This application is based on and claims the priority under 35 U.S.C. §119 of German Patent Application 103 56 320.2, filed on Nov. 28, 2003, the entire disclosure of which is incorporated herein by reference.
The invention relates to a method as well as a remotely-controlled or especially radio-controlled clock for acquiring time and/or date information from a time signal transmitted by a time signal transmitter.
It is conventionally known to provide time reference information in time signals that are transmitted by radio transmission from a time signal transmitter. Such a signal may also be called a time marker signal, a time data signal, a time code signal, or a time reference signal, for example, but will simply be called a time signal herein for simplicity. The time signal transmitter obtains the time reference information, for example, from a high precision atomic clock, and broadcasts this highly precise time reference information via the time signal. Thus, any radio-controlled clock receiving the signal can be synchronized or corrected to display the precise time in conformance with the time standard established by the atomic clock that provides the time reference information for the time signal transmitter. The time signal is especially a transmitter signal of short duration, that serves to transmit or broadcast the time reference information provided by the atomic clock or other suitable time reference emitter. In this regard, the time signal is a modulated oscillation generally including plural successive time markers, which each simply represent a pulse when demodulated, whereby these successive time markers represent or reproduce the transmitted time reference with a given uncertainty.
A time signal transmitter as mentioned above is, for example, represented by the German longwave transmitting station DCF-77, which continuously transmits amplitude-modulated longwave time signals controlled by atomic clocks to provide the official atomic time scale for Central European Time (CET), with a transmitting power of 50 kW at a frequency of 77.5 kHz. In other countries, such as Great Britain, Japan, China, and the United States, for example, similar transmitters transmit time information on carrier waves in a longwave frequency range from 40 kHz to 120 kHz. In all of the above mentioned countries, the time information is transmitted in the time signal by means of a succession of time frames organized in time code telegrams that each have a duration of exactly one minute.
From the 21st bit to the 59th bit, the time and date informations are transmitted in a Binary Coded Decimal (BCD) code, whereby the respective data are pertinent for the next subsequent or following minute. In this regard, the bits in the range D contain information regarding the minute, the bits in the range E contain information regarding the hour, the bits in the range F contain information regarding the calendar day or date, the bits in the range G contain information regarding the day of the week, the bits in the range H contain information regarding the calendar month, and the bits in the range I contain information regarding the calendar year. These informations are present bit-by-bit in encoded form. Furthermore, so-called test or check bits P1, P2, P3 are additionally provided respectively at the ends of the bit ranges D, E and I. The 60th bit or time frame of the time code telegram A is not occupied, i.e. is “blank” and serves to indicate the beginning of the next time frame. Namely, the minute marker M following the blank interval represents the beginning of the next time information or code telegram A.
The structure and the bit occupancy of the encoding scheme or telegram A shown in
The transmission of the time marker or code information is performed by amplitude modulating a carrier frequency with the individual second markers. More particularly, the modulation comprises a dip or lowering or reduction X1, X2 (or alternatively an increase or raising) of the carrier signal X at the beginning of each second, except for the 59th second of each minute, when the signal is omitted or blank as mentioned above. In this regard, in the case of the time signal transmitted by the German transmitter DCF-77, the carrier amplitude of the signal is reduced, to about 25% of the normal amplitude, at the beginning of each second for a duration X1 of 0.1 seconds or for a duration X2 of 0.2 seconds, for example as shown in present
These amplitude reductions or dips X1, X2 of differing duration respectively define second markers or data bits in decoded form. The differing time durations of the second markers serve for the binary encoding of the time of day and the date, whereby the second markers X1 with a duration of 0.1 seconds correspond to the binary “0” and the second markers X2 with the duration of 0.2 seconds correspond to the binary “1”. Thus the modulation represents a binary pulse duration modulation. As mentioned above, the absence of the 60th second marker announces the next following minute marker.
Thus, in combination with the respective second, it is then possible to evaluate the time information transmitted by the time signal transmitter.
In present-day conventional radio-controlled clocks, all 59 second markers of each respective minute are always decoded and evaluated for acquiring and processing the time information. Moreover, the evaluation and determination of the exact correct time and the exact correct date are thus only possible if all 59 second markers of a respective minute have been unambiguously received and recognized, and thus a corresponding binary value can be unambiguously allocated to each one of these second markers in the evaluation. It is thus problematic in such conventional methods and techniques, that the received time signal is often considerably obscured or falsified by superimposed interference signals arising from various interference sources or fields. Depending on the type and scope of the interference signals, the interference can thus lead to an erroneous reception and evaluation of the time signal. In this context, the term “erroneous” means that errors are made in the determination and allocation of binary values to the bits in the evaluation of the received time code telegram or minute protocol. Namely, due to the interference and the consequent erroneous binary determination, at least one of the data bits of the minute protocol is erroneously evaluated.
Generally, when existing conventional radio-controlled clocks and receiver circuits suffer from such interference during the reception of a time signal, which no longer permits the error-free and unambiguous evaluation of the second markers of the time code telegram, the evaluation and the reception of the time signal for the present progressing minute are usually terminated. Then, the reception and evaluation begins anew for the next time code telegram or minute protocol of the time signal. In this case, the reception and evaluation must be continued so long until a correct reception and evaluation of the time signal was possible for an entire minute, i.e. during an entire time code telegram or minute protocol, so that all 59 second bits have been correctly received and evaluated and are thus available for determining the correct time and the correct date. Thereafter, the reception continues for another minute to again evaluate a complete time code telegram, so as to then carry out a comparison of the two evaluated time code telegrams for the purpose of a plausibility check thereof.
In environments having a great deal of interference, for example in large cities, in the proximity of industrial plants or complexes, in office buildings in which a large number of data monitors and computer devices are present, or the like, there is typically a large degree of interference arising due to the operation of many electrical and electronic devices. This creates a background “inference fog” which strongly interferes with the proper reception and evaluation of the time signal. Namely, with such an “interference fog” it is often only possible to correctly receive and evaluate a time code telegram after a rather long time, i.e. after the passage of several time code telegrams that suffered erroneous reception or evaluation. As a result, the time signal receiver of the radio-controlled clock must remain active for a correspondingly long time. This becomes problematic in time signal receivers having a limited energy supply, for example powered by a battery or an accumulator, because the limited available electrical energy will be used-up rather quickly since the signal receiving and evaluating circuitry must remain active for long periods of time, i.e. a high duty ratio of active operating time relative to inactive or standby time.
If the above types of interference are severe, it may occur that an interference-free proper reception and evaluation of the time signal only becomes possible during the night hours, when at least some of the interference sources (e.g. business office computers, industrial plant equipment, or the like) are switched off. As a result, the erroneous and thus unsuccessful reception of the time signal can continue during an entire day, until a proper reception of the time signal is achieved during the night. During the daytime hours with no acquisition of the time reference signal, the displayed clock time may deviate from the true reference time provided by the time signal. Moreover, when newly starting the time signal receiver, i.e. the radio-controlled clock, for example after exchanging the batteries thereof or the like, the clock will display the wrong time until the time signal is correctly received and evaluated, which might only be achieved during the subsequent night, as explained above.
For the above reasons, it is needed in this field, to reduce the evaluation overhead, and avoid the problems of reception interference as described above, in order to reduce the power consumption by the time signal receiver, and in order to enable proper reception and evaluation of the time signal so as to achieve synchronization of the clock with the time reference information more quickly despite the existence of interference.
In view of the above, it is an object of the invention to reduce the interference sensitivity in the acquisition and evaluation of time information from a transmitted time signal. The invention further aims to avoid or overcome the disadvantages of the prior art, and to achieve additional advantages, as apparent from the present specification. The attainment of these objects is, however, not a required limitation of the claimed invention.
The above objects have been achieved according to the invention in a method for acquiring time and/or date information from a received time signal, wherein the time signal comprises a plurality of time frames of constant duration, wherein each time frame includes at least one data bit, and the data bits represent the time and/or date information. Especially according to the invention, only a predetermined portion (less than all) of the data bits of a minute protocol of the time code telegram of the received time signal are evaluated for acquiring the time and/or date information. A final determination of the time and/or date information is made based on the evaluation of the predetermined portion of the data bits, rather than requiring an evaluation of all of the data bits of the entire minute protocol.
The above objects have further been achieved according to the invention in a remote-controlled and especially a radio-controlled clock for receiving and acquiring time and/or date information from a received time signal, comprising a receiver circuit adapted and arranged to receive a time signal transmitted by a time signal transmitter, a decoding arrangement or unit adapted to decode at least a predetermined portion of the data bits of the time code telegram of the received time signal, and an evaluating arrangement or unit adapted to evaluate only a predetermined portion of the decoded data bits and determine a time and/or date information therefrom, especially by carrying out a method according to the invention.
The present invention is based on the underlying recognition, that the encoding scheme or time code telegram of a time signal transmitted by a time signal transmitter typically contains more data bits than are needed for evaluating the time and the date. Namely, the telegram includes additional data bits that provide other information not necessary for determining the time and/or the date. The basic idea of the present invention is thus not to decode and evaluate all 59 data bits or second markers of the time code telegram of a time signal for acquiring the time and/or date information. To the contrary, it is completely sufficient according to the invention if only some (i.e. a portion rather than all) of the data bits are decoded and evaluated. Advantageously, the decoded and evaluated portion of the data bits are only those data bits that are directly relevant and necessary for the time and/or date determination. On the other hand, the data bits that are not directly relevant and necessary for the time and/or date determination are initially not taken into consideration, so that any arising interference affecting these irrelevant and non-evaluated data bits will accordingly have no influence on the acquisition of the time and/or date information.
For example, in the typical time code telegram of the German time signal emitted by the German transmitter DCF-77 as described above, only the data bits in the range from the 21st bit to the 59th bit in the course of one minute of the code telegram are decoded and evaluated, since the relevant time and date informations are contained within this specified bit range of the time code telegram. Thereby, the number of data bits that must be decoded and evaluated is reduced from 59 data bits in the conventional method, to a maximum of 39 data bits according to the invention, for each minute of the transmitted time signal.
The other remaining (non-evaluated) data bits, i.e. the data bits in the range from the 1st to the 20th bit, contain essentially only general informations that are not necessarily required for the determination of the radio-controlled time of day and the radio-controlled date.
According to the invention, the interference immunity during the reception of a time signal is significantly increased by simply ignoring or not considering the data bits that are not necessary for the determination of the time and date information. Namely, in the conventional evaluation of all data bits of a time code telegram, it is to be expected that various interferences may affect individual data bits of the telegram. By ignoring or not considering individual bits in the telegram, which are not directly needed for determining the time and the date, the inventive method thus reduces the probability that the interference will have an influence on the decoding of the time signal. In other words, since only a portion or fraction of all of the data bits of the telegram is taken into consideration and evaluated in the inventive method, thereby the interference insensitivity or immunity of the method is also correspondingly increased.
An interference that affects an unimportant data bit that is not taken into consideration and not evaluated can thus have no direct effect on the reception of the time signal according to the invention. In other words, this means that the data bits that are not considered and not evaluated in the inventive method may be superimposed with an interference signal that would make an evaluation of these data bits entirely impossible, yet the interference has no influence on the proper execution of the inventive method. Namely, it is entirely irrelevant to the inventive method whether or not the unimportant and unevaluated bits are properly received without interference or entirely obscured by interference. Any existing interference of the unimportant and unevaluated data bits is no longer relevant to the inventive method and system, so that the overall method and system still provides an acceptable and reliable result of the determined time and date information, even when the received signal suffers more or less strongly from interference influences.
Through this manner of evaluation of the time signal, especially also the reception, security and reliability of radio-controlled clock systems can be significantly increased. The signal content of a received time signal can thus still be used according to the invention, even if the signal suffers interference that makes it impossible for software evaluation processes according to the conventional state of the art to decode the data bits for acquiring the time and date information. As a result, an increased reception distance or range of the reception of the time signals is possible for the user of the method and system according to the invention.
A further advantage of the present invention is seen in a reduction of the time between the initial start-up or resetting of a radio controlled clock (e.g. after replacing the batteries) and the time at which the correct radio-controlled time and date information is first available, especially in connection with the reception of time signals that have interference signals superimposed thereon. Especially in large cities, in which the available time signals are corrupted by the superposition of interference signals caused by electrical and electronic devices, the provision of a system that is immune or insensitive to interference in the reception of time signals is becoming evermore important.
According to the invention, since only some or a portion of the data bits of a time code telegram of a received time signal are decoded and/or evaluated, this also achieves a reduction of the computational effort, circuitry and general evaluation overhead in a computer or processor unit for carrying out the decoding and evaluating. This processor unit, which is typically embodied as a 4-bit micro-controller, can thus operate with a reduced overall power consumption, and/or remains increasingly available for other computational tasks, such as control tasks, monitoring tasks, the processing or provision of other informations, and the like. As mentioned, it is also significant that a reduction of the computational overhead also achieves a reduction of the power consumption and thus energy consumption, so that the local energy supply, which is often a limited energy supply (e.g. battery or accumulator), in a radio-controlled clock can have a longer operating life. This is an especially significant advantage relative to conventional systems, particularly in radio-controlled clocks and radio-controlled clock receivers that are embodied or incorporated in wrist watches.
The inventive method is especially suitable in those situations in which the data bits that do not contain any time and date informations have already been decoded and evaluated once previously, i.e. in a prior time code telegram during a prior minute. Typically, such data bits, which typically contain general coding information and test or check bits, change or vary less often than the data bits containing time and date informations. As a result, once these data bits relating to general coding information or the like have been evaluated in one time code telegram, they do not need to be continuously or repeatedly again decoded and evaluated in the following successive time code telegrams.
In a very advantageous embodiment of the invention, only those data bits that are directly relevant for determining the time are decoded and evaluated. Thus, in comparison to the above described embodiment of the inventive method, in this further embodiment even the data bits that contain the date information are not decoded and not evaluated. This alternative embodiment of the inventive method is beneficial because the date information, of course, does not change as often as the time information, and the local date information of the radio-controlled clock does not need to be updated and re-synchronized as often (essentially only when initially starting or restarting the clock). This alternative embodiment of the inventive method is especially also advantageous in radio-controlled clocks that do not even indicate or display the date information. For example, this applies to radio-controlled clocks having only an analog time display.
A particular example of this embodiment of the invention is given for the German time code telegram in the time signal transmitted by the German time signal transmitter DCF-77. Particularly, in this German time code telegram, it is sufficient if only the data bits in the range from the 21st bit to the 35th bit, i.e. the data bits giving the hour and minute information, within a given minute protocol are decoded and evaluated. Thereby, the number of data bits to be decoded and evaluated is reduced from 59 data bits in the prior art to 15 data bits according to the invention.
The 28th, 35th and 58th data bits respectively contain neither time information nor date information, but rather only test or check information. In a further embodiment of the invention, at least one (or all) of these data bits are also not decoded and not evaluated. Similarly, the 59th bit, which is vacant or unoccupied, as well as the 21st data bit, do not necessarily have to be taken into consideration.
In yet another embodiment of the present invention, the portion of the data bits that are not evaluated for acquiring the time and/or date informations are nonetheless decoded. After the decoding, but before the bit sequence is passed to the evaluation, these decoded data bits that are not necessary for acquiring the time and/or date information are replaced or represented by a prescribed filler bit or dummy bit. Such a filler bit or dummy bit is a bit having a predefined logic value, for example a logic 0 or a logic 1. The evaluating arrangement according to the invention is specifically designed and adapted to recognize and then ignore or not evaluate these filler bits or dummy bits.
In a further alternative to the preceding embodiment, the portion of the data bits that are not to be evaluated for acquiring the time and/or date informations are also not decoded, i.e. these bits are neither decoded nor evaluated.
The respective exact position of a given data bit in the time code telegram of the time signal is determined on the basis of a counter. In this regard, the count value of the counter is incremented or increased by one per each data bit beginning with a first data bit. Upon reaching the last data bit of a minute in the time code telegram of the time signal, the counter is again reset and begins anew to count up the data bits starting at the first data bit of the next successive minute. Alternatively, the counter may be decremented rather than incremented by one for each successive data bit.
Furthermore, a binary value is assigned or allocated to each respective data bit, whereby the binary value is derived from the duration of a characteristic parameter, e.g. the amplitude of the signal. Namely, a first duration of the change of the amplitude of the time signal represents a first logic value of the data bit, and a second duration of a change of the amplitude of the time signal represents a second logic value of the data bit. These first and second durations are predetermined by the particular encoding scheme or time code telegram of the time signal transmitter. Typically, the first logic value represents a logic “0” (low logic and voltage level) while the second logic value represents a logic “1” (high logic and voltage level). Of course, an opposite or reversed logic allocation is also useable according to the invention. In most time code telegrams of a time signal transmitted by a time signal transmitter, a relevant change or variation of the amplitude of the signal is specifically embodied as a temporary dip, lowering or reduction of the amplitude of the time signal. Of course, the opposite or reversed signal logic is also possible, namely carrying out the binary encoding through data bits represented by temporary increases or elevated pulses of the amplitude.
The invention further provides a control arrangement that has its input connected to an output of the above mentioned counter, and has its output connected to one or more control inputs of the decoding and evaluating arrangement. The counter value indicates at which position within the time code telegram a respective current decoded data bit or the corresponding time marker signal is actually and presently located. Dependent on the counter value of the counter, the control arrangement generates a selection signal, which is provided to the decoding and evaluating arrangement. The control arrangement thereby activates and controls the decoding and evaluating arrangement on the basis of the selection signal in such a manner so that only the data bits that contain or represent the desired date and/or time informations are selected. The selected data bits are then decoded and evaluated, and the corresponding date and/or time informations are determined from the evaluated bits.
Which data bits in a given time signal contain the date and/or time informations depends on the particular telegram format utilized by the time signal transmitter that is transmitting the given time signal. In this regard, the format of a time code telegram can vary more or less strongly in various different time signal transmitters. For this reason, in a very advantageous embodiment of the invention, the inventive apparatus includes a memory arrangement in which the pertinent parameters of various different formats of the possible time code telegrams of various different time signal transmitters are stored. For example, the memory arrangement can be embodied in the form of a look-up table, or as a hard-wired logic circuit, for example as a programmable logic array (PLA or PLD) circuit or a field-programmable logic array (FPLA) circuit.
In order that the invention may be clearly understood, it will now be described in connection with example embodiments thereof, with reference to the accompanying drawings, wherein:
In all of the drawing figures, the same elements and signals, as well as the elements and signals respectively having the same functions, are identified by the same reference numbers, unless the contrary is indicated.
The general format of an encoding scheme or time code telegram A as conventionally known in the time signal transmitted by the German time signal transmitter DCF-77 has been explained above in the Background Information section. Similarly, the time-variation of the amplitude-modulated time signal is schematically shown in the time diagram of
In comparison to
Furthermore, it can be provided according to the invention that the test or check bits P1, P2 and P3 are not taken into consideration because they are not absolutely necessary for acquiring the time and date informations. Thus, these test bits P1, P2 and P3 indicated in the conventional time code telegram A of
The portion shown in
In the example shown in
In the example shown in
On the other hand, the present inventive method is not influenced at all by the interference U during the first second marker X1 of the time frame Y1, because the data bit of the first time frame Y1 is not taken into consideration at all in the inventive method, since it is not relevant for the direct determination of the time and date. Accordingly, without regard to the actual amplitude or signal value received during the pertinent time portion of the first and second time frames Y1 and Y2, the inventive method substitutes or allocates a dummy bit, e.g. a logic “0” in the present example embodiment, for the corresponding second markers of these time frames Y1 and Y2. Thus, the second marker X1 of the first time frame Y1 has the dummy bit “0” allocated to it, even though it would not have been otherwise decodable due to the superimposed interference signal U.
Next in the inventive method, the two second markers X1 and X2 respectively in the time frames Y3 and Y4 are decoded. Namely, it so happens that there is no interference during the time frames Y3 and Y4, so that the amplitude dips X1 and X2 can be recognized during these time frames Y3 and Y4, and the respective duration thereof evaluated, so as to allocate a logic zero to the data bit in the time frame Y3 and allocate a logic one to the data bit in the time frame Y4. Then, for determining the time and date, these two data bits of the time frames Y3 and Y4 are evaluated (along with the further data bits that are relevant for the time and date determination). Advantageously, the two dummy bits that were inserted in place of the bit values in the time frames Y1 and Y2 are ignored in the further evaluation process, based on a bit evaluation control or selection signal provided by a controller as will be discussed below.
The inventive radio-controlled clock 1 further comprises a decoding arrangement or unit 6 that is connected after or downstream of the receiver circuit 5 and serves to decode the filtered, rectified and amplified time signal X′, which may be carried out according to conventionally known processes or techniques. An evaluating arrangement or unit 7 is connected after or downstream of the decoding arrangement 6 and serves to evaluate the decoded signal 8 that is output by the decoding arrangement 6. In this regard, the evaluating arrangement 7 is designed, constructed and adapted to process and evaluate the sequence of data bits received from the decoding unit 6 in the decoded signal 8, and to calculate or otherwise determine therefrom an exact time of day and an exact date, which may be carried out according to conventionally known processes or techniques. The evaluating arrangement 7 produces a corresponding output signal 12 dependent and based on and indicative of that determined time and date.
The radio-controlled clock 1 further comprises an electronic clock 9, of which the local clock time is controlled or regulated by a reference clock signal CLK generated by a clock quartz crystal or oscillator 10. The electronic clock 9 is further connected to a display 11 or some other indicator, by which the clock time is indicated. In addition to the local clock signal CLK, the electronic clock 9 also receives the output signal 12 of the time and date from the evaluating unit 7. The electronic clock 9 can then correct, update, or synchronize its displayed time and date information on the basis of the time and date information provided by the signal 12, which is based on the atomic clock time and date reference information provided through the time signal X.
Still further, the radio controlled clock 1 comprises a counter 13 having an input that receives the filtered, rectified and amplified and sampled time signal X′ provided at the output of the receiver circuit 5. Thus, the counter value of the counter 13 will be respectively incremented or decremented by one for each data bit beginning with a first data bit of one minute in the time code telegram of the time signal. Then, a counter value signal 14 provided at the output of the counter 13 indicates the existing counter value of the counter 13, which correspondingly indicates the relative time frame or bit position within the time code telegram that is being decoded and evaluated at present in the decoding and evaluating arrangements 6 and 7. This counter value signal 14 is provided to a control unit or arrangement 15, which, dependent on the counter value signal 14, generates a control signal 17 that is provided back to the decoding arrangement 6 and/or the evaluating arrangement 7.
Based on the control signal 17, the decoding arrangement 6 and/or the evaluating arrangement 7 will then ignore, i.e. not consider, not decode and/or not evaluate, one or more predetermined data bits or time frames within the respective time code telegram.
In other words, as generally described above, the control unit 15 instructs the decoding arrangement 6 and the evaluating arrangement 7 via the control signal 17, which data bits are not to be considered and which data bits are to be considered. For example, as discussed above, according to the invention only the data bits in the bit ranges D to I (
The radio-controlled clock 1 still further comprises a memory arrangement 16, in which various different bit selection protocols, i.e. respectively associated with various different time code telegram formats used in various different countries, are stored. For example, this memory arrangement or unit 16 can be embodied as a look-up table. In this manner, the inventive method may advantageously remain functional with various different time code telegram formats of the received time signal X, so that this radio-controlled clock 1 can be used in various different countries. Thus, more particularly, the memory arrangement 16 stores not only parameters or characteristic information about the respective time code telegram formats, but also respective informations indicating which specific bits in the various different telegram formats shall be ignored, i.e. not decoded and/or not evaluated, because they are not mandatory of the determination of the time and/or date as desired. The memory arrangement 16 may also store information regarding how an ignored data bit is to be further handled or processed, for example, whether it shall be replaced or occupied by a filler bit or a dummy bit, or whether it shall be neither decoded nor evaluated in the first place.
In the inventive radio-controlled clock 1, several components, for example the decoding arrangement 6, the evaluating arrangement 7, the counter 13, the control arrangement 15, and the memory arrangement 16 can be embodied in a program-controlled arrangement or particularly a micro-controller 20. Alternatively, the functions of these various units could be carried out in part or entirely in appropriate software as corresponding program functions or modules. As a further alternative, some or all of the various units and their functions could be embodied in corresponding hard-wired circuit components.
The illustrated and explained example embodiment is merely one possible example of a concrete circuit for embodying an inventive receiver circuit and radio-controlled clock. This example embodiment can readily be varied by exchanging individual or simple circuit components or entire functional blocks or units, as would be understood by a person of ordinary skill in the art.
In the above described example embodiments, the time encoding was realized by a temporary dip or reduction of the signal amplitude of the carrier signal at the beginning of each respective time frame. It should be understood that the encoding could alternatively be realized by a temporary increase or any other variation of the signal amplitude of the carrier signal in each respective time frame. Other types of signal modulation could alternatively be used.
While the above described particular example embodiments of the invention evaluated particular identified ranges of the data bits in the encoding scheme of a time signal, the inventive method is not limited to these particular bit ranges. Instead, the inventive method could decode and evaluate bits of other bit ranges, for example only the data bits comprising or containing date information but not time information (e.g. if the particular application at issue is for a radio-controlled calendar without time information).
The invention is also not limited to the particular numerical ranges or indications disclosed herein as examples. To the contrary, the scope of the invention also covers variations or changes of numerical values and ranges, e.g. other data bit ranges in telegrams according to other protocols, as would be understood by a person of ordinary skill in the art.
While the above discussion has especially related to a radio-controlled clock receiving the time signal via a wireless radio transmission, the present invention also relates to a method and clock apparatus receiving a time signal via a hard-wired transmission. For example, systems including several clocks that are to be synchronized with one another and that are connected to each other by a time signal wire for this purpose, can also be embodied according to the present invention, and are covered within the scope of the appended claims. Such clocks may be generally regarded as remote-controlled clocks, but are also to be understood within the term radio-controlled clocks.
Although the invention has been described with reference to specific example embodiments, it will be appreciated that it is intended to cover all modifications and equivalents within the scope of the appended claims. It should also be understood that the present disclosure includes all possible combinations of any individual features recited in any of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103 56 320.2 | Nov 2003 | DE | national |