This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2010-252779, filed on Nov. 11, 2010, the entire contents of which are incorporated herein by reference.
The embodiments discussed herein are related to a radio apparatus and an antenna device used in the radio apparatus.
Recently, a mobile radio terminal such as a mobile phone increases its functionality. The increase of the functionality requires the mobile radio terminal, to include various antennas depending on services provided such as one seg (Japanese terrestrial digital broadcasting service for mobile devices), the Global Positioning System (GPS), Bluetooth (registered trademark), a wireless Local Area Network (LAN), and a Frequency Modulation (FM) transmitter, in addition to a cellular antenna. A monopole antenna has been disposed in mobile radio terminals. In a monopole antenna, a substrate functioning as the ground (GND) is a part of the antenna. Accordingly, even if an antenna element is small, a large gain may be obtained with the size of a substrate. A monopole antenna is therefore suitable for a small apparatus such as a mobile radio terminal.
In order to obtain a good characteristic of a monopole antenna, it is desired that an antenna element is mounted as far as possible from the substrate, that is, the monopole antenna is usually disposed at a corner of a housing of the mobile radio terminal. However, when many antennas, such as ones described above, are disposed in a mobile radio terminal, it is difficult to dispose all of these antennas at the corner.
Since the Multiple Input Multiple Output (MIMO) technique is employed in Long Term Evolution (LTE) that is the following-generation communication standard, a sub-antenna designed for reception is further needed. Accordingly, a space required for placement of various antennas may be becoming insufficient. As a technique for solving the space for placement, it has been proposed that antennas may be configured without a conflict between a monopole antenna and a space for placement thereof. As one of these antennas, a notch antenna is known which includes a slit (a notch) in a substrate functioning as an antenna.
For example, it has been proposed a method of changing the resonant length of a notch antenna having a slit of 0.2λ, in a substrate. It has been also proposed a method of broadening the frequency band of a notch antenna having a slit of 0.25λ, in a substrate. Here, λ, represents a wavelength of a frequency used. For example, 0.2λ, corresponds to approximately 30 mm long in the 2 GHz band and to approximately 25 mm long in the 2.4 GHz band. Therefore, it seems easy to dispose the notch antenna in the mobile telephone including the substrate with a size of approximately 90 mm×approximately 45 mm. The notch antenna for a wireless mobile terminal is described, for example, in Japanese Laid-open Patent Publication Nos. 2004-032303 and 2004-056421 are examples of related art.
According to an aspect of the invention, a radio apparatus includes an antenna device and a housing to which the antenna device is attached. The antenna device includes a substrate having an electrically conductive layer which includes a slit with an opening end at an end of the electrically conductive layer, and an antenna element is electrically coupled with the electrically conductive layer across the opening end via a matching circuit, and the antenna element receives an electric power through one end of the antenna element.
It is an object of the present invention to provide a space-saving antenna having an excellent characteristic. An object of the present invention is not limited to the above-described object, and may be to obtain an operational effect derived from an embodiment to be described later, that is, an operational effect that has not been achieved in the related art.
(Preliminary Consideration)
However, in order to properly operate the notch antenna described above, for example, it is necessary to prevent a wiring pattern and a shield sheet metal from overlapping the slit of the notch antenna. Thus, this may result in considerable constraints on routing of wiring and placement of components disposed on the substrate. Accordingly, it is difficult to dispose the notch antenna having the slit of the above-described length in the mobile radio terminal such as a mobile telephone.
Embodiments of the present invention will be described below with reference to the accompanying drawings. The embodiments are merely examples, and there is no intention to exclude various changes and various technique-applications which will not be described in the embodiments and modifications. That is, various changes may be made to the embodiments and the modifications without departing from the scope and spirit of the present invention.
[1] First Embodiment
An antenna device 10 according to an embodiment of the present invention will be described with reference to
In this embodiment, the antenna device 10 is tuned to, for example, a 2-GHz receiving band (in the range of 2110 MHz to 2170 MHz) in the MIMO system. As illustrated in
The antenna device 10 illustrated in
In this embodiment, as illustrated in
In the above-described equations, lx represents the notch length of the slit 12 (the distance d), and ly represents half of the width of the slit 12. In the antenna device 10, the length la is smaller than half of one side of the substrate 11 by the length ly that is half of the width of the slit 12, and is not therefore half of the side of the substrate 11. That is, as described above, the length la is approximately half of one side of the substrate 11 at which the slit 12 is formed.
The configuration of the antenna device 10 illustrated in
On end of the antenna element 16 is electrically coupled to the region A in the substrate 11 via the inductor 18, and the other end of the antenna element 16 is connected to the region B in the substrate 11 via the capacitor 17. The inductor 18 is used to adjust an impedance, and does not directly affect a resonant frequency. In the embodiment, the capacitance of the capacitor 17 is 0.5 pF, and the inductance of the inductor 18 is 1.5 nH. However, the capacitor 17 and the inductor 18 may have other values.
Electric power is supplied from the feeding element 14 to one end of the antenna element 16 via the feeder 15 disposed in the region A. The principle of operation of an antenna according to this embodiment will be described with reference to
The antenna device 10 resonates in accordance with the inductance of the inductor 18 which are changed with the inner perimeter of the slit 12 and the capacitance of the capacitor 17. The resonance of the antenna device 10 is that of a loop antenna, and an eddy current (represented by an arrow 19 in
As described above, the sum of the approximately half length of one side of the substrate 11 and the half of the inner perimeter of the slit 12 is approximately λ/4. Accordingly, portions of the substrate 11 as the regions A and B function each as an antenna element having a length of λ/4. Therefore, one side of the substrate 11 at which the slit 12 is formed operates as a dipole antenna having a length of λ/2.
Furthermore, since the antenna element 16 is disposed at the center of one side of the substrate 11, the antenna device 10 does not conflict with a monopole antenna for placement space when the both antennas are provided. Still furthermore, since the length of the slit 12, that is, the extension distance d of the slit 12 from the open end 13 in the substrate 11, is much shorter than that of a slit of a notch antenna, few constraints may be imposed on routing of wiring lines and placement of components on the substrate 11.
[2] First Modification
Use of the antenna device 10A may provide an advantage similar to that obtained by use of the antenna device 10. Further, the antenna device 10A may provide another advantage due to decrease the extension distance d of the L-shaped slit 12A from the open end 13 in the substrate 11 even if the inner perimeter of the slit 12A equals to that of the slit 12. As a result, use of the antenna device 10A may make it possible to improve the flexibility in placing wiring and components on the substrate 11 while maintaining the good characteristic similar to that provided by the antenna device 10. More specifically, the extension distance d is 7 mm in the antenna device 10A as illustrated in
[3] Second Modification
Use of the antenna device 10B may provide an advantage similar to that obtained by use of the antenna device 10. Further, the antenna device 10B may provide another advantage, as is the case with the antenna device 10A of the first modification, due to decrease the extension distance d of the L-shaped slit 12B from the open end 13 in the substrate 11 even if the inner perimeter of the slit 12B equals to that of the slit 12. As a result, use of the antenna device 10B makes it is possible to improve the flexibility in placing wiring lines and components on the substrate 11 while maintaining a good characteristic similar to that of the antenna device 10. More specifically, the extension distance d is 7 mm in the antenna device 10B as illustrated in
[4] Third Modification
Use of the antenna device 10C may provide an advantage similar to that obtained by use of the antenna device 10. Further, the antenna device 10C may provide another advantage, that is, the extension distance d of the slit 12C from the open end 13 may be further reduced than that of the slit 12A or 12B while making the inner perimeter of the slit 12C substantially equal to that of the slit 12. As a result, it is possible to improve the flexibility in placing wiring and components on the substrate 11 while maintaining a good characteristic similar to that of the antenna device 10. More specifically, the extension distance d is 6 mm in the antenna device 10C as illustrated in
[5] Fourth Modification
As illustrated in
As is apparent from
The fourth modification may be combined with one of the above-described modifications. That is, in the antenna device 10D, the slit 12D may have an L shape or a T shape.
[6] Others
Although a preferred embodiment of the present invention has been described in detail above, the present invention is not limited thereto. Various changes and modifications of the embodiment may be made without departing from the spirit and scope of the present invention.
For example, the size of a substrate is 92 mm×44 mm in the above-described embodiment, but may be changed to a desired frequency. The inductor 18 having an inductance of 1.5 nH is used as a matching circuit in the above-described embodiment, but a short-circuit line may be used instead of the inductor 18. By adjusting the inductance of the inductor 18, a bandwidth in which a good VSWR characteristic is obtained may be adjusted.
The size such as a notch length or a width of a slit is not limited to the above-described size. In the above-described embodiment and the above-described modifications, rectangular, L-shaped, and T-shaped slits are used. However, slits of various shapes such as a zigzag slit and a circular slit may be used.
An antenna device according to an embodiment of the present invention is widely applicable to various radio communication apparatuses including a mobile telephone.
Further, as illustrated in
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiments of the present inventions have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2010-252779 | Nov 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6424300 | Sanford et al. | Jul 2002 | B1 |
6600448 | Ikegaya et al. | Jul 2003 | B2 |
7053848 | Shoji et al. | May 2006 | B2 |
7132991 | Li et al. | Nov 2006 | B1 |
7916090 | Nysen | Mar 2011 | B2 |
20100060530 | Shoji | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
2000-196342 | Jul 2000 | JP |
2003-37431 | Feb 2003 | JP |
2004-32303 | Jan 2004 | JP |
2004-56421 | Feb 2004 | JP |
2010-62976 | Mar 2010 | JP |
Entry |
---|
Japanese Office Action dated Mar. 11, 2014, issued in Japanese Patent Application No. 2010-252779, w/partial English translation, (3 pages). |
Massey, J.P. et al., “Making Quarter Wavelength Notch Antennas Wideband,” PIERS Online, 2007, pp. 984-986, vol. 3, No. 7. |
Number | Date | Country | |
---|---|---|---|
20120119963 A1 | May 2012 | US |