This invention relates generally to radio controlled toys such as airplanes and helicopters.
Radio controlled toys such as airplanes, boats, cars and helicopters are popular. Through the use of a remote control, a user can control the motion of the toy. Radio signals from the remote control, containing commands from the user, are sent to the toy to control the motion of the toy. Some radio control devices, such as airplanes and helicopters can be very difficult to control. These devices operate in three-dimensional space and can require great skill on the part of the user to operate. In particular, the user is required to consider the perspective of an aircraft when operating the remote control. The same commands that would make the aircraft turn right when the aircraft is moving toward the user, make the aircraft turn left when traveling away from the user. Simpler controls are needed to enable these devices to be operated by users with less training or skill.
Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of ordinary skill in the art through comparison of such systems with the present invention.
The present invention is directed to apparatus and methods of operation that are further described in the following Brief Description of the Drawings, the Detailed Description of the Invention, and the claims. Other features and advantages of the present invention will become apparent from the following detailed description of the invention made with reference to the accompanying drawings.
Several enhancements are presented along with various optional features that will be described in greater detail in conjunction with
In this coordinate system, clockwise rotation about a roll axis, aligned longitudinally along the length of the aircraft from the front to the tail, is represented by φ1. When viewed from the back of the RC aircraft 102, clockwise rotation corresponds to a positive roll. Further, rotation about a pitch axis, aligned longitudinally from right to left through the center of the cockpit and perpendicular to the roll axis, is represented by φ2. In this coordinate system, forward pitch of the aircraft 102 is positive pitch. The yaw-axis extends vertically through the shaft of main rotor 106 with counter-clockwise displacement represented by φ3.
In an embodiment of the present invention, the aircraft 102 includes one or more controls that allow the aircraft to be rotated by an amount φ1 about the roll axis, an amount φ2 about the pitch axis and an amount φ3 about the yaw axis. For instance, in an embodiment where RC aircraft 102 is implemented as a helicopter, forward and backward tilt of the main rotor 106 cause, respectively, positive and negative pitch angles φ2. In addition, right and left tilts of the main rotor 106, cause, respectively, positive and negative roll angles φ1. Further, the net thrust produced by the tail rotor, taking into consideration any torque induced by the rotation of main rotor 106, produces a yaw angle φ3.
In an embodiment of the present invention, command data 104 from the remote control device 100 are generated in a different coordinate system, such as a user coordinate system that corresponds to the orientation of the user. This command data 104 can be transformed into control data in the coordinate system of the aircraft so that the RC aircraft 102 can be controlled based on its orientation to the user, rather than the orientation of an imaginary pilot. The generation of command data 104 and the transformation into control data used to control the orientation of the RC aircraft 102 will be discussed further in conjunction with
The origin 90 indicates the placement of the origin of a user coordinate system that corresponds to the perspective of the user. In an embodiment of the present invention, the user coordinate system is a polar coordinate system. The position of RC aircraft 102 relative to the origin 90, can be represented by the altitude Z of the aircraft in relation to the origin 90, the distance R from the aircraft to the origin 90, and the angular displacement θ of the aircraft. In summary, the position of the RC aircraft 102 in three dimensional space can be represented in terms of (R, θ, Z) and the orientation of the aircraft can be represented in terms of (φ1, φ2, φ3).
In an embodiment of the present invention, remote control device 100 generates command data 104 that includes orientation commands ψ1, ψ2. RC aircraft 102 is capable of determining position parameters such as θ and φ3 based on motion data generated by on-board motion sensors. RC aircraft 102 transforms the orientation commands ψ1, ψ2 into control data such as roll-axis and pitch axis controls φ1, φ2 as follows:
φ1=ψ1 cos(φ3−θ)+ψ2 sin(φ3−θ) (1)
φ2=ψ2 cos(φ3−θ)−ψ1 sin(φ3−θ) (2)
In this fashion, when a user commands the RC aircraft 102 to pitch forward, the RC aircraft will pitch forward from the perspective of the user, regardless of the actual orientation of the RC aircraft. In practice, a command to pitch forward could be implemented with a pitch forward control if the RC aircraft is facing away from the remote control device 100—when the user is oriented directly with the position of an imaginary pilot. However, other orientations yield other results:
In an embodiment of the present invention, RC aircraft 102 responds to a lift control L that controls the lift generated by varying either the velocity or pitch of the main rotor 106 and a yaw-axis control V that generates a positive or negative net thrust from the tail rotor 108. Remote control 100 generates a yaw-velocity command v=dφ3/dt, and generates a lift command l to control the yaw-axis velocity and lift in a convention fashion, for instance L is equal to or proportion to l and V is equal to or proportional to l. Remote control 100 can optionally generate additional controls for controlling other control functions as well as other features of the RC aircraft 102.
RC aircraft 102 includes receiver 120 that is coupled to receive RF signal 114 from the remote control device 100 and to regenerate the command data 104 contained therein. In particular, command data 104 can include data that represents commands such as generated includes orientation commands ψ1, ψ2 accordance with a coordinate system from a perspective of the remote control device 100, other command data that may or not be not transformed such as V and L, and other command data corresponding to other function and features.
RC aircraft 102 further includes a motion sensing module 122 that generates motion data 124 based on the motion of the RC aircraft 102. In an embodiment of the present invention, motion sensing module 122 includes one or more axes of accelerometers or gyroscopes or other devices that alone, or with further processing by processing module 126, can generate data that represents θ, φ3, and/or other motion parameters such as R, Z, etc., that can be used in transforming the command data 104 to control data 128.
Processing module 126, transforms the command data 104 into control data 128 in accordance with a coordinate system from a perspective of the RC aircraft. For example, processing module 126 can generate φ1, φ2, v and l, based on the command data 104 such as ψ1, φ2, V and L, and motion data 124 such as θ, φ3. This control data 128 is provided to a plurality of control devices 130 such as actuators, control surfaces, gimbals or other controllers that control the motion of RC aircraft 102 as previously described. In particular, control devices 130 and/or processing module can further include a feedback controller, state controller or other control mechanism that controls aircraft to the particular values of φ1, φ2, v and l.
Processing module 126 may be implemented using a shared processing device, individual processing devices, or a plurality of processing devices and may further include memory. Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on operational instructions. The memory may be a single memory device or a plurality of memory devices. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, and/or any device that stores digital information. Note that when the processing module 126 implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory storing the corresponding operational instructions is embedded with the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry.
In an embodiment of the present invention, processing device 126 includes a look-up table, or other routine or application or that generates the control data 128 based on command data 104 and motion data 124 in accordance with the equations presented in conjunction with
In a particular embodiment of the present invention, the command data 104 includes a mode selection that, based on its value, selects whether or not the RC aircraft 102 transforms the command data when calculating the control data 128. For instance, the command data can include a binary indicator that has one value that represents a traditional mode of operation and another value that transforms command data 104 to generate control data 128. In this embodiment, the user can select to operate the RC aircraft 102 in one mode that transforms orientation commands from the remote control device 100 from the perspective of the remote control device 100 to the perspective of the RC aircraft 102. Further, the user can instead select to operate the RC aircraft 102 in a traditional fashion by generating command data 104 from the perspective of the aircraft itself with yaw-axis controls being proportional to yaw-axis commands and pitch-axis controls being proportional to pitch-axis commands. In this fashion, a user can select the mode he or she finds easiest to use. In addition, different users could select to operate the RC aircraft 102 in different modes.
RC aircraft 102 optionally includes a launch module 132 that responds to launch data 134 included in command data 104 to launch an object from the RC aircraft 102, such as a parachutist action figure, bomb missile or other toy or object. Launch module 132 can include a magnetic coupling, retractable hook or other releasable coupling that holds and selectively releases one or more object in respond to the launch command, either successively, one object at a time in response to repeated transmissions of the launch data from the remote control device 100 or based on individual launch data separately identified for each such object.
In one possible implementation of remote control device 100, user interface 110 includes a plurality of spring-loaded interface devices, where each of the plurality of spring-loaded interface devices has a return position that is returned to when no force is applied. In this implementation, the remote control device 100 commands the RC aircraft to hover or substantially a hover when no force is applied to each of the plurality of spring-loaded interface devices. For example, the pitch-axis, roll-axis and lift command interface devices can have a position, such as a center position they return to. The center position of the pitch-axis and roll-axis interface devices operate to generate command data 104 for the pitch-axis and roll-axis to correspond to horizontal flight or substantially horizontal flight within an acceptable level of tolerance. The center position of the lift command interface device operates to generate a lift command that corresponds to a lift force that equals or substantially equals the weight of the RC aircraft 102. Where the weight of the RC aircraft changes, such as when objects are selectively launched or dropped from the aircraft, the processing module 126 can determine a current weight for the RC aircraft 102 based on whether objects have been dropped, how many objects and/or which objects have been dropped, etc.
Remote control 150 further includes a reference button, for setting the reference position of the RC aircraft 102 to aid in the determination of motion data 124, as will be described in greater detail in conjunction with
Additional buttons 156 are included for activating other functions and features of RC aircraft 102 such as the generation of launch data 130 for one or more objects or to implement other optional features.
In an embodiment of the present invention, the command data includes roll-axis command data and pitch-axis command data, the control data includes roll-axis control data, and the motion data includes yaw-axis motion data, and wherein step 404 includes generating the roll-axis control data as a function of the roll-axis command data, pitch-axis command data and the yaw-axis motion data. In addition, the command data can include roll-axis command data and pitch-axis command data, the control data can include pitch-axis control data, and the motion data includes yaw-axis motion data, and wherein step 404 includes generating the pitch-axis control data as a function of the roll-axis command data, pitch-axis command data and the yaw-axis motion data. The RF signal can include mode data, and wherein, when the mode data has a first value, step 404 is selectively bypassed and the control data generated in proportional to the command data.
The command data can include lift command data and the control data can include lift control data, wherein step 404 includes generating the lift control data based on a weight of the RC aircraft. The command data can include yaw-velocity command data and the control data can include yaw-velocity control data and wherein step 404 includes generating yaw-velocity control data as a proportion of the yaw-velocity command data.
As may be used herein, the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent. Such relativity between items ranges from a difference of a few percent to order of magnitude differences. As may also be used herein, the term(s) “coupled to” and/or “coupling” and/or includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As may further be used herein, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two items in the same manner as “coupled to.” As may even further be used herein, the term “operable to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform one or more its corresponding functions and may further include inferred coupling to one or more other items. As may still further be used herein, the term “associated with,” includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
The present invention has also been described above with the aid of method steps illustrating the performance of specified functions and relationships thereof. The boundaries and sequence of these functional building blocks and method steps have been arbitrarily defined herein for convenience of description. Alternate boundaries and sequences can be defined so long as the specified functions and relationships are appropriately performed. Any such alternate boundaries or sequences are thus within the scope and spirit of the claimed invention.
The present invention has been described above with the aid of functional building blocks illustrating the performance of certain significant functions. The boundaries of these functional building blocks have been arbitrarily defined for convenience of description. Alternate boundaries could be defined as long as the certain significant functions are appropriately performed. Similarly, flow diagram blocks may also have been arbitrarily defined herein to illustrate certain significant functionality. To the extent used, the flow diagram block boundaries and sequence could have been defined otherwise and still perform the certain significant functionality. Such alternate definitions of both functional building blocks and flow diagram blocks and sequences are thus within the scope and spirit of the claimed invention. One of average skill in the art will also recognize that the functional building blocks, and other illustrative blocks, modules and components herein, can be implemented as illustrated or by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof.
The present application claims priority from and is a continuation of U.S. patent application Ser. No. 15/392,687, filed on Dec. 28, 2016, which claims priority from and is a continuation of U.S. patent application Ser. No. 14/724,037, filed on May 28, 2015, now issued as U.S. Pat. No. 9,568,913, which claims priority from and is a continuation of U.S. patent application Ser. No. 14/102,995, filed on Dec. 11, 2013, now issued as U.S. Pat. No. 9,079,116, which claims priority from and is a continuation of U.S. patent application Ser. No. 13/688,886, filed on Nov. 29, 2012, now issued as U.S. Pat. No. 8,649,918, which claims priority from and is a continuation of U.S. patent application Ser. No. 13/471,642, filed on May 15, 2012, now issued as U.S. Pat. No. 8,380,368, which claims priority from and is a divisional of U.S. patent application Ser. No. 12/029,470, filed on Feb. 12, 2008, now issued as U.S. Pat. No. 8,200,375. The contents of each of these applications are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3053480 | Vanderlip | Sep 1962 | A |
3094299 | Bond et al. | Jun 1963 | A |
3534399 | Hirsch | Oct 1970 | A |
4375631 | Goldberg | Mar 1983 | A |
4466774 | Cycon et al. | Aug 1984 | A |
4490710 | Kopsho, Jr. et al. | Dec 1984 | A |
4770607 | Cycon et al. | Sep 1988 | A |
4964598 | Berejik et al. | Oct 1990 | A |
5001646 | Caldwell et al. | Mar 1991 | A |
5043646 | Smith, III et al. | Aug 1991 | A |
5048652 | Cycon et al. | Sep 1991 | A |
5058824 | Cycon et al. | Oct 1991 | A |
5152478 | Cycon et al. | Oct 1992 | A |
5226350 | Cycon et al. | Jul 1993 | A |
5277380 | Cycon et al. | Jan 1994 | A |
5281099 | Hunter et al. | Jan 1994 | A |
5301568 | Kono | Apr 1994 | A |
5340279 | Cycon et al. | Aug 1994 | A |
5351913 | Cycon et al. | Oct 1994 | A |
5364230 | Krauss et al. | Nov 1994 | A |
5429089 | Thornberg et al. | Jul 1995 | A |
5552983 | Thornberg | Sep 1996 | A |
5575438 | McGonigle et al. | Nov 1996 | A |
5676334 | Cotton et al. | Oct 1997 | A |
5859372 | Neltoft | Jan 1999 | A |
5890441 | Swinson et al. | Apr 1999 | A |
5984240 | Shinagawa | Nov 1999 | A |
D418805 | Cycon et al. | Jan 2000 | S |
6076024 | Thornberg et al. | Jun 2000 | A |
6092007 | Cotton et al. | Jul 2000 | A |
6170778 | Cycon et al. | Jan 2001 | B1 |
6270038 | Cycon et al. | Aug 2001 | B1 |
6460810 | James | Oct 2002 | B2 |
6478262 | Kinkead et al. | Nov 2002 | B1 |
6527225 | Slider, Jr. et al. | Mar 2003 | B1 |
6584382 | Karem | Jun 2003 | B2 |
6629023 | Slider, Jr. et al. | Sep 2003 | B1 |
6694228 | Rios | Feb 2004 | B2 |
6697715 | Freeman | Feb 2004 | B1 |
6856894 | Bodin et al. | Feb 2005 | B1 |
6885917 | Osder et al. | Apr 2005 | B2 |
7101246 | Dammar | Sep 2006 | B1 |
7130741 | Bodin et al. | Oct 2006 | B2 |
7286913 | Bodin et al. | Oct 2007 | B2 |
7497759 | Davis | Mar 2009 | B1 |
7526362 | Kim et al. | Apr 2009 | B2 |
7873444 | Ehrmantraut et al. | Jan 2011 | B1 |
8014909 | Builta et al. | Sep 2011 | B2 |
8200375 | Stuckman | Jun 2012 | B2 |
8380368 | Stuckman et al. | Feb 2013 | B2 |
8649918 | Stuckman et al. | Feb 2014 | B2 |
9079116 | Stuckman et al. | Jul 2015 | B2 |
9568913 | Stuckman et al. | Feb 2017 | B2 |
9589476 | Zhang et al. | Mar 2017 | B2 |
9904292 | Pedersen | Feb 2018 | B2 |
10095226 | Stuckman et al. | Oct 2018 | B1 |
20020104921 | Louvel | Aug 2002 | A1 |
20020163905 | Brabrand | Nov 2002 | A1 |
20040068333 | Cantello et al. | Apr 2004 | A1 |
20050094851 | Bodin et al. | May 2005 | A1 |
20050127242 | Rivers, Jr. | Jun 2005 | A1 |
20060144994 | Spirov | Jul 2006 | A1 |
20060155508 | Choi | Jul 2006 | A1 |
20060178085 | Sotereanos et al. | Aug 2006 | A1 |
20070105474 | Gotou et al. | May 2007 | A1 |
20070168157 | Khibnik et al. | Jul 2007 | A1 |
20070221780 | Builta | Sep 2007 | A1 |
20070260726 | Rozak et al. | Nov 2007 | A1 |
20090004004 | Mncenzi | Jan 2009 | A1 |
20090050747 | Troutman | Feb 2009 | A1 |
20090204276 | Stuckman et al. | Aug 2009 | A1 |
20100012776 | Hursig et al. | Jan 2010 | A1 |
20100161155 | Simeray | Jun 2010 | A1 |
20100292868 | Rotem et al. | Nov 2010 | A1 |
20160091894 | Zhang et al. | Mar 2016 | A1 |
20160093124 | Shi et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
558442 | Jan 1987 | AU |
636484 | Apr 1993 | AU |
664144 | Nov 1995 | AU |
664522 | Nov 1995 | AU |
664678 | Nov 1995 | AU |
665319 | Dec 1995 | AU |
667650 | Mar 1996 | AU |
683551 | Nov 1997 | AU |
693202 | Jun 1998 | AU |
697735 | Oct 1998 | AU |
708402 | Aug 1999 | AU |
755241 | Dec 2002 | AU |
772173 | Apr 2004 | AU |
2030612 | May 1991 | CA |
2138656 | Jan 1994 | CA |
2182374 | Sep 1995 | CA |
2186593 | Oct 1995 | CA |
2189854 | Nov 1995 | CA |
2241114 | Jul 1997 | CA |
2330046 | Nov 1999 | CA |
2535053 | Feb 2005 | CA |
2788512 | Nov 2005 | CA |
1843710 | Oct 2006 | CN |
1843847 | Oct 2006 | CN |
101027214 | Aug 2007 | CN |
200976108 | Nov 2007 | CN |
3330721 | Mar 1984 | DE |
69107677 | Jun 1995 | DE |
69501209 | Apr 1998 | DE |
69501890 | Oct 1998 | DE |
69318713 | Jan 1999 | DE |
69505244 | Feb 1999 | DE |
69900687 | Sep 2002 | DE |
69332506 | Jul 2003 | DE |
69332507 | Jul 2003 | DE |
69332527 | Aug 2003 | DE |
60004038 | Apr 2004 | DE |
0430855 | Jun 1991 | EP |
0522829 | Jan 1993 | EP |
0457710 | Mar 1995 | EP |
0752634 | Jan 1997 | EP |
0748470 | Dec 1997 | EP |
0758972 | Mar 1998 | EP |
0646084 | May 1998 | EP |
0861777 | Sep 1998 | EP |
0861778 | Sep 1998 | EP |
0755481 | Oct 1998 | EP |
1080398 | Jan 2002 | EP |
0861775 | Nov 2002 | EP |
0861776 | Nov 2002 | EP |
0861779 | Nov 2002 | EP |
1175336 | Jul 2003 | EP |
1660958 | Apr 2012 | EP |
2125752 | Dec 1985 | GB |
98102 | Apr 1993 | IL |
106090 | Mar 1998 | IL |
125019 | Apr 2001 | IL |
139206 | Jul 2004 | IL |
1169792 | Jun 1987 | IT |
5963297 | Apr 1984 | JP |
60234683 | Nov 1985 | JP |
3223527 | Oct 1991 | JP |
446897 | Feb 1992 | JP |
519854 | Jan 1993 | JP |
5285276 | Nov 1993 | JP |
7178235 | Jul 1995 | JP |
7246999 | Sep 1995 | JP |
7257489 | Oct 1995 | JP |
7300096 | Nov 1995 | JP |
H08-10451 | Jan 1996 | JP |
8239096 | Sep 1996 | JP |
8239097 | Sep 1996 | JP |
9510032 | Oct 1997 | JP |
9511806 | Nov 1997 | JP |
9512765 | Dec 1997 | JP |
1193812 | Apr 1999 | JP |
2911643 | Jun 1999 | JP |
2000502632 | Mar 2000 | JP |
2000118498 | Apr 2000 | JP |
2001026296 | Jan 2001 | JP |
2001026298 | Jan 2001 | JP |
2001026299 | Jan 2001 | JP |
2001-209427 | Aug 2001 | JP |
2001246177 | Sep 2001 | JP |
2001301695 | Oct 2001 | JP |
2001306143 | Nov 2001 | JP |
2001306144 | Nov 2001 | JP |
3297830 | Jul 2002 | JP |
2002215232 | Jul 2002 | JP |
3343118 | Nov 2002 | JP |
3343237 | Nov 2002 | JP |
3343238 | Nov 2002 | JP |
2002542115 | Dec 2002 | JP |
2002542116 | Dec 2002 | JP |
2003190658 | Jul 2003 | JP |
2003202922 | Jul 2003 | JP |
2003308120 | Oct 2003 | JP |
2004268715 | Sep 2004 | JP |
2004268722 | Sep 2004 | JP |
2004268730 | Sep 2004 | JP |
2004268736 | Sep 2004 | JP |
2004268737 | Sep 2004 | JP |
2004271339 | Sep 2004 | JP |
2004291805 | Oct 2004 | JP |
200528935 | Feb 2005 | JP |
2006513890 | Apr 2006 | JP |
2006264573 | Oct 2006 | JP |
2006312344 | Nov 2006 | JP |
2007501931 | Feb 2007 | JP |
2007130146 | May 2007 | JP |
2007203008 | Aug 2007 | JP |
4141860 | Aug 2008 | JP |
4289794 | Jul 2009 | JP |
4532820 | Aug 2010 | JP |
2062246 | Jun 1996 | RU |
2108267 | Apr 1998 | RU |
2108269 | Apr 1998 | RU |
2113378 | Jun 1998 | RU |
2114766 | Jul 1998 | RU |
2117604 | Aug 1998 | RU |
2125952 | Feb 1999 | RU |
2133210 | Jul 1999 | RU |
2142567 | Dec 1999 | RU |
2145725 | Feb 2000 | RU |
9400347 | Jan 1994 | WO |
9524004 | Sep 1995 | WO |
9527847 | Oct 1995 | WO |
9530575 | Nov 1995 | WO |
9724260 | Jul 1997 | WO |
9955582 | Nov 1999 | WO |
9956188 | Nov 1999 | WO |
0064735 | Nov 2000 | WO |
0064736 | Nov 2000 | WO |
0195043 | Dec 2001 | WO |
03093915 | Nov 2003 | WO |
2005015332 | Feb 2005 | WO |
2005103939 | Nov 2005 | WO |
2007130587 | Nov 2007 | WO |
2007130587 | Nov 2007 | WO |
2007141795 | Dec 2007 | WO |
Entry |
---|
Patent Owner's Motion to Amend Appendix—Claim Listing Pursuant to 37 C.F.R. § 42.121, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, 16 pages. |
Annotated Figure 4 of JP Patent Publication 2001-209427, 1 page. |
Annotated Figure 5 of JP Patent Publication 2001-209427, 1 page. |
Annotated Figure 5 of U.S. Pat. No. 8,200,375 issued Jun. 12, 2012, 1 page. |
Declaration of Masafumi Miwa, Ph.D., Translation included, dated Nov. 17, 2017, 10 pages. |
Second Declaration of R. John Hansman, Jr., Ph D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, dated Dec. 31, 2018, 100 pages. |
Second Declaration of R. John Hansman, Jr., Ph D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, dated Dec. 31, 2018, 100 pages. |
Second Declaration of R. John Hansman, Jr., Ph D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, dated Dec. 31, 2018, 100 pages. |
Second Declaration of R. John Hansman, Jr., Ph D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, dated Dec. 31, 2018, 100 pages. |
Second Declaration of R. John Hansman, Jr., Ph D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, dated Dec. 31, 2018, 100 pages. |
Patent Owner's Motion to Amend Appendix—Claim Listing Pursuant to 37 C.F.R. § 42.121, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, 12 pages. |
Patent Owner's Motion to Amend Appendix—Claim Listing Pursuant to 37 C.F.R. § 42.121, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, 12 pages. |
Patent Owner's Motion to Amend Appendix—Claim Listing pursuant to 37 C.F.R. § 42.121, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, 13 pages. |
Transcript of Videotaped Deposition of Robert John Hansman, Jr.,-SZ DJI Technology Co., Ltd., and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Boston, Massachusetts, Aug. 31, 2018, 163 pages. |
Transcript of Deposition of Edmond Murphy, SZ DJI Technology Co., and Parrot Inc. v. Synergy Drone LLC, Case Nos. IPR2018-00204, IPR2018-00205, IPR2018-00206, IPR2018-00207. IPR2018-00208, U.S. Pat. No. 8,200,375, Dec. 18, 2018, 174 pages. |
Plaintiff Synergy Drone, LLC's Corrected Opening Claim Construction Brief, Western District of Texas Austin Division, Civil Action Nos. 1:17-cv-00242-LY and 1:17-cv-00243-LY, filed Apr. 23, 2018, 25 pages. |
Declaration of R. John Hansman, Jr., Ph D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, dated Nov. 22, 2017, 274 pages. |
Declaration of R. John Hansman, Jr., Ph D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, dated Nov. 22, 2017, 274 pages. |
Declaration of R. John Hansman, Jr., Ph D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, dated Nov. 22, 2017, 274 pages. |
Declaration of R. John Hansman, Jr., Ph D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, dated Nov. 22, 2017, 274 pages. |
Declaration of R. John Hansman, Jr., Ph D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, dated Nov. 22, 2017, 274 pages. |
Hansman, Robert John, JR., Curriculum Vitae, 32 pages. |
Miwa, M. et al., “Remote Control Support System Aimed at Support for Aerial Photography Operations by Means of Unmanned Helicopters”, Proceedings of 2007 JSME Conference on Robotics and Mechatronics, May 2007, Translation included, 34 pages. |
Declaration of Coral Sheldon-Hess dated Nov. 17, 2017, 39 pages. |
Declaration of Dr. Jay P. Kesan, Ph.D., J.D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, dated Sep. 11, 2018,44 pages. |
Declaration of Dr. Jay P. Kesan, Ph.D., J.D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, dated Sep. 11, 2018, 44 pages. |
Declaration of Dr. Jay P. Kesan, Ph.D., J.D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, dated Sep. 11, 2018, 44 pages. |
Declaration of Dr. Jay P. Kesan, Ph.D., J.D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, dated Sep. 11, 2018, 44 pages. |
Declaration of Dr. Jay P. Kesan, Ph.D., J.D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, dated Sep. 11, 2018, 44 pages. |
Declaration of Edmond J. Murphy, Ph.D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, dated Dec. 7, 2018, 56 pages. |
Declaration of Edmond J. Murphy, Ph.D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, dated Sep. 11, 2018, 56 pages. |
Declaration of Edmond J. Murphy, Ph.D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, dated Dec. 7, 2018, 56 pages. |
Declaration of Edmond J. Murphy, Ph.D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, dated Dec. 7, 2018, 56 pages. |
Declaration of Edmond J. Murphy, Ph.D., SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, dated Dec. 7, 2018, 56 pages. |
Definition of “Proportional”, The American Heritage College Dictionary, Third Edition, Houghton Mifflin Company, 1997, p. 1097. |
Definition of “Motion”, Webster's New Universal Unabridged Dictionary, Deluxe Second Edition, Dorset & Baber, 1983, p. 1173. |
Dictionary of Aeronautical English, Fitzroy Dearborn Publishers, 1999, p. 150. |
McGraw-Hill Encyclopedia of Science and Technology, Seventh Edition, 1992, p. 817. |
Contents of U.S. Pat. No. 8,200,375 issued Jun. 12, 2012, USPTO, certified Jul. 11, 2017, pp. 1 through 150. |
Sato, A. “The RMAX Helicopter UAV,” <www.dtic.mil/cgi-bun/GetTRDoc?Location=UZ&doc=GetTRDoc/pdf&AD=ADA427393>, Yamaha Motor Co., Ltd., Sep. 2, 2003, 11 pages. |
Hanlon, “Yamaha's RMAX—the worlds most advanced non-military UAV,” <https://newatlas.com/go/2440/>, updated Nov. 19, 2004, 5 pages. |
Petition for Inter Partes Review for U.S. Pat. No. 9,079,116, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, dated Nov. 22, 2017, 74 pages. |
Petition for Inter Partes Review for U.S. Pat. No. 8,380,368, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, dated Nov. 22, 2017, 77 pages. |
Petition for Inter Partes Review for U.S. Pat. No. 8,649,918, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, dated Nov. 22, 2017, 78 pages. |
Petition for Inter Partes Review for Patent No. 9,568,913, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, dated Nov. 22, 2017, 78 pages. |
Petition for Inter Partes Review for U.S. Pat. No. 8,200,375, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, dated Nov. 22, 2017, 81 pages. |
Miwa et al., “Remote Control Support System for Aerial Photograph,” Nov. 24-25, 2007, pp. 227-229. |
Thornberg et al., “Sikorsky Aircraft's Unmanned Aerial Vehicle, Cypher: System Description and Program Accomplishments,” Presented at the American Helicopter Society 51st Annual Forum, Fort Worth, TX, May 9-11, 1995, pp. 804 through 811. |
Power of Attorney of Synergy Drone, LLC,SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Dec. 13, 2017, 3 pages. |
Power of Attorney of Synergy Drone, LLC,SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Dec. 13, 2017, 3 pages. |
Power of Attorney of Synergy Drone, LLC,SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Dec. 13, 2017, 3 pages. |
Power of Attorney of Synergy Drone, LLC,SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Dec. 13, 2017, 3 pages. |
Power of Attorney of Synergy Drone, LLC,SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Dec. 13, 2017, 3 pages. |
Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Dec. 13, 2017, 4 pages. |
Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Dec. 13, 2017, 4 pages. |
Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Dec. 13, 2017, 4 pages. |
Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Dec. 13, 2017, 4 pages. |
Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Dec. 13, 2017, 4 pages. |
Order Conduct Proceedings 37 C.F.R. § 42.5, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Parrot Inc. v. Drone-Control, LLC, Case Nos. IPR2018-00204, IPR2018-00205, IPR2018-00206, IPR2018-00207, IPR2018-00208, Feb. 7, 2019, 4 pages. |
“Twister Bell Medevac: Ready to Fly 4 Channel R/C Helicopter Assembly & Flight Training guide,” Exhibit A, J. Perkins Distribution, <http://www.modelengines.com.au>, 2006, 32 pages. |
Miwa et al., “Remote Control Support System for R/C Helicopter,” Service Robotics and Mechatronics, Springer, London, 2010, pp. 125-130. |
Cooper et al., “Sikorsky Aircraft UAV Development,” Nineteenth European Rotorcraft Forum, Paper No. D3, Sep. 14-16, 1993, 10 pages. |
Draper, “Advanced UMV Operator Interfaces,” Air Force Research Laboratory, Dec. 2005, 11 pages. |
Conte, “Navigation Functionalities for an Autonomous UAV Helicopter,” Linköping Studies in Science and Technology, Thesis No. 1307, Mar. 2007, 127 pages. |
“Yamaha's RMAX Series Unmanned Helicopter,” Yamaha News No. 6, Yamaha Motor Co., Ltd., Nov. 1, 2003, 16 pages. |
Cycon et al., “Progressive Engagement Clutch,” Australian Patent Application No. 66870/90, Application Date Nov. 22, 1990, 16 pages. |
Carstens, “Development of a Low-Cost, Low-Weight Flight Control System for an Electrically Powered Model Helicopter,” Stellenbosch University, Apr. 2005, 168 pages. |
Gerig, “Modeling, guidance, and control of aerobatic maneuvers of an autonomous helicopter,” ETH Zürich Research Collection, Dissertation No. 17805, 2008, 179 pages. |
McCormack, “The Use of Small Unmanned Aircraft by the Washington State Department of Transportation,” Research Report, Report No. WA-RD 703.1, Agreement T4118. Task 04, Unmanned Aerial Vehicles, Jun. 2008, 27 pages. |
“Twister Aggressor2.4: Ready to Fly 4 Channel R/C Helicopter Assembly & Flight Training guide,” J.Perkins Distribution, <http://modelengines.com.au>, 2008, 28 pages. |
“RMAX G1,” Yamaha, <https://global.yamaha-motor.com/jp/news/2005/1017/rmax_g1.html>, Oct. 17, 2005, 3 pages. |
“TypeIIG (RMAX),” Yamaha, <https://global.yamaha-motor.com/jp/news/2002/0925/sky.html>, Sep. 25, 2002, 3 pages. |
Fang, “Design of Flight Control and Managing Computer for a Small Reconnaissance UAV,” Institute of UAV, Northwestern Polytechnical University, Xian 710072, China, ,<http://www.cqvip.com>, May 27, 2003, 3 pages. |
Pallett et al., “Automatic Flight Control,” Fourth Edition, Blackwell Scientific Publications, Oxford, E. H. J. Pallett & S. Coyle, 1993, 3 pages. |
Hall et al., “Synthesis of Hover Autopilots for Rotary Wing VTOL Aircraft,” SUDAAR No. 446, Guidance and Control Laboratory, Center for Systems Research, Department of Aeronautics and Astronautics, Stanford University, Jun. 1972, 31 pages. |
Twister Bell Medevac 2.4: Ready to Fly 4 Channel R/C Helicopter Assembly & Flight Training guide, J. Perkins Distribution, <http://www.jperkinsdistribution.co.uk>, 2007, 32 pages. |
Kim et al., “Mathematical Modeling and Experimental Identification of a Model Helicopter,” AIAA Journal of Guidance, Control, and Dynamics, Aug. 31, 2000, 34 pages. |
Matsushima et al., “Remote Control Support System for AerialPhotograph,” Proceedings of the 2007 JSME Conference on Robotics and Mechatronics, 2A2-A07, 2007, 34 pages. |
Sakamoto, “Industrial-use Unmanned Helicopter RMAX Type II G,” Yamaha Motor Technical Review, Dec. 20, 2002, 4 pages. |
“Blade CX2 Manual,” E-flite, Horizon Hobby, Inc., 2006, 48 pages. |
Voicheck, “An introductory guide for operating Radio Controlled Helicopters,” <http://prism2.mem.drexel.edu/˜voicheck/>, 2007, 52 pages. |
Bouabdallah et al., “Design and Control of an Indoor Coaxial Helicopter,” Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference, Jan. 15, 2007, 6 pages. |
“Blade CP Pro Manual,” E-flite, Horizon Hobby, Inc., 2006, 64 pages. |
Duranti et al., “In-flight Identification of the Augmented Flight Dynamics of the Rmax Unmanned Helicopter,” 17th IFAC Symposium on Automatic Control in Aerospace, International Federation of Automatic Control, 2007, 7 pages. |
Moir et al., “Aircraft Systems Mechanical, electrical, and avionics subsystems integration,” Third Edition, John Wiley & Sons, Ltd., Jun. 5, 2008, 7 pages. |
Nakata et al., “Remote Control Support System for R/C Helicopter,” Proceedings of 2006 JSME Conf. on Robotics & Mechatronics, 2P2-C14, 2006, 8 pages. |
Walsh et al., “The Sikorsky Cypher® UAV: A Multi-Purpose Platform with Demonstrated Mission Flexibility,” American Helicopter Society 54th Annual Forum, May 1998, 9 pages. |
Miwa et al., “Evaluation of Remote Control Support system for Unmanned Helicopter,” Nov. 4, 2010, pp. 1034-1036. |
Murphy et al., “Applications for mini VTOL UAV for law enforcement,” SPIE Proceedings, vol. 3577, Nov. 1998, pp. 35-43. |
How et al., “Real-Time Indoor Autonomous Vehicle Test Environment,” IEEE Control Systems Magazine, Apr. 2008, pp. 51-64. |
Ramos et al., “Environment for Unmanned Helicopter Control System Development: Application Examples,” IEEE, 1995, pp. 532-533. |
Decision Granting Institution of Inter Partes Review 35 U.S.C. § 314(a), SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Jun. 13, 2018, 24 pages. |
Decision Granting Institution of Inter Partes Review 35 U.S.C. § 314, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Jun. 29, 2018, 28 pages. |
Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, Ltd., Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Jan. 4, 2018, 6 pages. |
Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, Ltd., Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Jan. 4, 2018, 6 pages. |
Notice of Stipulation Adjusting Due Dates 1-3, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Aug. 31, 2018, 3 pages. |
Notice of Stipulation to Modify Due Dates 2, 3, 4, and 5, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Dec. 12, 2018, 3 pages. |
Notice of Stipulation to Modify Due Dates 2, 3, 4, and 5, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Dec. 12, 2018, 3 pages. |
Notice of Stipulation to Modify Due Dates 2, 3, and 4, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC,Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Dec. 12, 2018, 3 pages. |
Order Trial Hearing 37 C.F.R. § 42.70, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case Nos. IPR2018-00204, IPR2018-00205, IPR2018-00206, IPR2018-00207, IPR2018-00208, Feb. 5, 2019, 6 pages. |
Parties' Joint Request for Oral Argument, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Feb. 1, 2019, 9 pages. |
Parties' Joint Request for Oral Argument, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Feb. 1, 2019, 9 pages. |
Parties' Joint Request for Oral Argument, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Feb. 1, 2019, 9 pages. |
Patent Owner's Motion to Amend Pursuant to 37 C.F.R. § 42.121, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Sep. 11, 2018, 16 pages. |
Patent Owner's Motion to Amend Pursuant to 37 C.F.R. § 42.121, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Sep. 11, 2018, 18 pages. |
Patent Owner's Notice of Deposition of R. John Hansman, Jr., Ph. D. Under 37 C.F.R. § 42.53, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Aug. 10, 2018, 3 pages. |
Patent Owner's Notice of Deposition of R. John Hansman, Jr., Ph. D. Under 37 C.F.R. § 42.53, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Aug. 10, 2018, 3 pages. |
Patent Owner's Reply to Petitioners' Opposition to Motion to Amend, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Jan. 14, 2019, 16 pages. |
Patent Owner's Reply to Petitioners' Opposition to Motion to Amend, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Jan. 14, 2019, 16 pages. |
Patent Owner's Reply to Petitioners' Opposition to Motion to Amend, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Jan. 14, 2019, 16 pages. |
Patent Owner's Response to Petition Pursuant to 37 C.F.R. § 42.107(a), SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Dec. 7, 2018, 20 pages. |
Patent Owner's Response to Petition Pursuant to 37 C.F.R. § 42.107(a), SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Dec. 7, 2018, 20 pages. |
Patent Owner's Response to Petition Pursuant to 37 C.F.R. § 42.107(a), SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Sep. 11, 2018, 20 pages. |
Patent Owner's Sur-Reply to Petioners' Reply, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Jan. 14, 2019, 20 pages. |
Patent Owner's Sur-Reply to Petitioners' Reply, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Jan. 14, 2019, 20 pages. |
Patent Owner's Updated Notice of Deposition of R. John Hansman, Jr., Ph. D. Under 37 C.F.R. § 42.53, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Aug. 29, 2018, 3 pages. |
Patent Owner's Updated Notice of Deposition of R. John Hansman, Jr., Ph.D. Under 37 C.F.R. § 42.53, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR 2018-00207, U.S. Pat. No. 9,079,116, Aug. 29, 2018, 3 pages. |
Petitioners' Updated Exhibit List (as of Dec. 31, 2018), SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Dec. 31, 2018, 4 pages. |
Petitioners' Notice of Deposition of Dr. Edmond J. Murphy, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Dec. 11, 2018, 3 pages. |
Petitioners' Notice of Deposition of Dr. Edmond J. Murphy, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Dec. 11, 2018, 3 pages. |
Petitioners' Notice of Deposition of Dr. Edmond J. Murphy, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Dec. 11, 2018, 3 pages. |
Petitioners' Opposition to Motion to Amend, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Dec. 31, 2018, 29 pages. |
Petitioners' Opposition to Motion to Amend, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Dec. 31, 2018, 29 pages. |
Petitioners' Opposition to Motion to Amend, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Dec. 31, 2018, 29 pages. |
Petitioner's Power of Attorney, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review of U.S. Pat. No. 9,079,116, Nov. 16, 2017, 2 pages. |
Petitioner's Power of Attorney, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review of U.S. Pat. No. 9,079,116, Nov. 16, 2017, 3 pages. |
Petitioner's Power of Attorney, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review of U.S. Pat. No. 9,568,913, Nov. 16, 2017, 2 pages. |
Petitioner's Power of Attorney, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review of U.S. Pat. No. 9,568,913, Nov. 16, 2017, 3 pages. |
Petitioners' Reply, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Dec. 31, 2018, 28 pages. |
Petitioners' Reply, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Dec. 31, 2018, 28 pages. |
Petitioners' Sur-Reply to Patent Owner's Reply to Petitioners' Opposition to Motion to Amend, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Jan. 28, 2019, 15 pages. |
Petitioners' Sur-Reply to Patent Owner's Reply to Petitioners' Opposition to Motion to Amend, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Jan. 28, 2019, 14 pages. |
Petitioners' Sur-Reply to Patent Owner's Reply to Petitioners' Opposition to motion to Amend, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Jan. 28, 2019, 15 pages. |
Petitioners' Updated Exhibit List (as of Dec. 31, 2018), SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Dec. 31, 2018, 4 pages. |
Petitioners' Updated Exhibit List (as of Dec. 31, 2018), SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Dec. 31, 2018, 4 pages. |
Petitioners' Updated Mandatory Notices, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Feb. 1, 2019, 4 pages. |
Petitioners' Updated Mandatory Notices, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Feb. 1, 2019, 4 pages. |
Petitioners' Updated Mandatory Notices, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Feb. 1, 2019, 4 pages. |
Power of Attorney of Drone-Control, LLC, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Dec. 18, 2018, 3 pages. |
Power of Attorney of Drone-Control, LLC, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Aug. 28, 2018, 3 pages. |
Power of Attorney of Drone-Control, LLC, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Dec. 18, 2018, 3 pages. |
Power of Attorney of Drone-Control, LLC, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Aug. 28, 2018, 3 pages. |
Power of Attorney of Drone-Control, LLC, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Dec. 18, 2018, 3 pages. |
Scheduling Order 37 C.F.R. § 42.5, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Jun. 13, 2018, 9 pages. |
Scheduling Order and General Instructions 37 C.F.R. § 42.5, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Jun. 29, 2018, 10 pages. |
Updated Mandatory Notice by Patent Owner Under 37 § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Dec. 18, 2018, 5 pages. |
Updated Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Aug. 29, 2018, 5 pages. |
Updated Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00207, U.S. Pat. No. 9,079,116, Dec. 18, 2018, 5 pages. |
Updated Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Aug. 29, 2018, 5 pages. |
Updated Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00208, U.S. Pat. No. 9,568,913, Dec. 18, 2018, 5 pages. |
Decision Granting Institution of Inter Partes Review 35 U.S.C. § 314(a), SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, May 31, 2018, 23 pages. |
Decision Granting Institution of Inter Partes Review 35 U.S.C. § 314(a), SZ DJI Technology Co., Ltd. and Parrot Inc., v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, May 31, 2018, 21 pages. |
Decision Granting Institution of Inter Partes Review 35 U.S.C. § 314, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, May 31, 2018, 26 pages. |
Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Dec. 4, 2017, 5 pages. |
Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, mailed Dec. 4, 2017, 5 pages. |
Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response, SZ DJI Technology Co., Ltd. and Parrot Inc.v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, mailed Dec. 4, 2017, 5 pages. |
Notice of Stipulation Adjusting Due Dates 1-3, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Aug. 29, 2018, 3 pages. |
Notice of Stipulation Adjusting Due Dates 1-3, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Aug. 29, 2018, 3 pages. |
Notice of Stipulation Adjusting Due Dates 1-3, SZ DJI Technology Co., Ltd. and Parrot Inc.v. Drone-Control, LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Aug. 31, 2018, 3 pages. |
Notice of Stipulation to Modify Due Dates 2, 3, 4, and 5, SZ DJI Technology and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Dec. 12, 2018, 3 pages. |
Notice of Stipulation to Modify Due Dates 2, 3, 4, and 5, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Dec. 12, 2018, 3 pages. |
Order Conduct of the Proceeding 37 C.F.R. § 42.5, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case Nos. IPR2018-00204, IPR2018-00205, IPR2018-00206, IPR2018-00207, IPR2018-00208, Nov. 21, 2018, 5 pages. |
Order Conduct of the Proceeding 37 C.F.R. § 42.5, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case Nos. IPR2018-00204, PR2018-00205, IPR2018-00206, IPR2018-00207, IPR2018-00208, Aug. 23, 2018, 5 pages. |
Parties' Joint Request for Oral Argument, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Feb. 1, 2019, 9 pages. |
Parties' Joint Request for Oral Argument, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC. Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Feb. 1, 2019, 9 pages. |
Patent Owner's Motion to Amend Pursuant to 37 C.F.R. § 42.121, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Sep. 11, 2018, 15 pages. |
Patent Owner's Motion to Amend Pursuant to 37 C.F.R. § 42.121, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Sep. 11, 2018, 15 pages. |
Patent Owner's Notice of Deposition of R. John Hansman, Jr., Ph.D. Under 37 C.F.R. § 42.53, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Aug. 10, 2018, 3 pages. |
Patent Owner's Notice of Deposition of R. John Hansman, Jr., Ph.D. Under 37 C.F.R. § 42.53, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Aug. 10, 2018, 3 pages. |
Patent Owner's Notice of Deposition of R. John Hansman, Jr., Ph.D. Under 37 C.F.R. § 42.53, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone, LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Aug. 10, 2018, 3 pages. |
Patent Owner's Reply to Petitioners' Opposition to Motion to Amend, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Jan. 14, 2019, 16 pages. |
Patent Owner's Response to Petition Pursuant to 37 C.F.R. § 42.107(a), SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Dec. 7, 2018, 20 pages. |
Patent Owner's Response to Petition Pursuant to 37 C.F.R. § 42.107(a), SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Sep. 11, 2018, 20 pages. |
Patent Owner's Response to Petition Pursuant to 37 C.F.R. § 42.107(a), SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Dec. 7, 2018, 20 pages. |
Patent Owner's Response to Petition Pursuant to 37 C.F.R. § 42.107(a), SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Sep. 11, 2018, 20 pages. |
Patent Owner's Response to Petition Pursuant to 37 C.F.R. § 42.107(a), SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Sep. 11, 2018, 20 pages. |
Patent Owner's Sur-Reply to Petitioners' Reply, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Jan. 14, 2019, 20 pages. |
Patent Owner's Sur-Reply to Petitioners' Reply, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Jan. 14, 2019, 20 pages. |
Patent Owner's Updated Notice of Deposition of R. John Hansman, Jr., Ph.D. Under 37 C.F.R. § 42.53, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Aug. 29, 2018, 3 pages. |
Patent Owner's Updated Notice of Deposition of R. John Hansman, Jr., Ph.D. Under 37 C.F.R. § 42.53, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Aug. 29, 2018, 3 pages. |
Patent Owner's Updated Notice of Deposition of R. John Hansman, Jr., Ph.D. Under 37 C.F.R. § 42.53, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Aug. 29, 2018, 3 pages. |
Petitioners' Notice of Deposition of Dr. Edmond J. Murphy, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Dec. 11, 2018, 3 pages. |
Petitioners' Notice of Deposition of Dr. Edmond J. Murphy, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Dec. 11, 2018, 3 pages. |
Petitioners' Notice of Deposition of Dr. Edmond J. Murphy, SZ DJI Technology Co., Ltd. and Parrot Inc., v. Synergy Drone LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Dec. 11, 2018, 3 pages. |
Petitioners' Opposition to Motion to Amend, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Dec. 31, 2018, 29 pages. |
Petitioner's Power of Attorney, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review of U.S. Pat. No. 8,200,375, Nov. 16, 2017, 2 pages. |
Petitioner's Power of Attorney, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review of U.S. Pat. No. 8,200,375, Nov. 16, 2017, 3 pages. |
Petitioner's Power of Attorney, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review of U.S. Pat. No. 8,380,368, Nov. 16, 2017, 2 pages. |
Petitioner's Power of Attorney, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review of U.S. Pat. No. 8,380,368, Nov. 16, 2017, 3 pages. |
Petitioner's Power of Attorney, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review of U.S. Pat. No. 8,649,918, Nov. 16, 2017, 2 pages. |
Petitioner's Power of Attorney, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Inter Partes Review of U.S. Pat. No. 8,649,918, Nov. 16, 2017, 3 pages. |
Petitioners' Reply, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Dec. 31, 2018, 28 pages. |
Petitioners' Reply, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Dec. 31, 2018, 28 pages. |
Petitioners' Sur-Reply to Patent Owner's Reply to Petitioners' Opposition to Motion to Amend, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Dec. 28, 2019, 14 pages. |
Petitioners' Updated Exhibit List (as of Dec. 31, 2018), SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Dec. 31, 2018, 4 pages. |
Petitioners' Updated Exhibit List (as of Dec. 31, 2018), SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Dec. 31, 2018, 4 pages. |
Petitioners' Updated Mandatory Notices, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Feb. 1, 2019, 4 pages. |
Petitioners' Updated Mandatory Notices, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Feb. 1, 2019, 4 pages. |
Power of Attorney of Drone-Control, LLC, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Aug. 28, 2018, 3 pages. |
Power of Attorney of Drone-Control, LLC, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Aug. 29, 2018, 3 pages. |
Power of Attorney of Drone-Control, LLC, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Dec. 18, 2018, 3 pages. |
Power of Attorney of Drone-Control, LLC, SZ DJI Technology Co., Ltd. and Parrot Inc.v. Drone-Control, LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Dec. 18, 2018, 3 pages. |
Power of Attorney of Drone-Control, LLC, SZ DJI Technology Co., Ltd. and Parrot Inc.v. Drone-Control, LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Aug. 28, 2018, 3 pages. |
Scheduling Order 37 C.F.R. § 42.5, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Synergy Drone LLC, Case and Patent Nos. IPR2018-00204 (U.S. Pat. No. 8,200,375), IPR2018-00205 (U.S. Pat. No. 8,380,368) IPR2018-00206 (U.S. Pat. No. 8,649,918), Jun. 1, 2018, 9 pages. |
Updated Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case IPR2018-00205, U.S. Pat. No. 8,380,368, Dec. 18, 2018, 5 pages. |
Updated Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZI DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Aug. 29, 2018, 5 pages. |
Updated Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00204, U.S. Pat. No. 8,200,375, Dec. 18, 2018, 5 pages. |
Updated Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00205, U.S. Pat. No. 8,380,368, Aug. 29, 2018, 5 pages. |
Updated Mandatory Notice by Patent Owner Under 37 CFR § 42.8, SZ DJI Technology Co., Ltd. and Parrot Inc. v. Drone-Control, LLC, Case No. IPR2018-00206, U.S. Pat. No. 8,649,918, Aug. 29, 2018, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20190121354 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12029470 | Feb 2008 | US |
Child | 13471642 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15392687 | Dec 2016 | US |
Child | 16229994 | US | |
Parent | 14724037 | May 2015 | US |
Child | 15392687 | US | |
Parent | 14102995 | Dec 2013 | US |
Child | 14724037 | US | |
Parent | 13688886 | Nov 2012 | US |
Child | 14102995 | US | |
Parent | 13471642 | May 2012 | US |
Child | 13688886 | US |