The present invention relates to a radio base station apparatus and a radio communication method in next-generation mobile communication systems.
Recently, in the mobile communication network, there have been provided services that distribute moving image contents. In past these services, the streaming technique using a point-to-point connection is applied and mainly, the contents are transferred using a circuit switching domain. Therefore, in order to provide them as multimedia services to many users, the services that make effective use of network resources are needed.
In the 3GPP (3rd Generation Partnership Project), the MBMS (Multimedia Broadcast-Multicast Service) is standardized that provides services by multicast connection with use of a packet switching domain. This MBMS technique is a technique capable of providing broadcast message services and high-speed video streaming services, and is expected in the IMT-Advanced system and LTE (Long Term Evolution) system.
NPL1: 3GPP, TR36.300
In the MBMS, the same data is transmitted simultaneously to plural users. Therefore, it is difficult to control transmission based on feedback information from all of the users. In view of this, it is generally difficult to apply the adaptive modulation and demodulation, channel coding and hybrid ARQ (Automatic Repeat reQuest) using the feedback information from every user.
However, the data rate of MBMS is determined by the quality at an end in a cell or certain area (formed of plural cells) to which the MBMS applies. Accordingly, there is a need to improve the reception quality of a user at an end in the cell or certain area.
The present invention was carried out in view of the foregoing and has an object to provide a radio base station apparatus and a radio communication method capable of improving the reception quality of a user at an end of a certain area or cell in MBMS.
The present invention provides a radio base station apparatus supporting multimedia broadcast-multicast service, comprising: receiving section configured to receive feedback information for downlink transmission data; retransmission determining section configured to determine necessity of retransmission with use of the feedback information; spatial multiplexing section configured to, when retransmission is determined to be necessary, spatially multiplex multimedia broadcast-multicast service data initially transmitted and retransmitted data to transmit multiplexed data; and transmit diversity transmitting section configured to, when retransmission is determined to be unnecessary, transmit the multimedia broadcast-multicast service data initially transmitted with transmit diversity.
The present invention provides a radio communication method supporting Multimedia Broadcast-Multicast Service, comprising: receiving feedback information for downlink transmission data; determining necessity of retransmission with use of the feedback information; when retransmission is determined to be necessary, spatially multiplexing multimedia broadcast-multicast service data initially transmitted and retransmitted data to transmit multiplexed data; and when retransmission is determined to be unnecessary, transmitting the multimedia broadcast-multicast service data initially transmitted with transmit diversity.
According to the present invention, in the radio communication method supporting multimedia broadcast-multicast service, feedback information to the downlink transmission data is received, the feedback information is used to determine the necessity of retransmission, when retransmission is determined to be necessary, multimedia broadcast-multicast service data initially transmitted is spatially multiplexed with retransmitted data, and when retransmission is determined to be unnecessary, the multimedia broadcast-multicast service data initially transmitted is transmit with transmit diversity. With this structure, it is possible to improve the reception quality of a user at an end in a cell or a certain area in MBMS while keeping data rates constant.
a) and 3(b) are views each for explaining a transmission form in the radio base station apparatus according to the embodiment 1 of the present invention;
a) to 4(e) are views each for explaining an aspect of transmit diversity;
With reference to the attached drawings, embodiments of the present invention will be described in detail below.
In this embodiment, explanation is made about MBMS in which the same data is transmitted simultaneously to mobile terminals (also referred to as user equipment (UE)) in a cell.
The MBMS signal generator 11 generates data to distribute to the mobile terminal 2 (MBMS signal: multimedia broadcast-multicast service data). The MBMS signal generator 11 transmits the MBMS signal to the retransmitted packet storage 12 and transmits it to the spatial multiplexer 13 or the transmit diversity transmitter 14. In this case, when it is determined that retransmission is necessary at the retransmission determining part 15, the MEMS signal (initially transmitted packet) is transmitted to the spatial multiplexer 13 in which the packet is spatially multiplexed with a retransmitted packet and transmitted. This retransmitted packet is output from the retransmitted packet storage 12 to the spatial multiplexer 13. On the other hand, when it is determined that retransmission is unnecessary at the retransmission determining part 15, the MBMS signal (initially transmitted packet) is transmitted to the transmit diversity transmitter 14, applied to the transmit diversity and transmitted via the two antennas 17a and 17b.
The retransmitted packet storage 12 stores a transmission packet in order to retransmit the packet when the NACK is transmitted from the mobile terminal 2. The retransmitted packet stored in the retransmitted packet storage 12 is transmitted to the spatial multiplexer 13 when it is determined that retransmission is necessary at the retransmission determining part 15.
The spatial multiplexer 13 spatially multiplexes the MBMS signal initially transmitted (initially transmitted packet) and retransmitted data (retransmitted packet) when it is determined that retransmission is necessary. That is, when retransmission is determined to be necessary at the retransmission determining part 15 (when there is a retransmitted packet), the spatial multiplexer 13 spatially multiplexes the packet initially transmitted and the retransmitted packet. At this time, the packet initially transmitted (new packet) is output from the MBMS signal generator 11 and the retransmitted packet is output from the retransmitted packet storage 12. In this way, as the initially transmitted packet and the retransmitted packet are spatially multiplexed, the retransmitted packet can be transmitted using a part of a band originally assigned to the packet initially transmitted and there is no need to use any additional radio resource for the retransmitted packet. Therefore, the transmission rate can be kept constant (fixed transmission rate). The spatial multiplexer 13 transmits a spatially-multiplexed packet via the transmission antennas 17a and 17b.
When retransmission is determined to be unnecessary at the retransmission determining part 15, the transmit diversity transmitter 14 transmits the MBMS signal (initially transmitted packet) with transmit diversity via the transmission antennas 17a and 17b. The control signal receiver 16 receives the ACK information or NACK information as feedback information for the downlink transmission data. The control signal receiver 16 outputs the feedback information to the retransmission determining part 15.
The retransmission determining part 15 determines the necessity of retransmission with use of the feedback information. As a method of determining the retransmission, there are following examples: retransmission is determined to be necessary when at least one user (one mobile terminal 2) has transmitted the NACK, retransmission is determined to be necessary when a threshold is set in the number of NACKs and the number of NACKs exceeds this threshold, and retransmission is determined to be necessary when a threshold is set in NACK reception power and the NACK reception power exceeds this threshold. The retransmission determining part 15 outputs a retransmission determination result (retransmission is necessary or unnecessary) to the MBMS signal generator 11, the spatial multiplexer 13 and the transmit diversity transmitter 14.
In the radio communication system comprising the radio base station apparatus 1 with the above-described structure, the service (MEMS) is provided at the following procedure. At the multicast mode, information of MBMS user service (parameter) obtained in advance by service subscription is used to request subscription to the service for the network thereby to take part in a multicast group. With this participation, the network connects the mobile terminal of the user to the multicast route. Then, with the session-start from the network side, MBMS bearer resources in the network are activated and data to distribute in this session is transferred to the mobile terminal.
Meanwhile, at the broadcast mode, as it is distributed to the overall service area, the procedure for service subscription is not necessary. The service can be provided by each mobile terminal obtaining a parameter required for connection from a received service announcement and tuning to a channel of the broadcast service.
In such MBMS transmission, when the feedback information for the downlink transmission data is received, the necessity of retransmission is determined using the feedback information, when retransmission is determined to be necessary, an MBMS signal initially transmitted (initially transmitted packet) and retransmitted data (retransmitted packet) are spatially multiplexed, and when retransmission is determined to be not required, the MBMS signal initially transmitted is transmitted with transmit diversity.
Specifically, the radio base station apparatus 1 transmits a initially transmitted packet to each mobile terminal 2 on the downlink. The mobile terminal receives and decodes the initially transmitted packet, and determines whether an error is detected or not. If an error is detected, the feedback information is NACK, and when no error is detected, the feedback information is ACK. Each mobile terminal 2 in the cell transmits this feedback information (ACK information or NACK information) to the radio base station apparatus 1 on the uplink. In the radio base station apparatus 1, the control signal receiver 16 receives the feedback information. This feedback information is output to the retransmission determining part 15. The retransmission determining part 15 determines if the initially transmitted packet is required to be retransmitted or not based on the feedback information. This determination is performed in the above-described manner. A result of this determination is output to the MBMS signal generator 11, the spatial multiplexer 13 and the transmit diversity transmitter 14.
When retransmission is determined to be necessary (when there is a retransmitted packet), the spatial multiplexer 13 spatially multiplexes the initially transmitted packet from the MBMS signal generator 11 and the retransmitted packet from the retransmitted packet storage 12, and transmits the spatially multiplexed packets via the transmission antennas 17a and 17b. For example, as illustrated in
When retransmission is determined to be unnecessary (there is no retransmitted packet), the transmit diversity transmitter 14 transmits the initially transmitted packet, which is received from the MBMS signal generator 11, with transmit diversity via the transmission antennas 17a and 17b. That is, as illustrated in
Here, the transmit diversity is preferably open loop type transmit diversity in which feedback information is unnecessary. The open loop type transmit diversity includes FSTD (Frequency Switched Transmit Diversity), TSTD (Time Switched Transmit Diversity), SFBC (Space Frequency Block Code), STBC (Space Time Block Code), CDD (Cyclic Delay Diversity) and the like.
FSTD is a system in which transmission antennas are alternately changed between two adjacent subcarrier signals in the same OFDM symbol area, as illustrated in
In this embodiment, description is made about MBMS in which the same data is simultaneously transmitted to mobile terminals in a certain area composed of plural cells.
In this system, each radio base station apparatus determines if retransmission is necessary, one of plural radio base station apparatuses determines if retransmitting to a certain area is necessary. When retransmission is determined to be performed, it determines the timing, and transmits the timing information to other radio base station apparatuses. Then, all the radio base station apparatuses in the certain area transmit packets to mobile terminals with timing.
The retransmission determining part 15 determines the necessity of retransmission with use of feedback information. Determination is performed in the above-described manner. The retransmission determining part 15 outputs a retransmission determination result (retransmission is necessary/unnecessary) to the retransmission and timing determining part 18. Besides, the retransmission determination results from the other radio base station apparatuses 1b and 1c are also transmitted to the retransmission and timing determining part 18.
The retransmission and timing determining part 18 uses the retransmission determination results from the radio base station apparatus 1a and the other radio base station apparatuses 1b and 1c to determine the necessity of retransmission to the certain area and determines the transmission timing. Determination is performed in the above-described manner. When the retransmission and timing determining part 18 determines the necessity of retransmission and the timing, it outputs the timing information to the MBMS signal generator 11, the spatial multiplexer 13 and the transmit diversity transmitter 14 of the radio base station apparatus 1a. Besides, when the retransmission and timing determining part 18 determines the necessity of retransmission and the timing, it transmits the timing information to the other radio base station apparatuses 1b and 1c. Also when retransmission is not performed, the retransmission and timing determining part 18 determines the transmission timing and transmits the timing information to the other radio base station apparatuses 1b and 1c.
In the MBMS transmission in the system illustrated in
Specifically, the radio base station apparatuses 1a, 1b and 1c transmit the initially transmitted packets to the mobile terminals 2a, 2b and 2c, respectively, on the downlink. The mobile terminals 2a, 2b and 2c receive the initially transmitted packets, decode them and determine if there is an error detected. When an error is detected, the feedback information is NACK, and when no error is detected, the feedback information is ACK. The mobile terminals 2a, 2b and 2c in the certain area transmit this feedback information (ACK information or NACK information) to the radio base station apparatuses 1a, 1b and 1c, respectively, on the uplink. In each of the radio base station apparatuses 1a, 1b and 1c, the control signal receiver 16 receives the feedback information. This feedback information is output to the retransmission determining part 15. The retransmission determining part 15 determines if the initially transmitted packet is required to be resent or not based on the feedback information. This determination is performed in the above-described manner. A determination result is output to the retransmission and timing determining part 18 of the radio base station apparatus 1a.
When the retransmission and timing determining part 18 determines retransmission is necessary (there is a retransmitted packet), the spatial multiplexer 13 of each of the radio base station apparatuses 1a, 1b and 1c spatially multiplexes the initially transmitted packet from the MBMS signal generator 11 and the retransmitted packet from the retransmitted packet storage 12 and transmits the spatially multiplexed packets via the transmission antennas 17a and 17b.
For example, as illustrated in
When the retransmission and timing determining part 18 determines retransmission is not required (there is no retransmitted packet), the transmit diversity transmitter 14 of each of the radio base station apparatuses 1a, 1b and 1c transmits the initially transmitted packet from the MBMS signal generator 11 via the transmission antennas 17a and 17b with transmit diversity. That is, as illustrated in
The present invention is not limited to the above-described embodiments and may be embodied in various modified forms. For example, the above-described embodiments 1 and 2 have been described by way of example where there are two antennas. However, this is not intended for limiting the present invention. The present invention may apply to the case where there are three or more transmission antennas. Besides, the embodiments 1 and 2 have been described on the assumption that when a initially transmitted packet and a retransmitted packet are spatially multiplexed to be transmitted, the initially transmitted packet and the retransmitted packet are assigned to the two transmission antennas, respectively. However, this is not intended for limiting the present invention. The present invention may apply to the case where the initially transmitted packet and the retransmitted packet are combined to be transmitted via the two transmission antennas. Further, the embodiment 2 has been described by way of example in which after the necessity of retransmission is determined at each radio base station apparatus, its retransmission determination result is used to determine the necessity of retransmission finally. However, this is not intended for limiting the present invention. The present invention may apply to the case where feedback information of all cells is transmitted to one radio base station apparatus and the one radio base station apparatus determines the necessity of retransmission.
The present embodiment may be modified appropriately as to the number of processing parts and processing procedure in the above description, without departing from the scope of the present invention. Besides, each element in the figures presents its function and each functional block may be realized by hardware or software. Other structures may be also modified appropriately without departing from the scope of the present invention.
The present application is based on Japanese Patent Applications No. 2009-049040 filed on Mar. 3, 2009, the entire contents of which are expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2009-049040 | Mar 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/052440 | 2/18/2010 | WO | 00 | 12/14/2011 |