Certain embodiments of the disclosure relate to electromagnetic components, integrated circuits, and/or wireless communication devices and systems. More specifically, certain embodiments of the disclosure relate to a method and system that use a radio frequency (RF) complex reflection coefficient reader.
With the recent explosion of the use of wireless devices, the demand for better performing devices is greater than ever. Cell phones, tablets, or any other wireless devices can perform better by providing more computational power, higher downlink and uplink capacity, and more sensor capabilities, all without compromising battery life.
Battery life is directly related to the power consumption of the wireless device. One of the main power consumers in a wireless device is the power needed to transmit a signal. A power amplifier (PA) amplifies the outgoing signal to a desirable level and sends it to the antenna so that it can be converted to electromagnetic waves.
The problem with all antennas especially in a handheld device is that they do not maintain constant impedance. The antenna characteristics, including its impedance, change as the antenna moves within an environment, gets closer to different objects, etc. The change in the antenna impedance causes a mismatch between the antenna and the PA (or other blocks in the transmit path that interface with the antenna), which results in some of the outgoing signal to bounce back at the antenna. When this happens a portion of the signal is not transmitted. This is wasted energy. To compensate for it, the wireless device may increase the power, which further increases power usage. In a worst case, so much of the signal is bounced back and so little is transmitted to the air that it may lose contact with the base station. A combination of the reflected signal and the ongoing signal may also create an undesired standing wave. This standing wave may damage the circuit components such as the PA.
The antenna mismatch may also have other undesired effects such as the leakage of a portion of the transmit signal to the receive path. This is specifically problematic in communication systems that support simultaneous transmit and receive (STAR) capabilities, full duplex (FD) communications, and radar systems.
Antenna impedance can be extracted from the reflection coefficient. Many conventional approaches measure only the magnitude of the reflection coefficient, for instance, using a power meter and a directional coupler. As such, they do not provide information about the complex antenna impedance.
Some traditional schemes frequency-down-convert the reflected transmitting signals through a directional coupler. However, these schemes consume large chip area and power consumption due to the requirement for additional frequency downconverters (e.g., mixers), local oscillator buffers, and baseband circuitry.
In frequency division duplex (FDD) schemes, another challenge with conventional approaches is limited accuracy in the measurement of the reflection coefficient due to the simultaneous existence of receive and transmit signals.
In addition, existing approaches for measuring a complex reflection coefficient can be cumbersome, inefficient and costly. Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with the present disclosure as set forth in the remainder of the present application with reference to the drawings.
In an electronic circuit or system, for example, when two ports connect, it is often desirable to make the impedances of both ports match. This is especially true when the circuit operates at high enough speed where the wavelengths become comparable to the circuit paths. If there is a mismatch between the impedances of the two ports, a portion of the signal may be reflected. Sometimes the amount of reflection is so large that it is not acceptable.
Impedance mismatch can be problematic in wireless devices, for example, since the impedance of the antenna changes due to unpredictable environmental factors. As a wireless device moves in an environment and as it nears different objects, its effective antenna impedance often changes and can be far from the nominal impedance it was designed for. An impedance mismatch between two ports can be represented by a reflection coefficient which is a complex number having an amplitude and a phase.
Some embodiments of the disclosure determine the reflection coefficient of a circuit component or a circuit. For instance, some embodiments enable the determination of the impedance mismatch by finding the reflection coefficient. This information may be used in a system for various reasons including possible correction of the unwanted impedance mismatch. Some embodiments determine the complex value of the reflection coefficient including both the amplitude and the phase of the reflection coefficient. Reflection coefficient with a complex value representation provides more information compared with reflection coefficient with only amplitude representation.
Some embodiments of the disclosure can provide better performance in wireless devices, for example. Some embodiments can provide a circuit that isolates the transmit signal from the receive signal and can further improve the uplink and downlink capacity. Some embodiments can help improve battery life by aiding an antenna tuner.
Some embodiments of the disclosure mitigate the loss from antenna mismatch by using an antenna tuner. The antenna tuner improves the match between the PA and the antenna. Generally, the antenna tuner is provided information about the antenna mismatch. Some embodiments provide for the acquisition of the complex antenna impedance which includes a real and an imaginary part (e.g., a magnitude and a phase). Antenna impedance can be extracted from the reflection coefficient.
Some embodiments can help antenna tuners by measuring (e.g., continuously, periodically, aperiodically, conditionally, etc.) the complex reflection coefficient of the antenna or any part of the circuit in which it is placed. Some embodiments enable measuring the complex reflection coefficient (e.g., impedance) of any circuit component or network. Some embodiments do not use frequency downconverters.
Various advantages, aspects and novel features of the present disclosure, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
The drawings are of illustrative embodiments. They do not illustrate all embodiments. Other embodiments may be used in addition or instead. Details that may be apparent or unnecessary may be omitted to save space or for more effective illustration. Some embodiments may be practiced with additional components or steps and/or without all of the components or steps that are illustrated.
As utilized herein the terms “circuit” and “circuitry” refer to physical electronic components (i.e. hardware) and any software and/or firmware (“code”) which may configure the hardware, be executed by the hardware, and/or otherwise be associated with the hardware. As utilized herein, “and/or” means any one or more of the items in the list joined by “and/or”. As an example, “x and/or y” means any element of the three-element set {(x), (y), (x, y)}. As another example, “x, y, and/or z” means any element of the seven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y, z)}. As utilized herein, the term “exemplary” means serving as a non-limiting example, instance, or illustration. As utilized herein, the terms “e.g.” and “for example” set off lists of one or more non-limiting examples, instances, or illustrations.
The drawings are of illustrative embodiments. They do not illustrate all embodiments. Other embodiments may be used in addition or instead. Details that may be apparent or unnecessary may be omitted to save space or for more effective illustration. Some embodiments may be practiced with additional components or steps and/or without all of the components or steps that are illustrated.
In an example embodiment, one or more of the dedicated detectors 202, 203, 204 may be a voltage detector or a current detector.
In an example embodiment, one or more of the dedicated detectors 302, 303, 305, 306 may be a voltage detector or a current detector.
φ=±cos−1((|X|2−|A|2−|B|2)/(2|A∥B|)). (1)
φ=±cos−1((|X|2−|A|2−|B|2)/(2|A∥B|)), (2)
φ2=±cos−1((X2|2−|A2|2−|B|2)/(2|A2∥B|)). (3)
The processing unit 301 may then determine the sign of φ knowing the following must hold:
φ=Φ−φ2, (4)
where Φ is the phase of the phase-shifter 311.
As shown in
Other embodiments of the disclosure may provide a non-transitory computer readable medium and/or storage medium, and/or a non-transitory machine readable medium and/or storage medium, having stored thereon, a machine code and/or a computer program having at least one code section executable by a machine and/or a computer, thereby causing the machine and/or computer to perform the steps as described herein for an RF complex reflection coefficient reader.
Accordingly, aspects of the present disclosure may be realized in hardware, software, or a combination of hardware and software. The present disclosure may be realized in a centralized fashion in at least one computer system or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware and software may be a general-purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
Aspects of the present disclosure may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods. Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.
While the present disclosure has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from its scope. Therefore, it is intended that the present disclosure not be limited to the particular embodiment disclosed, but that the present disclosure will include all embodiments falling within the scope of the appended claims.
This patent application makes reference to, claims priority to, and claims benefit from U.S. Provisional Application No. 62/235,020, filed on Sep. 30, 2015. The above-identified application is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2561212 | Lewis | Jul 1951 | A |
3025463 | Luoma et al. | Mar 1962 | A |
3453638 | Hoovler | Jul 1969 | A |
3704409 | Oomen | Nov 1972 | A |
3800218 | Shekel | Mar 1974 | A |
4029902 | Bell et al. | Jun 1977 | A |
4146851 | Dempsey et al. | Mar 1979 | A |
4427936 | Riblet et al. | Jan 1984 | A |
4464675 | Balaban et al. | Aug 1984 | A |
4489271 | Riblet | Dec 1984 | A |
4694266 | Wright | Sep 1987 | A |
4721901 | Ashley | Jan 1988 | A |
4963945 | Cooper et al. | Oct 1990 | A |
4968967 | Stove | Nov 1990 | A |
5408690 | Ishikawa et al. | Apr 1995 | A |
5493246 | Anderson | Feb 1996 | A |
5525945 | Chiappetta et al. | Jun 1996 | A |
5574400 | Fukuchi | Nov 1996 | A |
5691978 | Kenworthy | Nov 1997 | A |
5781084 | Rhodes | Jul 1998 | A |
6178310 | Jeong | Jan 2001 | B1 |
6194980 | Thon | Feb 2001 | B1 |
6229992 | McGeehan et al. | May 2001 | B1 |
6262637 | Bradley et al. | Jul 2001 | B1 |
6297711 | Seward et al. | Oct 2001 | B1 |
6496061 | Bloom | Dec 2002 | B1 |
6721544 | Franca-Neto | Apr 2004 | B1 |
6819302 | Volman | Nov 2004 | B2 |
7072614 | Kasperkovitz | Jul 2006 | B1 |
7116966 | Hattori et al. | Oct 2006 | B2 |
7123883 | Mages | Oct 2006 | B2 |
7250830 | Layne et al. | Jul 2007 | B2 |
7330500 | Kouki | Feb 2008 | B2 |
7623005 | Johansson et al. | Nov 2009 | B2 |
7633435 | Meharry et al. | Dec 2009 | B2 |
7711329 | Aparin et al. | May 2010 | B2 |
7804383 | Volatier et al. | Sep 2010 | B2 |
7894779 | Meiyappan et al. | Feb 2011 | B2 |
8013690 | Miyashiro | Sep 2011 | B2 |
8135348 | Aparin | Mar 2012 | B2 |
8149742 | Sorsby | Apr 2012 | B1 |
8199681 | Zinser et al. | Jun 2012 | B2 |
8385871 | Wyville | Feb 2013 | B2 |
8422412 | Hahn | Apr 2013 | B2 |
8514035 | Mikhemar et al. | Aug 2013 | B2 |
8600329 | Comeau et al. | Dec 2013 | B1 |
8620246 | McKinzie | Dec 2013 | B2 |
8749321 | Kim et al. | Jun 2014 | B2 |
8761026 | Berry et al. | Jun 2014 | B1 |
8957742 | Spears | Feb 2015 | B2 |
9048805 | Granger et al. | Jun 2015 | B2 |
9214718 | Mow | Dec 2015 | B2 |
9450553 | Langer | Sep 2016 | B2 |
9490866 | Goel et al. | Nov 2016 | B2 |
9543630 | Tokumitsu et al. | Jan 2017 | B2 |
9590794 | Analui et al. | Mar 2017 | B2 |
20020089396 | Noguchi et al. | Jul 2002 | A1 |
20030109077 | Kim et al. | Jun 2003 | A1 |
20040000425 | White et al. | Jan 2004 | A1 |
20040127178 | Kuffner | Jul 2004 | A1 |
20040180633 | Nakatani et al. | Sep 2004 | A1 |
20050070232 | Mages | Mar 2005 | A1 |
20050245213 | Hirano et al. | Nov 2005 | A1 |
20050289632 | Brooks | Dec 2005 | A1 |
20060019611 | Mages | Jan 2006 | A1 |
20070105509 | Muhammad | May 2007 | A1 |
20080128901 | Zurcher et al. | Jun 2008 | A1 |
20080227409 | Chang et al. | Sep 2008 | A1 |
20080240000 | Kidd | Oct 2008 | A1 |
20080261519 | Demarco et al. | Oct 2008 | A1 |
20090054008 | Satou | Feb 2009 | A1 |
20090121797 | Karabatsos | May 2009 | A1 |
20090125253 | Blair et al. | May 2009 | A1 |
20090252252 | Kim et al. | Oct 2009 | A1 |
20090253385 | Dent | Oct 2009 | A1 |
20090289744 | Miyashiro | Nov 2009 | A1 |
20100002620 | Proctor et al. | Jan 2010 | A1 |
20100084146 | Roberts | Apr 2010 | A1 |
20100109771 | Baik et al. | May 2010 | A1 |
20100127795 | Bauer et al. | May 2010 | A1 |
20100134700 | Robert et al. | Jun 2010 | A1 |
20100148886 | Inoue et al. | Jun 2010 | A1 |
20100177917 | Van Der Werf | Jul 2010 | A1 |
20100323654 | Judson et al. | Dec 2010 | A1 |
20110069644 | Kim et al. | Mar 2011 | A1 |
20110080229 | Kennington | Apr 2011 | A1 |
20110080856 | Kenington | Apr 2011 | A1 |
20110134810 | Yamamoto et al. | Jun 2011 | A1 |
20110140803 | Kim et al. | Jun 2011 | A1 |
20110227664 | Wyville | Sep 2011 | A1 |
20110256857 | Chen et al. | Oct 2011 | A1 |
20120007605 | Benedikt | Jan 2012 | A1 |
20120063496 | Giannini et al. | Mar 2012 | A1 |
20120075069 | Dickey | Mar 2012 | A1 |
20120140860 | Rimini et al. | Jun 2012 | A1 |
20120154071 | Bradley et al. | Jun 2012 | A1 |
20120161784 | Benedikt | Jun 2012 | A1 |
20120163245 | Tone et al. | Jun 2012 | A1 |
20120194269 | Schlager | Aug 2012 | A1 |
20120201153 | Bharadia et al. | Aug 2012 | A1 |
20120201173 | Jain et al. | Aug 2012 | A1 |
20120212304 | Zhang et al. | Aug 2012 | A1 |
20120230227 | Weiss | Sep 2012 | A1 |
20130016634 | Smiley | Jan 2013 | A1 |
20130063299 | Proudkii | Mar 2013 | A1 |
20130065542 | Proudkii | Mar 2013 | A1 |
20130079641 | Zwirn | Mar 2013 | A1 |
20130083703 | Granger-Jones et al. | Apr 2013 | A1 |
20130109330 | Sahota et al. | May 2013 | A1 |
20130113576 | Inoue et al. | May 2013 | A1 |
20130130619 | Harverson et al. | May 2013 | A1 |
20130154887 | Hein et al. | Jun 2013 | A1 |
20130201880 | Bauder et al. | Aug 2013 | A1 |
20130201881 | Bauder et al. | Aug 2013 | A1 |
20130201882 | Bauder et al. | Aug 2013 | A1 |
20130222059 | Kilambi et al. | Aug 2013 | A1 |
20130241655 | Liss et al. | Sep 2013 | A1 |
20130241669 | Mikhemar et al. | Sep 2013 | A1 |
20130242809 | Tone et al. | Sep 2013 | A1 |
20130245976 | Hind | Sep 2013 | A1 |
20130301488 | Hong et al. | Nov 2013 | A1 |
20130321097 | Khlat et al. | Dec 2013 | A1 |
20140103946 | Vanden Bossche | Apr 2014 | A1 |
20140169236 | Choi et al. | Jun 2014 | A1 |
20140194073 | Wyville et al. | Jul 2014 | A1 |
20140204808 | Choi et al. | Jul 2014 | A1 |
20140376419 | Goel et al. | Dec 2014 | A1 |
20150049841 | Laporte et al. | Feb 2015 | A1 |
20150118978 | Khlat | Apr 2015 | A1 |
20150163044 | Analui et al. | Jun 2015 | A1 |
20150236390 | Analui et al. | Aug 2015 | A1 |
20150236395 | Analui et al. | Aug 2015 | A1 |
20150236842 | Goel et al. | Aug 2015 | A1 |
20160050031 | Hwang et al. | Feb 2016 | A1 |
20160134325 | Tageman et al. | May 2016 | A1 |
20160204821 | Han | Jul 2016 | A1 |
20160211870 | Wu | Jul 2016 | A1 |
20160380706 | Tanzi et al. | Dec 2016 | A1 |
20170070368 | Mandegaran | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
102012107877 | Feb 2014 | DE |
1091497 | Apr 2001 | EP |
2733855 | May 2014 | EP |
2814172 | Dec 2014 | EP |
2960981 | Dec 2015 | EP |
10-2010-0134324 | Dec 2010 | KR |
9515018 | Jun 1995 | WO |
2014032883 | Mar 2014 | WO |
2014133625 | Sep 2014 | WO |
2015089091 | Jun 2015 | WO |
2016063108 | Apr 2016 | WO |
Entry |
---|
EESR for European Appl. No. 13876497.2, dated Jul. 4, 2016. |
Office Action for U.S. Appl. No. 14/626,572, dated Jul. 15, 2016. |
Office Action for U.S. Appl. No. 14/622,627, dated May 20, 2016. |
Office Action for U.S. Appl. No. 14/626,572, dated Mar. 31, 2016. |
ISR for Application No. PCT/US2016/050466, dated Nov. 29, 2016. |
Office Action for U.S. Appl. No. 14/626,572, dated Jul. 29, 2015. |
ISR and Written Opinion for PCT Application No. PCT/US2015/016642, dated Jun. 25, 2015. |
Hunter et al., “Passive Microwave Receive Filter Networks Using Low-Q Resonators,” IEEE Microwave Magazine, pp. 46-53, (2005). |
Laforge et al., “Diplexer design implementing highly miniaturized multilayer superconducting hybrids and filters,” IEEE Transactions on Applied Superonductivity, pp. 47-54, (2009). |
Marcatili et al., “Band-Splitting Filter,” Bell System Technical Journal, pp. 197-212, (1961). |
Matthaei et al., “Microwave Filters, Impedance-Matching Networks, and Coupling Structures,” Chapter 14: Directional, Channel-Separation Filters and Traveling-WAve Ring-Resonators, pp. 843-887, Copyright 1980 Artech House, Inc., Dedham, MA; reprint of edition published by McGraw-Hill Book Company, 1964. |
Matthaei et al., “Microwave Filters, Impedance-Matching Networks, and Coupling Structures,” Chapter 16: Multiplexer Design, pp. 965-1000, Copyright 1980 Artech House, Inc., Dedham, MA; reprint of edition published by McGraw-Hill Book Company, 1964. |
Phudpong et al., “Nonlinear Matched Reflection Mode and stop Filters for Frequency Selective Limiting Applications,” Microwave Symposium Conference, IEEE/MTT-S International, pp. 1043-1046, (2007). |
ISR and Written Opinion for PCT/US2014/069372, dated Mar. 3, 2015. |
ISR and Written Opinion for PCT/US2015/016145, dated May 20, 2015. |
ISR and Written Opinion for PCT/US2015/015930, dated May 27, 2015. |
Korean International Searching Authority, ISR and Written Opinion for PCT/US2013/074155, dated Sep. 23, 2014. |
Kannangara et al., “Analysis of an Adaptive Wideband Duplexer With Double-Loop Cancellation,” IEEE Transactions on Vehicular Technology, vol. 56, No. 4, pp. 1761-1982, (2007). |
Notice of Allowance for U.S. Appl. No. 14/102,244, dated Jul. 20, 2016. |
Office Action for U.S. Appl. No. 14/102,244, dated Sep. 22, 2015. |
Office Action for U.S. Appl. No. 14/102,244, dated Jun. 15, 2015. |
ISR and Written Opinion for PCT/2016/054646, dated Dec. 29, 2016. |
Number | Date | Country | |
---|---|---|---|
20170093441 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62235020 | Sep 2015 | US |