes out radially against the constraining surfaces of the foot and the header groove.
The design of the typical plastic radiator tank and header of the prior art, as described above, has several disadvantages as tank size increases. Significantly, as the size of the plastic radiator tank becomes larger, forces resulting from internal pressure in the tank during operation increase to the point where the tabs 43 can relax or unbend, losing their grip on the tank foot or lip 24, releasing compression on the gasket 70, and allowing coolant leakage. In addition, as radiator tanks become larger, they become more susceptible to bulging and eventual rupture as a result of internal pressure.
One embodiment of the radiator tank fastening system of the present invention is shown in
Tank 22 may be comprised of any suitable polymer, such as a molded plastic. In at least one embodiment, tank 22 is comprised of an otherwise conventional molded plastic such as glass-reinforced Nylon 6/6 material. Tank 22 is elongated such that its length (horizontally in
Referring again to
It should be understood by those skilled in the art that the method of sealing the tank to header joint as described above, e.g. attaching a radiator tank to a tabbed radiator core header with rubber gaskets and crimping the header tabs over a foot or lip surrounding the tank to provide compression on the gasket, is only one such method of sealing the tank to header joint and that other known methods in the art may also be used in accordance with the objects of the present invention.
As shown in
To aid in securing the tank to the radiator core header, the fastening system of the present invention includes mechanical restraints at critical points inside the large plastic radiator tank. As depicted in
As shown in
In at least one embodiment, as shown in
For exemplary purposes,
Referring again to
As further depicted in
Thus the present invention achieves one or more of the following advantages. The present invention provides an improved radiator tank fastening system which allows the use of plastic tanks on large radiators without having to significantly increase tank wall thickness, and resulting in a cost savings over other designs. The system provides internal mechanical restraints at critical points inside a large plastic radiator tank to provide force in addition to that of crimped header tabs to secure and seal a plastic tank to a radiator core header. The internal mechanical restraints act to compress the rubber sealing gasket and to, maintain that compression under internal pressure to maintain seal integrity.
The fastening system further provides restraint against bulging of the tank top and side walls under internal pressure, and provides a means in the field to increase gasket compression to eliminate a leak.
While the present invention has been particularly described, in conjunction with specific embodiments, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.
This application claims priority to U.S. Patent Application No. 62/061,736, filed on Oct. 9, 2014.
Number | Name | Date | Kind |
---|---|---|---|
1939034 | Bennett | Dec 1933 | A |
4331201 | Hesse | May 1982 | A |
4401157 | Cadars | Aug 1983 | A |
5311934 | Potier | May 1994 | A |
5535821 | Potier | Jul 1996 | A |
5836384 | Wijkstrom | Nov 1998 | A |
6082446 | Ahaus | Jul 2000 | A |
6675883 | De Keuster | Jan 2004 | B1 |
7234511 | Lesage | Jun 2007 | B1 |
7341098 | Brost | Mar 2008 | B2 |
7640971 | Kolb | Jan 2010 | B2 |
7775266 | Freitag | Aug 2010 | B2 |
9082446 | Choi | Jul 2015 | B2 |
9829252 | Holmes | Nov 2017 | B2 |
20080047687 | Leitch | Feb 2008 | A1 |
20080185134 | Hoehne | Aug 2008 | A1 |
20080223553 | Bergmiller | Sep 2008 | A1 |
20120018135 | Ciaffarafa | Jan 2012 | A1 |
20120247742 | Mizuno | Oct 2012 | A1 |
20130299149 | Riondet | Nov 2013 | A1 |
20160377357 | Riondet | Dec 2016 | A1 |
20170074601 | Bry | Mar 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20160102925 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
62061736 | Oct 2014 | US |