Radio access system for a telematique service

Information

  • Patent Grant
  • 6181953
  • Patent Number
    6,181,953
  • Date Filed
    Monday, March 3, 1997
    27 years ago
  • Date Issued
    Tuesday, January 30, 2001
    23 years ago
Abstract
A radio access system connects a public switched telephone network and a subscriber unit. The subscriber unit includes a first detection part detecting a telematique signal; and a first control part transmitting a detection signal of the telematique signal on a control channel and transmitting the telematique signal on a traffic channel while bypassing a first speech coding-and-decoding part. The radio access system includes a second control part, provided between a radio base station and the public switched telephone network, transmitting the telematique signal on the traffic channel toward the public switched telephone network while bypassing a second speech coding-and-decoding part when the detection signal of the telematique signal is transmitted on the control channel.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention generally relates to a radio access system, and more particularly, to a radio access system for a telematique service which is constructed with subscriber lines from an exchanger to subscribers' premises through radio lines.




2. Description of the Related Art




Recently, for constituting the subscriber line from the exchanger to each subscriber's premise, instead of a wire line such as a copper cable or an optical fiber cable, a radio line system is being used. This system is referred to as a wireless local loop (WLL) system. In the WLL system, an air interface used in mobile communication systems (TDMA system which is used in a personal digital cellular system (PDC) and a personal handy phone system (PHS) in Japan, CDMA system, etc.) is used for a radio line part. Further, for a subscriber terminal, a conventional telephone unit is commonly used through a mobile communication subscriber terminal or a dedicated WLL terminal.




The WLL system is provided for replacing the wire-line system as an access system which accommodates subscribers with rapid service at a low cost. Therefore, for services provided in the WLL system, substantially the same convenience as that of the conventional wire telephone is expected. For example, in the WLL system, telecommunication services except a telephone service (which are referred to as “telematique services”, such as a facsimile service and a personal-computer communication service, the term “telematique” was made in CCITT) need to be carried out with the same protocol and apparatus as those of the conventional telephone.




The WLL system is constructed based on the mobile communication system. However, the WLL system is not a perfect duplicates of the mobile communication system, but has the following differing features.




As the first feature, though the mobile communication system is constructed in a dedicated mobile communication network which is independent from a public switched telephone network (PSTN), the WLL system is constructed as a part of the PSTN. Therefore, the mobile communication system exclusively uses mobile exchangers in the mobile communication network, but the WLL system is connected to a conventional subscriber exchanger in the PSTN.




As the second feature, the mobile communication system supports only dedicated mobile communication subscriber terminals, but the WLL system supports the conventional wire telephone used in the PSTN as well as the mobile communication subscriber terminal.




These two features may be a large disadvantage when the telematique service dealing with a data signal from such as a facsimile machine or a MODEM is carried out in the WLL system.

FIG. 1

shows a basic configuration of the prior-art WLL system.




In

FIG. 1

, a subscriber terminal SU


10


is provided at the subscriber's premise, and has a modular jack so as to be usable as a conventional telephone. The air interface is provided between the SU


10


and a base terminal station BTS


12


. In a speech coding-and-decoding device (CODEC) inside the SU


10


, highly efficient coding and decoding of speech are carried out. A telephone TEL


11


is a conventional wire telephone. The BTS


12


accommodates a plurality of SUs


10


, and converts the air interface and a base station controller (BSC) interface to each other. The BSC


13


accommodates a plurality of BTSs


12


, and has a converting function of a WLL-side interface and a PSTN-side interface. The BSC


13


further has connecting/handing-off/call-processing functions and a monitoring function.




A PSTN


14


is a conventional network, and accommodates the PSTN subscriber telephones TEL


11


and the WLL system through subscriber local exchangers (LEs). The LE


15


is an exchanger for connecting the WLL system to the PSTN, and commonly accommodates the PSTN subscriber telephones.




In the above-discussed configuration of the WLL system, only a speech service is supported. Namely, since the CODEC is provided in the SU


10


and the BSC


13


, the telematique service for such as a facsimile machine cannot be provided.




In the following, before considering the telematique service in the WLL system, how the telematique service in the mobile communication system is carried out will be studied.




In the mobile communication system, the dedicated mobile communication network is provided independent from the PSTN, and is connected to the PSTN through a mobile gate switching system.





FIG. 2

shows a illustration for explaining the telematique service in the mobile communication system. In

FIG. 2

, a portable set PS


20


is connected to a base terminal station BTS


12




a


through an air interface, and has functions of compressing a subscriber speech and supplying the compressed signal to a traffic channel of the radio lines.




A telematique-service adaptor ADP


21


is connected between the PS


20


and one of a FAX


22


and a MODEM (modulator and demodulator) when the telematique data communication using facsimile transmission and reception or the MODEM is carried out. The ADP


21


carries out a converting operation of the MODEM protocol and a disconnecting control of the CODEC in the PS


20


. Therefore, two kinds of ADPs for the facsimile and the MODEM are provided.




The BTS


12




a


establishes radio links with a plurality of PSs


20


, and is connected to a base station controller BSC


23


. The BSC


23


accommodates a plurality of BTSs


12




a,


and has connecting/handing-off/call-processing functions and a monitoring function.




A mobile switching center MSC


24


(which corresponds to the mobile switching system) carries out line connecting and switching operations, and includes an inter-working function IWF


25


. The IWF


25


is a FAX/PC adaptor, and controls conversion of the modem protocol and disconnection of the CODEC. The IWF


25


is operable for both protocols of the facsimile machine and the MODEM.




A mobile gate switching system MGS


26


is located between the mobile communication network and one of another mobile communication network and a PSTN


27


, and carries out an interactive line switching operation. The PSTN


27


accommodates a PSTN subscriber telephone


29


through an LE


28


. Further, the PSTN


27


is connected to the mobile communication network through the MGS


26


.




As discussed above, in the mobile communication system, the IWF


25


is additionally provided in the MSC


24


, and by the subscriber connecting the FAX


22


to the PS


20


through the ADP


21


, a transparent line for the FAX


22


is established between the IWF


25


and the ADP


21


. In this way, the facsimile transmitting-and-receiving operation may be carried out.




In the following, a description will be given of how the telematique service in the WLL system is carried out.





FIG. 3

shows an illustration for explaining a prior-art method of carrying out the telematique service in the WLL system. As shown in

FIG. 3

, in the SU


10


, in addition to the modular jack for connecting the conventional telephone, a dedicated connector for connecting a mobile communication adaptor ADP


31


is provided. Namely, in the SU


10


, the same function as that of the PS


20


may be provided. Therefore, to the SU


10


, both the wire telephone and the ADP


31


may be connected. In this case, for the BSC


13


, the same function as that of the IWF


25


is required.




The above-discussed configuration of the WLL system is one method of carrying out the facsimile transmitting-and-receiving operation in the WLL system. However, at present, a telephone combined with a facsimile (referred to as a facsimile-combined telephone) is in wide commercial use. When the conventional telephone TEL


11


is replaced with the facsimile-combined telephone, the facsimile-combined telephone needs to be connected to the SU


10


through the modular jack interface connection. In this case, the ADP


31


becomes unusable. Therefore, there is a problem in that in the above-discussed configuration of the WLL system, a facsimile function of the facsimile-combined telephone may not be used.




In the above-discussed configuration, when the facsimile function is operated in a speech path of the telephone, since the CODEC for coding and decoding the speech is provided in the speech path, the telematique signal such as a facsimile signal and a MODEM signal is distorted due to the CODEC.




In the same way, since a dual-tone-multi frequency (DTMF) signal produced from a push-button phone is also transmitted through the CODEC, the waveform of the DTMF signal may be distorted. Therefore, there is a problem that in the prior-art WLL system, an airline ticket reservation cannot be carried out due to the DTMF signal on an up-link line being distorted, and reproduction of a stored message in an answer phone cannot be carried out due to the DTMF on a down-link line being distorted.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide a radio access system for a telematique service. In the system, a telematique service may be provided in a wireless local loop system, and a facsimile-combined telephone is also usable. Further, transparent transmission of a DTMF signal on both up-link and down-link lines may be positively performed. Therefore, ticket reservation service using the DTMF signal and remote control of the telephone may be positively carried out. This permits the disadvantages described above to be eliminated.




The object described above is achieved by a radio access system connecting a public switched telephone network and a subscriber unit, the subscriber unit comprising: a first detection part detecting a telematique signal; and a first control part transmitting a detection signal of the telematique signal on a control channel and transmitting the telematique signal on a traffic channel while bypassing a first speech coding-and-decoding part; the radio access system comprising a second control part, provided between a radio base station and the public switched telephone network, transmitting the telematique signal on the traffic channel toward the public switched telephone network while bypassing a second speech coding-and-decoding part when the detection signal of the telematique signal is transmitted on the control channel.




According to the above-discussed radio access system, when the telematique signal such as a facsimile signal or a MODEM signal is transmitted from the subscriber unit to the public switched telephone network, the speech coding-and-decoding part is bypassed, and, thus, the telematique signal may be positively transmitted without being distorted.




The object described above is also achieved by a radio access system connecting a public switched telephone network and a subscriber unit, the radio access system comprising: a second detection part detecting a telematique signal; and a third control part transmitting a detection signal of the telematique signal on a control channel, and transmitting the telematique signal on a traffic channel while bypassing a second speech coding-and-decoding part; wherein the second detection part and the third control part are provided between the public switched telephone network and a radio base station; the subscriber unit comprising a fourth control part transmitting the telematique signal on the traffic channel while bypassing a first speech coding-and-decoding part when the detection signal of the telematique signal is transmitted on the control channel.




According to the above-discussed radio access system, when the telematique signal such as a facsimile signal or a MODEM signal is transmitted from the public switched telephone network to the subscriber unit, the speech coding-and-decoding part is bypassed, and, thus, the telematique signal may be positively transmitted without being distorted.




The object described above is also achieved by the radio access system mentioned above, wherein the second detection part comprises a plurality of detection parts, a number thereof being less than a number of lines between the public switched telephone network and the radio base station.




According to the above-discussed radio access system, the number of lines for communicating the telematique signal is less than the total number of lines. Therefore, the number of the detection parts in the second detection part may be reduced, and, thus, a circuit size of the radio base station is prevented from being enlarged.




The object described above is also achieved by the radio access system mentioned above, wherein each of the subscriber unit and the radio base station comprises a protocol conversion part converting between a communication protocol for the telematique signal and a communication protocol for a telephone signal.




According to the above-discussed radio access system, for the telematique signal, a dedicated communication protocol may be used. Therefore, the telematique signal may be positively transmitted without an error due to fading, etc.




The object described above is also achieved by the radio access system mentioned above, wherein the subscriber unit comprises a subscriber termination device.




According to the above-discussed radio access system, for the subscriber termination device, a conventional facsimile-combined telephone may be used to carry out facsimile transmission and reception.




The object described above is also achieved by the radio access system mentioned above, wherein the subscriber unit comprises a mobile communication subscriber unit.




According to the above-discussed radio access system, when a facsimile machine or a facsimile-combined telephone is connected to the mobile communication subscriber unit through an adaptor, facsimile transmission and reception may be carried out.




The object described above is also achieved by a radio access system connecting a public switched telephone network and a subscriber unit, the subscriber unit comprising: a third detection part detecting a dual-tone multi-frequency (DTMF) signal; and a fifth control part controlling transmission of a detection signal of the DTMF signal on a control channel; the radio access system comprising: a first generation part generating the DTMF signal; and a sixth control part controlling the first generation part to generate the DTMF signal and transmitting the DTMF signal toward the public switched telephone network when the detection signal of the DTMF signal is detected on the control channel; wherein the first generation part and the sixth control part are provided between a radio base station and the public switched telephone network.




According to the above-discussed radio access system, the DTMF signal may be positively transmitted from the subscriber unit to the public switched telephone network without being distorted. Therefore, in the radio access system, by calling a ticket center connected to the public switched telephone network, a ticket reservation may be easily carried out.




The object described above is also achieved by a radio access system connecting a public switched telephone network and a subscriber unit, the radio access system comprising: a fourth detection part detecting a dual-tone multi-frequency (DTMF) signal; and a seventh control part controlling transmission of a detection signal of the DTMF signal on a control channel; wherein the fourth detection part and the seventh control part are provided between a radio base station and the public switched telephone network; the subscriber unit comprising an eighth control part carrying out one of an operation of detecting the DTMF signal when the detection signal of the DTMF signal is transmitted on the control channel and an operation of controlling a second generation part to generate a DTMF signal.




According to the above-discussed radio access system, the DTMF signal may be positively transmitted from the public switched telephone network to the subscriber unit without being distorted. Therefore, in the radio access system, from a telephone connected to the public switched telephone network, a user may remotely reproduce a speech signal stored in an answer phone of a subscriber unit used in a wireless local loop system such as a mobile communication system.




The object described above is also achieved by a radio access system connecting a public switched telephone network and a subscriber unit, the subscriber unit comprising: a third detection part detecting a dual-tone multi-frequency (DTMF) signal; and a ninth control part transmitting a detection signal of the DTMF signal on a control channel and transmitting the DTMF signal on a traffic channel while bypassing a first speech coding-and-decoding part; the radio access system comprising a tenth control part, provided between a radio base station and the public switched telephone network, transmitting the DTMF signal on the traffic channel toward the public switched telephone network while bypassing a second speech coding-and-decoding part when the detection signal of the DTMF signal is transmitted on the control channel.




According to the above-discussed radio access system, the DTMF signal may be positively transmitted from the subscriber unit to the public switched telephone network without being distorted. Therefore, the first generation part of the DTMF signal becomes unnecessary.




The object described above is also achieved by a radio access system connecting a public switched telephone network and a subscriber unit, the radio access system comprising: a fourth detection part detecting a dual-tone multi-frequency (DTMF) signal; and an eleventh control part transmitting a detection signal of the DTMF signal on a control channel and transmitting the DTMF signal on a traffic channel while bypassing a second speech coding-and-decoding part; wherein the fourth detection part and the eleventh control part are provided between a radio base station and the public switched telephone network; the subscriber unit comprising a twelfth control part controlling the DTMF signal transmitted on the traffic channel to bypass a first coding-and-decoding part when the detection signal of the DTMF signal is transmitted on the control channel.




According to the above-discussed radio access system, the DTMF signal may be positively transmitted from the public switched telephone network to the subscriber unit without being distorted. Therefore, the second generation part generating the DTMF signal becomes unnecessary.




The object described above is also achieved by the radio access system mentioned above, wherein the fourth detection part comprises a plurality of detection parts, a number thereof being less than a number of lines between the public switched telephone network and the radio base station.




According to the above-discussed radio access system, the number of lines for communicating the DTMF signal is less than the total number of lines. Therefore, the number of the detection parts in the fourth detection part may be reduced, and, thus, a circuit size of the radio base station is prevented from being enlarged.




The object described above is also achieved by the radio access system mentioned above, wherein the subscriber unit comprises a subscriber termination device.




According to the above-discussed radio access system, by a telephone connected to the subscriber termination device, the DTMF signal may be transmitted without being distorted.




The object described above is also achieved by the radio access system mentioned above, wherein the subscriber unit comprises a mobile communication subscriber unit.




According to the above-discussed radio access system, by the mobile communication subscriber unit, the DTMF signal may be transmitted without being distorted.




Other objects and further features of the present invention will be apparent from the following detailed description when read in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a basic configuration of a prior-art wireless local loop (WLL) system;





FIG. 2

shows a illustration for explaining a telematique service in a mobile communication system;





FIG. 3

shows an illustration for explaining a prior-art method of carrying out a telematique service in the WLL system;





FIG. 4

shows a block diagram of a first embodiment of a radio access system for a telematique service according to the present invention;





FIG. 5

shows a configuration example of a MODEM in a subscriber unit (SU) shown in

FIG. 4

;





FIG. 6

shows an illustration for explaining an operation of a rate conversion part shown in

FIG. 5

;




FIG.


7


A and

FIG. 7B

show illustrations for explaining signal transmission for speech data and MODEM signal data (for example, facsimile data) between the subscriber and a PSTN;





FIG. 8

shows a block diagram of a second embodiment of the radio access system for the telematique service according to the present invention;





FIG. 9

shows a block diagram of a third embodiment of the radio access system for the telematique service according to the present invention;




FIG.


10


A and

FIG. 10B

show signal frame formats of up-link and down-link physical channels used in a PDC system, and

FIG. 10C

to

FIG. 10F

show signal frame formats of physical channels used in a PHS in Japan;





FIG. 11

shows a block diagram of a fourth embodiment of the radio access system for the telematique service according to the present invention;





FIG. 12

shows an illustration for explaining a terminal device in the WLL system;





FIG. 13

shows a block diagram of a fifth embodiment of the radio access system for the telematique service according to the present invention;





FIG. 14

shows an illustration for explaining a configuration example of a sender shown in

FIG. 13

;





FIG. 15

shows a block diagram of a sixth embodiment of the radio access system for the telematique service according to the present invention;




FIG.


16


and

FIG. 17

show configuration examples of a receiver shown in

FIG. 15

;





FIG. 18

shows a flowchart of a first embodiment of a receiver allocating process using a timer;





FIG. 19

shows a flowchart of a second embodiment of the receiver allocating process using the timer;





FIG. 20

shows a block diagram of a base station controller BSC;





FIG. 21

shows a block diagram of a seventh embodiment of the radio access system for the telematique service according to the present invention;





FIG. 22

shows an illustration for explaining a terminal device in the WLL system;





FIG. 23

shows a block diagram of an eighth embodiment of the radio access system for the telematique service according to the present invention;





FIG. 24

shows a block diagram of a ninth embodiment of the radio access system for the telematique service according to the present invention;





FIG. 25

shows a block diagram of a tenth embodiment of the radio access system for the telematique service according to the present invention; and





FIG. 26

shows a block diagram of an eleventh embodiment of the radio access system for the telematique service according to the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




First, a description will be given of a first embodiment of a radio access system for a telematique service according to the present invention, by referring to FIG.


4


.

FIG. 4

shows a block diagram of the first embodiment of the radio access system for the telematique service according to the present invention. In the radio access system shown in

FIG. 4

, a subscriber unit (SU)


40


has functions of connecting subscriber termination devices such as a conventional telephone (TEL)


41


, a facsimile machine (FAX)


42


, and a modulator-and-demodulator (MODEM)


49


.




In the SU


40


shown in

FIG. 4

, a telematique detection part (DET)


44


(constituting a first detection part) detects an answer tone of a facsimile machine or a MODEM, and determines a kind of the transmitted signal in order to produce a telematique detection signal such as a facsimile mode signal or a MODEM mode signal.




A telematique control part (CONT)


45


(constituting first and fourth control parts) receives the telematique detection signal produced from the DET


44


, or receives switching information of a control channel produced from a multiplexing-and-demultiplexing part (MUX/DMUX)


46


, and controls a switching operation of a switching part (SW)


47


.




The MUX/DMUX


46


separates the control channel from a data sequence transmitted from a base station controller (BSC)


60


, and transmits the separated control channel to the CONT


45


. The SW


47


switches between a speech coding-and-decoding part (CODEC)


48


and the MODEM


49


.




The CODEC


48


(constituting a first speech coding-and-decoding part) carries out a highly efficient conversion between speech data and speech codes, and also has functions of converting the speech data into an analog speech signal and converting the analog speech signal into the digital speech data. The MODEM


49


carries out a modulating and demodulating operation during a data communication. A radio frequency part (RF)


50


establishes a link of a radio line with a base terminal station (BTS)


55


.




The BTS


55


establishes radio-line links with a plurality of SUs


40


, and is connected to the BSC


60


. The BSC


60


accommodates a plurality of BTSs, and converts signals between the WLL-side interface and the PSTN-side interface. The BSC


60


is connected to a local subscriber exchanger (LE)


71


.




In the BSC


60


, telematique detection and modulation-demodulation parts (DETMODs)


61




1


to


61




n


(constituting a second detection part) detect an answer tone from the facsimile machine, the MODEM, etc., and discriminate the signal mode to transmit a telematique detection signal such as a FAX mode signal or a MODEM mode signal. Further, the DETMODs


61




1


to


61




n


are connected to a line switching part (DSM)


63


to modulate and demodulate data signals in a data communication.




A telematique control part (CONT)


62


(constituting second and third control parts) receives the telematique detection signal and controls a switch part (SW)


65


. Further, the CONT


62


transmits the telematique detection signal to a multiplexer/demultiplexer (MUX/DEMUX)


64


. The MUX/DEMUX


64


multiplexes the telematique detection signal on a control channel to transmit to the SU


40


.




The SW


65


connects or disconnects a speech coder-and-decoder (CODEC)


66


on a path between the DSM


63


and the MUX/DEMUX


64


. The CODEC


66


(constituting a second speech coding-and-decoding part) converts between the speech data and a highly efficient speech code. The DSM


63


allocates a line to the WLL system and transits the timeslots, and further connects or disconnects the DETMODs


61




1


to


61




n


.




The PSTN


70


is a conventional network, and accommodates a PSTN telephone (TEL)


73


and the WLL system through the LE


74


. In the WLL system constructed with the above-discussed devices, the subscriber connects the FAX


42


and the MODEM


49


to the SU


40


, and carries out transmitting-and-receiving operations and a personal computer communication with another subscriber in the PSTN


70


.




In the following, a description will be given of an operation of the MODEM


49


in the SU


40


.





FIG. 5

shows a configuration example of the MODEM


49


in the SU


40


shown in FIG.


4


. In the following WLL system configuration, for example, the 3.4-kHz-bandwidth speech produced from the TEL


41


is converted to 32-kbps data in the CODEC


48


, and the FAX


42


produces a 9.6-kbps modulated signal which also has a 3.4-kHz bandwidth. Further, when a radio frequency signal is transmitted from the SU


40


to the BTS


55


, the 32-kbps data is multiplexed on the radio frequency. Therefore, when the FAX


42


is used, the 9.6-kbps modulated signal has to be converted to the 32-kbps data in order to be multiplexed on the radio frequency. The above-discussed operation is shown in FIG.


5


.




In

FIG. 5

, the MODEM


49


is constructed with a MODEM part


49


-


1


and a rate conversion part


49


-


2


. When the FAX


42


is used, the 9.6-kbps modulated signal which has the 3.4-kHz bandwidth is demodulated to produce a 9.6-kbps baseband signal by the MODEM part


49


-


1


. The 9.6-kbps baseband signal is converted to the 32-kbps data to be multiplexed on the radio frequency in the rate conversion part


49


-


2


.




In the above description, the FAX


42


is used. In general, the facsimile machine includes a modem converting facsimile data into a 3.4-kHz bandwidth telephone line signal. Therefore, instead of the FAX


42


, a device including the modem such as a personal computer may be also used. The modem included in the facsimile machine and the personal computer is internationally standardized, as, for example, V22, V22bis, V32, etc. For also the MODEM part


49


-


1


in the MODEM


49


, such a modem may be used.





FIG. 6

shows an illustration for explaining an operation of the rate conversion part


49


-


2


shown in FIG.


5


. For a converting operation, for example, as shown in

FIG. 6

, the 9.6-kbps signal from the MODEM part


49


-


1


is clocked by a 32-kHz clock to produce the 32-kbps data.




In the above-discussed operation of the MODEM


49


, for an operation from the BTS to the subscriber, the reverse operation may be carried out. Further, each of the DETMODs


61




1


to


61




n


in the BSC


60


may include a MODEM having the same configuration as that of the MODEM


49


.




FIG.


7


A and

FIG. 7B

show illustrations for explaining signal transmission for the speech data and the MODEM signal data (facsimile data) between the subscriber and the PSTN. In

FIG. 7A

, the 3.4-kHz-bandwidth analog speech signal produced from the telephone is converted to the digital 32-kbps speech data in the CODEC, and is multiplexed on the radio frequency to be transmitted to the base terminal station (BTS). In the base station controller (BSC), the digital 32-kbps speech data demultiplexed from the radio frequency is converted to the 3.4-kHz-bandwidth analog speech signal, and is transmitted to the PSTN. In this case, in the same way, the analog speech signal transmitted from the PSTN is also converted and transmitted to the subscriber.




In

FIG. 7B

, the 9.6-kbps MODEM signal having the 3.4-kHz bandwidth produced from, for example, the facsimile machine, is converted to the digital 32-kbps data in the MODEM, and is multiplexed on the radio frequency to be transmitted to the BTS. In the DETMODs of the BSC, the digital 32-kbps speech data demultiplexed from the radio frequency is converted to the 9.6-kbps MODEM signal having the 3.4-kHz bandwidth, and is transmitted to the PSTN. In this case, in the same way, the 9.6-kbps MODEM signal transmitted from the PSTN is also converted and transmitted to the subscriber.




In the following, a detailed sequence of transmitting the facsimile data from the FAX


42


in the SU


40


to a FAX


72


in the PSTN


70


will be given.




(1) A user of the FAX


42


in the SU


40


calls from the FAX


42


or the TEL


41


;




(2) The FAX


72


in the PSTN


70


automatically respond;




(3) A conventional speech call line is established between the FAX


42


and the FAX


72


;




(4) A receive-side facsimile machine, namely the FAX


72


in the PSTN


70


transmits a FAX acknowledge signal;




(5) The DETMOD (for example,


61




1


) for the connection line in the BSC


60


detects the FAX acknowledge signal, and transmits a FAX mode signal to the CONT


62


in the BSC


60


;




(6) Further, the DETMOD (for example,


61




1


) for the connection line in the BSC


60


starts up a MODEM function, and prepares to modulate and demodulate the data signal in the line;




(7) In response to the FAX mode signal, the CONT


62


controls the SW


65


so as to bypass the CODEC


66


, and multiplexes the FAX mode signal on the control channel in the MUX/DEMUX


64


to transmit to the SU


40


;




(8) The SU


40


demultiplexes the FAX mode signal from the control channel in the MUX/DMUX


46


, and transmits the signal to the CONT


45


; and




(9) The CONT


45


controls the SW


47


to switch from the CODEC


48


to the MODEM


49


.




In the case where the facsimile data is transmitted from the FAX


72


in the PSTN


70


to the FAX


42


in the SU


40


, the detailed sequence will be given as follows:




(1) A user of the FAX


72


in the PSTN


70


calls from the FAX


72


or the TEL


73


;




(2) The FAX


42


in the SU


40


automatically respond;




(3) A conventional speech call line is established between the FAX


72


and the FAX


42


;




(4) A receive-side facsimile machine, namely the FAX


42


in the SU


40


transmits a FAX acknowledge signal;




(5) The DET


44


in the SU


40


detects the FAX acknowledge signal, and transmits a FAX mode signal to the CONT


45


in the SU


40


;




(6) In response to the FAX mode signal, the CONT


45


controls the SW


47


so as to switch from the CODEC


48


to the MODEM


49


, and multiplexes the FAX mode signal on the control channel in the MUX/DEMUX


46


to transmit to the BSC


60


;




(7) The BSC


60


demultiplexes the FAX mode signal from the control channel in the MUX/DMUX


64


, and transmits the signal to the CONT


62


; and




(8) The CONT


62


controls the SW


65


so as to bypass the CODEC


66


, and starts up and connects the DETMOD (for example,


61




1


) for the connection line.




In the above-discussed sequences, by bypassing the CODECs


48


,


66


provided in the SU


40


and the BSC


60


, a clear line, through which the FAX signal may be transmitted without being distorted, is established between the FAX


42


in the SU


40


and the FAX


72


in the PSTN


70


. As a result, when FAX transmission is carried out from either the SU


40


or the PSTN


70


, the FAX transmission and reception may be easily carried out by the conventional sequence used in the facsimile communication. Namely, also in the WLL system, when using the facsimile-combined telephone, the facsimile transmission and reception may be easily carried out.




In the WLL system, when the system is constructed, radio path design is carried out so as to minimize influences such as fading and shadowing. In this system, since a location of the SU


40


is fixed, there is no influence of Rayleigh fading. Therefore, there is substantially no need for changing a protocol in the radio path, but it is possible to prepare a function of the changing protocol.




Next, a description will be given of a second embodiment of the radio access system for the telematique service according to the present invention, by referring to FIG.


8


.

FIG. 8

shows a block diagram of the second embodiment of the radio access system for the telematique service according to the present invention. The second embodiment of the radio access system has a function of changing protocol in the radio path.




Different from the first embodiment shown in

FIG. 4

, in the SU


40


, instead of the MODEM


49


, a modem protocol conversion part having a MODEM function (MPC)


51


is provided for converting between the protocol for the FAX and the MODEM and the protocol for the radio path. In the BSC


60


, instead of the DETMODs


61




1


to


61




n


, DETMPCs


67




1


to


67




n


having the MODEM function and the MPC function are provided for converting between the protocol for the FAX and the MODEM and the protocol for the radio path. For the protocol for the radio path, for example, WORM-ARQ is used. In the WORM-ARQ, a selective repeat method (SR) and a go-back-N method (GBN) are switched with each other according to transmission quality in the radio path.




In a case where the facsimile data is transmitted from the FAX


42


in the SU


40


to the FAX


72


in the PSTN


70


, the transmission sequence will given as follows:




(1) A user of the FAX


42


in the SU


40


calls from the FAX


42


or the TEL


41


;




(2) The FAX


72


in the PSTN


70


automatically responses;




(3) A conventional speech call line is established between the FAX


42


and the FAX


72


;




(4) A receive-side facsimile machine, namely the FAX


72


in the PSTN


70


transmits a FAX acknowledge signal;




(5) The DETMPC (for example,


67




1


) for the connection line in the BSC


60


detects the FAX acknowledge signal, and transmits a FAX mode signal to the CONT


62


in the BSC


60


;




(6) Further, the DETMPC (for example,


67




1


) for the connection line in the BSC


60


starts up a MPC function, and prepares to terminate the radio FAX interface in the line;




(7) In response to the FAX mode signal, the CONT


62


controls the SW


65


so as to bypass the CODEC


66


, and multiplexes the FAX mode signal on the control channel in the MUX/DEMUX


64


to transmit to the SU


40


;




(8) The MUX/DMUX


46


in the SU


40


demultiplexes the FAX mode signal from the control channel, and transmits the signal to the CONT


45


; and




(9) The CONT


45


controls the SW


47


to bypass the CODEC


48


.




In the case where the facsimile data is transmitted from the FAX


72


in the PSTN


70


to the FAX


42


in the SU


40


, the detailed sequence will be given as follows:




(1) A user of the FAX


72


in the PSTN


70


calls from the FAX


72


or the TEL


73


;




(2) The FAX


42


in the SU


40


automatically responses;




(3) A conventional speech call line is established between the FAX


72


and the FAX


42


;




(4) A receive-side facsimile machine, namely the FAX


42


in the SU


40


transmits a FAX acknowledge signal;




(5) The DET


44


in the SU


40


detects the FAX acknowledge signal, and transmits a FAX mode signal to the CONT


45


in the SU


40


;




(6) In response to the FAX mode signal, the CONT


45


controls the SW


47


so as to bypass the CODEC


48


and to pass through the MPC


51


, and multiplexes the FAX mode signal on the control channel in the MUX/DEMUX


46


to transmit to the BSC


60


;




(7) The MUX/DEMUX


64


in the BSC


60


demultiplexes the FAX mode signal from the control channel, and transmits the signal to the CONT


62


; and




(8) The CONT


62


controls the SW


65


so as to bypass the CODEC


66


.




In the above-discussed sequences, by bypassing the CODECs


48


,


66


provided in the SU


40


and the BSC


60


, the modem protocol is converted in the radio path, and, thus, an errorless line, through which the FAX signal may be transmitted without being distorted, is established between the FAX


42


in the SU


40


and the FAX


72


in the PSTN


70


. As a result, when FAX transmission is carried out from either the SU


40


or the PSTN


70


, the FAX transmission and reception may be easily carried out by the conventional sequence used in the facsimile communication. Namely, also in the WLL system, when using the facsimile-combined telephone, the facsimile transmission and reception may be easily carried out.




Further, in the WLL system, for the subscriber's terminal device, a terminal device (for example, a portable telephone set) for the mobile communication is also usable.




Next, a description will be given of a third embodiment of the radio access system for the telematique service according to the present invention, by referring to FIG.


9


.

FIG. 9

shows a block diagram of the third embodiment of the radio access system for the telematique service according to the present invention. In the third embodiment of the radio access system, a subscriber's terminal (portable set: PS)


80


for the mobile communication is used instead of the SU


40


in the WLL system.




In the PS


80


shown in

FIG. 9

, a speech coding-and-decoding part (CODEC)


81


converts between the speech data and the highly efficient speech codes, and has both functions of converting the speech data to the analog speech signal and converting the analog speech signal to the digital speech data. To the CODEC


81


, a microphone


82


and a speaker


83


are connected.




A time division multiple access (TDMA) processing part


84


multiplexes-and-demultiplexes the speech data on-and-from time slots of the TDMA system. A modulation-and-demodulation part


85


carries out a modulation-and-demodulation operation on an air interface. A radio frequency (RF) part


86


establishes a radio path link with the BTS


55


. A control part (CONT)


87


is connected to the TDMA processing part


84


, and controls the whole operation of the PS


80


. To the CONT


87


, key pads


88


for an input operation and a liquid crystal display (LCD)


89


for an output display are connected.




Further, a FAX adaptor (ADP)


90


is connected between the PS


80


and a FAX


95


, when the facsimile transmission and reception is carried out. A MODEM


91


provided inside of the ADP


90


is connected to the TDMA processing part


84


inside of the PS


80


, and has modulating and demodulating functions when the data communication is held. The CONT


87


, when the ADP


90


is connected to the PS


80


, disconnects the CODEC


81


from the TDMA processing part


84


. An interface part


92


is connected to the FAX


95


, and interfaces between the MODEM


91


and the FAX


95


.




The BTS


55


establishes radio-line links with a plurality of subscribers, and is connected to the BSC


60


. The BSC


60


accommodates a plurality of BTSs


55


, and converts between the WLL-side interface and the PSTN-side interface. The BSC


60


is connected to the local subscriber exchanger (LE)


71


.




In the BSC


60


, the telematique detection and modulation-demodulation parts (DETMODs)


61




1


to


61




n


detect an answer tone from the facsimile, the MODEM, etc., and discriminate the signal mode to transmit a telematique detection signal such as a FAX mode signal and a MODEM mode signal. Further, the DETMODs


61




1


to


61




n


are connected to the line switching part (DSM)


63


to modulate and demodulate the data signal in the data communication.




The telematique control part (CONT)


62


receives the telematique detection signal and controls the switch part (SW)


65


. Further, the CONT


62


transmits the telematique detection signal to the multiplexer/demultiplexer (MUX/DEMUX)


64


. The MUX/DEMUX


64


multiplexes the telematique detection signal on the control channel to transmit to the subscriber.




The SW


65


connects or disconnects the speech coder-and-decoder (CODEC)


66


on the path between the DSM


63


and the MUX/DEMUX


64


. The CODEC


66


converts between the speech data and the highly efficient speech codes. The DSM


63


allocates the line to the WLL system and transits the timeslots, and further connects or disconnects the DETMODs


61




1


to


61




n


.




The PSTN


70


is the conventional network, and accommodates the PSTN telephone (TEL)


73


and the WLL system through the LE


74


. In the WLL system constructed with the above-discussed devices, the subscriber connects the FAX


42


and the MODEM to the subscriber, and carries out transmitting-and-receiving operations and the personal computer communication with another subscriber in the PSTN


70


.




In the third embodiment, even when the telematique detection signal is produced from either the BSC


60


or the subscriber, the telematique detection signal is transmitted on the control channel. In this embodiment, for the control channel, a control channel in signal slots defined in mobile communication standards such as PHS and PDC in Japan, and a CDMA system may be used. The control channel is not limited to a fixed control channel, but a traffic channel may be also used for the control channel.




In the following, a description will be given of a case where the PS in the PDC system in Japan is used.




FIG.


10


A and

FIG. 10B

, show signal frame formats of up-link and down-link physical channels used in the PDC system, and

FIG. 10C

to

FIG. 10F

show signal frame formats of physical channels used in the PHS in Japan.




In FIG.


10


A and

FIG. 10B

, for communicating speech data, etc., traffic channels (TCHs) are used, but as necessary, the TCHs are used as fast associated control channels (FACCHs) F


1


to F


4


for transmitting control data. Further, in these signal frame formats, slow associated control channels (SACCHs) S


1


, S


2


are also used for transmitting the control data. Therefore, in this embodiment, the FACCHs F


1


to F


4


(which are usually used as the traffic channels) and the SACCHs S


1


, S


2


may be used for transmitting the telematique detection signal.




In the case where the portable radio set in the PHS is used for the PS


80


shown in

FIG. 9

, channels shown in

FIG. 10C

to

FIG. 10F

may be used for transmitting the telematique detection signal.

FIG. 10C

to

FIG. 10E

show signal frame formats of control physical channels. In FIG.


10


C and

FIG. 10D

, signaling control channels (SCCHs) may be also used, and in

FIG. 10E

, a broadcast control channel (BCCH) or a paging channel (PCH) may be used. Further,

FIG. 10F

shows an up-link and down-link traffic physical channel format. In

FIG. 10F

, an FACCH D


1


(which is usually used as the traffic channel (TCH)) and an SACCH S


3


may be used for transmitting the telematique detection signal.




In the following, a transmission sequence will be given of a case where the FAX


95


is connected to the PS


80


, and the facsimile data is transmitted from the FAX


95


to the FAX


72


in the PSTN


70


.




(1) A user of the PS


80


connects the FAX


95


and the ADP


90


to the PS


80


for the FAX transmission and reception;




(2) When the PS


80


detects the connection of the ADP


90


, the PS


80


bypasses the CODEC


81


in the PS


80


and connects the ADP


90


to the TDMA processing part


84


;




(3) Further, the CONT


87


of the PS


80


transmits a FAX mode signal to the BSC


60


. The FAX mode signal may be transmitted with location information which is generally transmitted to the BTS


55


by the PS


80


being in a standby state. Also, the FAX mode signal may be transmitted when the PS


80


transmits a call request.




(4) The MUX/DEMUX


64


demultiplexes the FAX mode signal transmitted from the PS


80


, and transmits the signal to the CONT


62


; and




(5) The CONT


62


controls the SW


65


so as to bypass the CODEC


66


, and starts up the DETMOD (for example,


61




1


) corresponding to the connection line to establish a connection link.




In the above-discussed sequences, by bypassing the CODECs


81


,


66


provided in the PS


80


and the BSC


60


, a clear line, through which the FAX signal may be transmitted without being distorted, is established between the FAX


95


in the PS


80


and the FAX


72


in the PSTN


70


. As a result, when FAX transmission is carried out from either the PS


80


or the PSTN


70


, the FAX transmission and reception may be easily carried out by the conventional sequence used in the facsimile communication. Namely, also in the WLL system, the facsimile transmission and reception may be easily carried out.




Next, a description will be given of a fourth embodiment of the radio access system for the telematique service according to the present invention, by referring to FIG.


11


.

FIG. 11

shows a block diagram of the fourth embodiment of the radio access system for the telematique service according to the present invention. In order to prevent an error from occurring in the radio path, it is preferred that the modem protocol in the PSTN is changed only in the radio path. In this case, as shown in

FIG. 11

, instead of the MODEM


91


in the ADP


90


, an MPC


93


is used. The MPC


93


has a function of converting between a standard FAX interface in the PSTN and a dedicated radio FAX interface in the radio path, and a MODEM function. Further, in the BSC


60


, instead of the DETMODs


61




1


to


61




n


, the DETMPCs


67




1


to


67




n


having the MODEM function and the MPC function are provided.




In the following, a description will be given of the FAX transmission-and-reception sequence in the above-discussed system.




(1) A user of the PS


80


connects the FAX


95


and the ADP


90


to the PS


80


for the FAX transmission and reception;




(2) When the PS


80


detects the connection of the ADP


90


, the PS


80


bypasses the CODEC


81


in the PS


80


;




(3) Further, the PS


80


transmits a FAX mode signal to the BSC


60


. The FAX mode signal may be transmitted with location information which is generally transmitted to the BTS


55


by the PS


80


being in a standby state. Also, the FAX mode signal may be transmitted when the PS


80


transmits a call request.




(4) The MUX/DEMUX


64


demultiplexes the FAX mode signal transmitted from the PS


80


, and transmits the signal to the CONT


62


;




(5) Further, the BSC


60


starts up the DETMPC (for example,


67




1


) corresponding to the connection line to terminate the radio FAX interface in the connection line; and




(6) The CONT


62


controls the SW


65


so as to bypass the CODEC


66


.




In the above-discussed sequences, by bypassing the CODECs


81


,


66


provided in the PS


80


and the BSC


60


, the modem protocol is converted in the radio path, and, thus, an errorless line, through which the FAX signal may be transmitted without being distorted, is established between the FAX


95


in the PS


80


and the FAX


72


in the PSTN


70


. As a result, when FAX transmission is carried out from either the PS


80


or the PSTN


70


, the FAX transmission and reception may be easily carried out by the conventional sequence used in the facsimile communication. Namely, also in the WLL system, the facsimile transmission and reception may be easily carried out.




In the above-discussed embodiments, the transmission sequences with respect to the facsimile data have been given. Also with respect to modem data (for example, modem data for a personal computer communication), in the same way, the data transmission and reception may be carried out.




In general, a number of lines for the telematique communication is less than a number of lines for the telephone communication. Therefore, in

FIG. 4

,

FIG. 8

, and

FIG. 9

, it is preferred that a number of the DETMODs


61




1


to


61




n


and a number of the DETMPCs


67




1


to


67




n


are less than a number of connection lines to which the DSM


63


is connected. Accordingly, the DETMODs


61




1


to


61




n


and the DETMPCs


67




1


to


67




n


may be efficiently used.




Next, a description will be given of a fifth embodiment of the radio access system for the telematique service according to the present invention, by referring to FIG.


12


and FIG.


13


.

FIG. 12

shows an illustration for explaining a terminal device in the WLL system, and

FIG. 13

shows a block diagram of the fifth embodiment of the radio access system for the telematique service according to the present invention. In the fifth embodiment, a DTMF signal may be positively transmitted and received using the PS.




In

FIG. 12

, a portable set (PS)


100


is provided in the subscriber's premise. In the following, a description will be given of sequences in a case where the DTMF signal is transmitted on the up-link radio line when, for example, reserving an airline ticket, by referring to FIG.


13


.




In

FIG. 13

, first a user calls from the PS


100


to a ticket reservation center through the PSTN. After a communication link is established, numeric keys “0” to “9”, “*”, and “#” are operated for the ticket reservation. At this time, speech data passed through a CODEC


101


is transmitted to a BTS


110


on a traffic channel, is provided to a switching part (SW)


131


in a BSC


130


through a CODEC


121


in speech processing equipment (SPE)


120


, and is transmitted from the SW


131


to the LE in the PSTN.




On the other hand, operating information of the numeric keys is transmitted as a control command on a control channel to a CPU


132


in the BSC


130


through a BTS


110


and the SPE


120


. The SPE


120


is constructed with the CODEC


121


which is separated from the BSC


130


. The operating information on the control channel is not passed through the CODEC


121


.




When the CPU


132


(constituting sixth and seventh control parts) receives the control command on the control channel, the CPU


132


controls a sender


133


(constituting a first generation part) to generate the DTMF signal indicated by the control command. The DTMF signal generated in the sender


133


is inserted into speech data (In-Band) in a switching part (SW)


131


, and is transmitted toward the LE in the PSTN.





FIG. 14

shows an illustration for explaining a configuration example of the sender


133


shown in FIG.


13


. As shown in

FIG. 14

, the sender


133


shown in

FIG. 13

may have a plurality of senders corresponding to all channels between the BSC


130


and the LE. However, since in practical use, transmission of the DTMF signal is not simultaneously carried out on all channels, a number of the senders which may be provided is approximately one tenth of the number of usable channels.




Next, a description will be given of a sixth embodiment of the radio access system for the telematique service according to the present invention, by referring to FIG.


15


.

FIG. 15

shows a block diagram of the sixth embodiment of the radio access system for the telematique service according to the present invention.




In the following, a description will be given of sequences in a case where the DTMF signal is transmitted on the down-link radio line when, for example, remote-controlling the PS to reproduce a speech signal stored in an answer phone.




In

FIG. 15

, first a user calls the PS


100


through the PSTN. After a communication link is established, numeric keys are operated for reproducing the speech signal stored in the answer phone PS. At this time, in general, the speech data is provided from the LE in the PSTN to the SW


131


in the BSC


130


, and is provided from the SW


131


to a receiver


134


(constituting a fourth detection part). Subsequently, the speech data is coded by the CODEC


121


in the SPE


120


, and is transmitted from the BTS


110


to the PS


100


. Coded speech data thus received is decoded by the CODEC


101


in the PS


100


, and is produced from a speaker as an analog speech signal.




On the other hand, when the DTMF signal inserted into the normal speech data is provided from the SW


131


to the receiver


134


, the DTMF signal is detected by the receiver


134


. The receiver


134


informs detection of the DTMF signal to the CPU


132


. The CPU


132


transmits a DTMF message from the SW


131


to the PS


100


through the SPE


120


and the BTS


110


on the control channel. At this time, the signal on the control channel does not pass through the CODEC


121


in the SPE


120


and the CODEC


101


in the PS


100


. Finally, in the CONT of the PS


100


, the DTMF message is detected, and the stored speech signal is reproduced.




In this way, between the PS


100


and the LE in the PSTN connected to the BSC


130


, the DTMF signal may be positively transmitted without being distorted due to the CODEC. As a result, for example, the ticket reservation and the remote control operation of the answer phone may be easily carried out in the WLL system.




FIG.


16


and

FIG. 17

show configuration examples of the receiver


134


shown in FIG.


15


. In

FIG. 16

, the receiver


134


having a plurality of receiver parts is provided with all channel signals connected to the SW


131


, and detects the DTMF signal for each channel to inform a detection result to the CPU


132


. In

FIG. 17

, instead of providing the receiver


134


corresponding to all channels, one of the channels connected to the SW


131


is selected by a selector (SEL)


140


, and is provided to the single receiver


134


. This is referred to as a poling function. Further, the receivers whose number is determined by a traffic condition may be provided.





FIG. 18

shows a flowchart of a first embodiment of a receiver allocating process using a timer. The process is carried out for each receiver. In

FIG. 18

, in step S


2


, a receiver is allocated to a channel on a connected line, and in step S


4


, a timer corresponding to the receiver starts.




In step S


6


, on the channel to which the receiver is allocated, whether the DTMF signal is provided or not is detected. When the DTMF signal is detected, in step S


8


, the DTMF message is transmitted from the CPU


132


. After that, in step S


10


, the timer is reset to an initial value to be restarted, and the process proceeds to step S


6


.




On the other hand, if the DTMF signal is not detected in the step S


6


, in step S


12


, whether the timer is timed out or not is detected. When the timer is not yet timed out, the process proceeds to the step S


6


. When the timer is timed out, the process proceeds to step S


14


, allocation of the receiver to the corresponding channel is released, and the process is finished. Then, the same receiver is allocated to another channel on a connected line.





FIG. 19

shows a flowchart of a second embodiment of the receiver allocating process using the timer. The process is carried out for each receiver. In

FIG. 19

, in step S


22


, a receiver is allocated to a channel on a connected line, and in step S


24


, a timer corresponding to the receiver starts.




In step S


26


, on the channel to which the receiver is allocated, whether the DTMF signal is provided or not is detected. When the DTMF signal is detected, in step S


28


, the DTMF message is transmitted from the CPU


132


. After that, in step S


30


, whether the DTMF signal is provided or not is detected. When the DTMF signal is detected, the process proceeds to step S


28


. When the DTMF signal is not detected, the step S


30


is repeated.




On the other hand, in the step S


26


, when the DTMF signal is not detected, in step S


32


, whether the timer is timed out or not is detected. When the timer is not yet timed out, the process proceeds to the step S


26


. When the timer is timed out, the process proceeds to step S


34


, allocation of the receiver to the corresponding channel is released, and the process is finished. Then, the same receiver is allocated to another channel on a connected line.





FIG. 20

shows a block diagram of the BSC


130


. In

FIG. 20

, digital terminals in a speech processing system (DTs)


136




1


to


136




n


are respectively connected to lines to/from the base terminal stations. The DTs


136




1


to


136




n


are connected to the SW


131


through a digital terminal common part (DTC)


135


which carries out multiplexing-and-demultiplexing operations for the lines. Each of DTs


138




1


to


138




m


is connected to a line to/from the local subscriber exchanger (LE) in the PSTN. The DTs


138




1


to


138




m


are connected to the SW


131


through a digital terminal common part (DTC)


137


which carries out multiplexing-and-demultiplexing operations for the lines.




The SW


131


has a time switch function, and carries out a process of changing time slots provided from the DTCs


135


,


137


. To the SW


131


, the central processing unit (CPU)


132


, the sender


133


, and the receiver


134


are connected. The CPU


132


analyzes a message and a command provided from the BTS and the LE, and generates a message and a command to be provided to the BTS and the LE. Further, the CPU


132


controls the SW


131


. The sender


133


generates the DTMF signal under the control of the CPU


132


, and provides the signal to a given line channel of the SW


131


. The receiver


134


detects the DTMF signal transmitted through a line channel provided from the SW


131


, and informs the CPU


132


of the detection of the DTMF signal.




Next, a description will be given of a seventh embodiment of the radio access system for the telematique service according to the present invention, by referring to FIG.


21


.

FIG. 21

shows a block diagram of the seventh embodiment of the radio access system for the telematique service according to the present invention. In the seventh embodiment, the DTMF signal may be positively transmitted from the PSTN side to the PS side.




In

FIG. 21

, speech data provided from the LE in the PSTN to the SW


131


in the BSC


130


is transmitted to the SPE


120


from the SW


131


on, for example, 64-kbps fast traffic channel. Also, the speech data is provided from the SW


131


to the receiver


134


to detect the DTMF signal. When the DTMF signal is detected, the receiver


134


informs the CPU


132


and a character converter


142


of the detection of the DTMF signal. The character converter


142


converts the DTMF signal to character data, and transmits the character data to the SPE


120


on, for example, an 11.2-kbps low-rate traffic channel. In response to the information of the DTMF signal detection, the CPU


132


generates a control command, and transmits the control command on a control channel to the SPE


120


.




In the SPE


120


, the fast traffic channel is speech-coded by the CODEC


121


, for example, is converted to an 11.2-kbps low-rate traffic channel, and is provided to the SEL


122


. On the other hand, the low-rate traffic channel transmitting the character data is provided to the SEL


122


without passing through the CODEC


121


. In general, the SEL


122


selects the traffic channel from the CODEC


121


according to the control command on the control channel. When the DTMF signal is transmitted, the SEL


122


selects the traffic channel transmitting the character data of the DTMF signal produced from the character converter


142


. The selected traffic channel with the control channel is transmitted to the PS


100


through the BTS


110


.




In the PS


100


, the traffic channel is provided to the CODEC


101


and a character converter


102


. The CODEC


101


decodes the speech data to, for example, 64-kbps speech data, and provides it to a selector (SEL)


104


. When the character converter


102


detects the character data of the DTMF signal, the character converter


102


informs detection of the DTMF signal to a sender


103


(constituting a second generation part). The sender


103


generates speech data of the DTMF signal corresponding to the character, and provides the speech data to the SEL


104


.




When a CPU


105


(constituting an eighth control part) receives a control command of the control channel transmitted from the BTS


110


, the CPU


105


allows the character converter


102


to operate, and controls the SEL


104


to switch. Thus, in a normal state, the SEL


104


selects the speech data from the CODEC


101


, and when the DTMF signal is transmitted, the SEL


104


selects the speech data of the DTMF signal. The selected speech data is provided to a digital to analog converter (D/A converter)


106


. In the D/A converter


106


, the speech data is converted to an analog speech signal, and is provided to a speaker


107


.




Next, a description will be given of an eighth embodiment of the radio access system for the telematique service according to the present invention, by referring to FIG.


22


and FIG.


23


.

FIG. 22

shows an illustration for explaining a terminal device in the WLL system, and

FIG. 23

shows a block diagram of the eighth embodiment of the radio access system for the telematique service according to the present invention.




In

FIG. 22

, a subscriber unit (SU)


150


is provided in the subscriber's premise. To the SU


150


, a telephone (TEL)


160


, a facsimile (FAX)


161


, etc., are connected.




In the following, a description will be given of sequences in a case where the DTMF signal is transmitted from the TEL


160


to the up-link radio line, by referring to FIG.


23


.




In

FIG. 23

, a speech signal produced from the TEL


160


is provided to a CODEC


151


and a receiver


152


in the SU


150


. The CODEC


151


carries out a speech coding to generate speech data. The speech data is transmitted to the BTS


110


on a traffic channel, is provided to the SW


131


in the BSC


130


through the CODEC


121


, and is transmitted from the SW


131


toward the LE in the PSTN. When the receiver


152


detects the DTMF signal, the receiver


152


informs a CPU


153


of the detection of the DTMF signal. In response to the information of the DTMF-signal detection, the CPU


153


generates a control command, and transmits the control command on a control channel to the CPU


132


through the BTS


110


, the SPE


120


, and the SW


131


in the BSC


130


. The control command on the control channel does not pass through the CODEC


121


.




When the CPU


132


receives the control command on the control channel, the CPU


132


controls the sender


133


to generate the DTMF signal indicated by the control command. The DTMF signal generated in the sender


133


is inserted into speech data (In-Band) in the switching part (SW)


131


, and is transmitted toward the LE in the PSTN.




Next, a description will be given of a ninth embodiment of the radio access system for the telematique service according to the present invention, by referring to FIG.


24


.

FIG. 24

shows a block diagram of the ninth embodiment of the radio access system for the telematique service according to the present invention.




In the following, a description will be given of sequences in a case where the DTMF signal is transmitted on the down-link radio line from the telephone TEL in the PSTN to the TEL


160


in the SU


150


.




In

FIG. 24

, first a user calls the SU


150


through the PSTN. After a communication link is established, numeric keys are operated for reproducing the speech signal stored in the answer phone. At this time, in general, the speech data is provided from the LE in the PSTN to the SW


131


in the BSC


130


, and is provided from the SW


131


to the receiver


134


. Subsequently, the speech data on the TCH is coded by the CODEC


121


in the SPE


120


, and is transmitted from the BTS


110


to the SU


150


. Coded speech data thus received is decoded by the CODEC


151


in the SU


150


, and is produced from a speaker of the TEL


160


connected to the SU


150


as an analog speech signal.




On the other hand, when the DTMF signal inserted into the normal speech data is provided from the SW


131


to the receiver


134


, the DTMF signal is detected by the receiver


134


. The receiver


134


informs the CPU


132


of the detection of the DTMF signal. The CPU


132


transmits a DTMF message from the SW


131


to the SU


150


through the SPE


120


and the BTS


110


on the control channel. At this time, the signal on the control channel does not pass through the CODEC


121


in the SPE


120


and the CODEC


151


in the SU


150


, and is provided to the CPU


153


. When the CPU


153


receives the control command on the control channel, the CPU


153


generates the DTMF signal according to the control command for a sender


154


. Finally, the DTMF signal is provided to the TEL


160


.




In this way, between the SU


150


and the LE in the PSTN connected to the BSC


130


, the DTMF signal may be positively transmitted without being distorted due to the CODEC. As a result, for example, the ticket reservation and the remote control operation of the answer phone may be easily carried out in the WLL system.




Next, a description will be given of a tenth embodiment of the radio access system for the telematique service according to the present invention, by referring to FIG.


25


.

FIG. 25

shows a block diagram of the tenth embodiment of the radio access system for the telematique service according to the present invention.




In the following, a description will be given of sequences in a case where the DTMF signal is transmitted on the up-link radio line from the TEL


160


in the SU


150


.




In

FIG. 25

, a speech signal produced from the TEL


160


is provided to an analog-to-digital converter (A/D converter)


159


to be digitized, and is provided to the CODEC


151


and the receiver


152


. The CODEC


151


(constituting a first speech coding and decoding part) processes speech coding of the speech data at, for example, an 11.2-kbps rate. The 11.2-kbps coded speech data is transmitted on a traffic channel to the SPE


120


through the BTS


110


by a selector (SEL)


171


, and is provided to the CODEC


121


by a selector (SEL)


122


in the SPE


120


.




The 11.2-kbps coded speech data is decoded in the CODEC


121


to produce, for example, 64-kbps speech data. The 64-kbps speech data is provided to the SW


131


in the BSC


130


, and is transmitted from the SW


131


toward the LE in the PSTN.




When the receiver


152


(constituting a third detection part) detects the DTMF signal, the receiver


152


informs the CPU


153


and a character converter


172


of the detection of the DTMF signal. The character converter


172


converts the information of the DTMF-signal detection to character data of the DTMF signal, and supplies the character data on, for example, an 11.2-kbps low-rate traffic channel from the SEL


171


to the SPE


120


through the BTS


110


.




When the CPU


153


(constituting ninth and twelfth control parts) receives the information of the DTMF-signal detection, the CPU


153


generates a control command, and transmits the control command on a control channel to the CPU


132


in the BSC


130


through the BTS


110


, the SPE


120


, and the SW


131


in the BSC


130


.




When the CPU


132


(constituting tenth and eleventh control parts) receives the control command on the control channel, the CPU


132


allows the character converter


142


to operate, and controls the SEL


122


in the SPE


120


to switch. In a normal state, the SEL


122


supplies a signal on the traffic channel to the CODEC


121


(constituting a second speech coding and decoding part). The speech data is decoded by the CODEC


121


to produce, for example, 64-kbps speech data, and is transmitted toward the LE in the PSTN through the SW


131


in the CPU


132


.




However, in the above-discussed switching control, the SEL


122


supplies the character data of the DTMF signal on the traffic channel to a character converter


142


in the BSC


130


by bypassing the CODEC


121


. When the character converter


142


detects the character data of the DTMF signal, the character converter


142


informs the sender


133


of the detection of the DTMF signal. The sender


133


generates speech data of the DTMF signal corresponding to the character data, and transmits the speech data toward the LE in the PSTN through the SW


131


.




Next, a description will be given of an eleventh embodiment of the radio access system for the telematique service according to the present invention, by referring to FIG.


26


.

FIG. 26

shows a block diagram of the eleventh embodiment of the radio access system for the telematique service according to the present invention.




In the following, a description will be given of sequences in a case where the DTMF signal is transmitted on the down-link radio line from the PSTN side to the SU side.




In

FIG. 26

, speech data provided from the LE in the PSTN to the SW


131


in the BSC


130


is transmitted to the SPE


120


from the SW


131


on, for example, a 64-kbps fast traffic channel. Also, the speech data is provided from the SW


131


to the receiver


134


to detect the DTMF signal. When the DTMF signal is detected, the receiver


134


(constituting a fourth detection part) informs the CPU


132


and the character converter


142


of the detection of the DTMF signal. The character converter


142


converts the information into character data of the DTMF signal, and transmits the character data to the SPE


120


on, for example, an 11.2-kbps low-rate traffic channel. In response to the information of the DTMF signal detection, the CPU


132


generates a control command, and transmits the control command on a control channel to the SPE


120


.




In the SPE


120


, the fast traffic channel is speech-coded by the CODEC


121


, for example, is converted to an 11.2-kbps low-rate traffic channel, and is provided to the SEL


122


. On the other hand, the low-rate traffic channel transmitting the character data is provided to the SEL


122


without passing through the CODEC


121


. In general, the SEL


122


selects the traffic channel from the CODEC


121


according to the control command on the control channel. When the DTMF signal is transmitted, the SEL


122


selects the traffic channel transmitting the character data of the DTMF signal produced from the character converter


142


. The selected traffic channel with the control channel is transmitted to the SU


150


through the BTS


110


.




In the SU


150


, the traffic channel is provided to the CODEC


151


and a character converter


172


. The CODEC


151


decodes the speech data to, for example, 64-kbps speech data, and provides it to a selector (SEL)


156


. When the character converter


172


detects the character data of the DTMF signal, the character converter


172


informs a sender


155


of the detection of the DTMF signal. The sender


155


generates speech data of the DTMF signal corresponding to the character, and provides the speech data to a selector (SEL)


156


.




When a CPU


153


receives a control command of the control channel transmitted from the BTS


110


, the CPU


153


allows the character converter


172


to operate, and controls the SEL


156


to switch. Thus, in a normal state, the SEL


156


selects the speech data from the CODEC


151


, and when the DTMF signal is transmitted, the SEL


156


selects the speech data of the DTMF signal. The selected speech data is provided to a digital-to-analog converter (D/A converter)


157


. In the D/A converter


157


, the speech data is converted to an analog speech signal, and is produced from the TEL


160


through a subscriber circuit


158


.




Further, the present invention is not limited to these embodiments, but other variations and modifications may be made without departing from the scope of the present invention.



Claims
  • 1. A radio access system connecting a public switched telephone network and a subscriber unit, wherein:said subscriber unit comprises: a first detection part to detect a telematique signal received from a common interface provided for the telematique signal and a voice signal, and a first control part to transmit a detection signal of said telematique signal on a control channel and to transmit said telematique signal on a traffic channel while bypassing a first speech coding-and-decoding part provided for the voice signal transferred via the common interface; and said radio access system comprises a second control part, provided between a radio base station and said public switched telephone network, to transmit said telematique signal on said traffic channel toward said public switched telephone network while bypassing a second speech coding-and-decoding part when said detection signal of said telematique signal is transmitted on said control channel.
  • 2. The radio access system as claimed in claim 1, wherein each of said subscriber unit and said radio base station comprises a protocol conversion part to convert between a communication protocol for the telematique signal and a communication protocol for a telephone signal.
  • 3. The radio access system as claimed in claim 1, wherein said subscriber unit comprises a subscriber termination device.
  • 4. The radio access system as claimed in claim 1, wherein said subscriber unit comprises a mobile communication subscriber unit.
  • 5. A radio access system connecting a public switched telephone network and a subscriber unit, said radio access system comprising:a first detection part to detect a telematique signal received from a common interface provided for the telematique signal and a voice signal; and a first control part to transmit a detection signal of said telematique signal on a control channel, and to transmit said telematique signal on a traffic channel while bypassing a second speech coding-and-decoding part provided for the voice signal transferred via the common interface, said first detection part and said first control part being provided between said public switched telephone network and a radio base station; and said subscriber unit comprising a second control part to transmit said telematique signal on said traffic channel while bypassing a first speech coding-and-decoding part when said detection signal of said telematique signal is transmitted on said control channel.
  • 6. The radio access system as claimed in claim 5, wherein said first detection part comprises a plurality of detection parts, a number thereof being less than a number of lines between said public switched telephone network and said radio base station.
  • 7. The radio access system as claimed in claim 5, wherein each of said subscriber unit and said radio base station comprises a protocol conversion part to convert between a communication protocol for the telematique signal and a communication protocol for a telephone signal.
  • 8. The radio access system as claimed in claim 5, wherein said subscriber unit comprises a subscriber termination device.
  • 9. The radio access system as claimed in claim 5, wherein said subscriber unit comprises a mobile communication subscriber unit.
  • 10. The radio access system connecting a public switched telephone network and a subscriber unit, wherein:said subscriber unit comprises: a first detection part to detect a dual-tone multi-frequency (DTMF) signal received from a common interface provided for the telematique signal and a voice signal, and a first control part to transmit a detection signal of said DTMF signal on a control channel and to transmit said DTMF signal on a traffic channel while bypassing a first speech coding-and-decoding part provided for the voice signal transferred via the common interface; and said radio access system comprising a second control part, provided between a radio base station and said public switched telephone network, to transmit said DTMF signal on said traffic channel toward said public switched telephone network while bypassing a second speech coding-and-decoding part when said detection signal of said DTMF signal is transmitted on said control channel.
  • 11. The radio access system as claimed in claim 10, wherein said subscriber unit comprises a subscriber termination device.
  • 12. The radio access system as claimed in claim 10, wherein said subscriber unit comprises a mobile communication subscriber unit.
  • 13. A radio access system connecting a public switched telephone network and a subscriber unit, said radio access system comprising:a first detection part to detect a dual-tone multi-frequency (DTMF) signal received from a common interface provided for the telematique signal and a voice signal; a first control part to transmit a detection signal of said DTMF signal on a control channel and to transmit said DTMF signal on a traffic channel while bypassing a second speech coding-and-decoding part provided for the voice signal transferred via the common interface, said first detection part and said first control part being provided between a radio base station and said public switched telephone network; and said subscriber unit comprising a second control part to control said DTMF signal transmitted on the traffic channel to bypass a first coding-and-decoding part when said detection signal of the DTMF signal is transmitted on said control channel.
  • 14. The radio access system as claimed in claim 13, wherein said first detection part comprises a plurality of detection parts, a number thereof being less than a number of lines between said public switched telephone network and said radio base station.
  • 15. The radio access system as claimed in claim 13, wherein said subscriber unit comprises a subscriber termination device.
  • 16. The radio access system as claimed in claim 13, wherein said subscriber unit comprises a mobile communication subscriber unit.
Priority Claims (1)
Number Date Country Kind
8-055104 Mar 1996 JP
US Referenced Citations (5)
Number Name Date Kind
4788692 Takebayashi et al. Nov 1988
4876696 Yoshikawa Oct 1989
5347611 Chang Sep 1994
5487175 Bayley et al. Jan 1996
5537458 Suomi et al. Jul 1996
Foreign Referenced Citations (6)
Number Date Country
57-033860 Feb 1982 JP
57-033861 Feb 1982 JP
63-141423 Jun 1988 JP
64-049470 Feb 1989 JP
4-002014 Jan 1992 JP
4-111634 Apr 1992 JP