1. Field of the Invention
The present invention generally relates to wireless communications and more particularly to changing radio frequency (RF) emission patterns with respect to one or more antenna arrays.
2. Description of the Prior Art
In wireless communications systems, there is an ever-increasing demand for higher data throughput and a corresponding drive to reduce interference that can disrupt data communications. For example, a wireless link in an Institute of Electrical and Electronic Engineers (IEEE) 802.11 network may be susceptible to interference from other wireless access points and stations, radio transmitting devices in the vicinity of the network, and changes or disturbances in the wireless link environment between an access point and remote receiving node. In some instances, the interference may degrade the wireless link thereby forcing communication at a lower data rate. The interference may, in some instances, be sufficiently strong as to disrupt the wireless link altogether.
One solution is to utilize a diversity antenna scheme. In such a solution, a data source is coupled to two or more physically separated omnidirectional antennas. An access point may select one of the omnidirectional antennas by which to maintain a wireless link. Because of the separation between the omnidirectional antennas, each antenna experiences a different signal environment and corresponding interference level with respect to the wireless link. A switching network couples the data source to whichever of the omnidirectional antennas experiences the least interference in the wireless link.
Notwithstanding, many high-gain antenna environments still encounter—or cause—electromagnetic interference (EMI). This interference may be encountered (or created) with respect to another nearby wireless environments (e.g., between the floors of an office building or hot spots scattered amongst a single room). In some instances, the mere operation of a power supply or electronic equipment can create electromagnetic interference.
One solution to combat electromagnetic interference is to utilize shielding in or proximate an antenna enclosure. Shielding a metallic enclosure is imperfect, however, because the conductivity of all metals is finite. Because metallic shields have less than infinite conductivity, part of the field is transmitted across the boundary and supports a current in the metal. The amount of current flow at any depth in the shield and the rate of decay are governed by the conductivity of the metal, its permeability, and the frequency and amplitude of the field source.
With varying locations of devices communicating with omnidirectional antennas and the varied electromagnetic interference in most environments, it is desirable to have control over an emitted radiation pattern to focus the radiation pattern where it would be most useful.
The presently claimed invention utilizes pattern shaping elements for shaping a radiation pattern generated by one or more antennas. A MIMO antenna system generates an omnidirectional radiation pattern. One or more pattern shaping elements may include metal objects which act as directors or reflectors to shape the radiation pattern. The shaping may be controlled by selectively coupling the pattern shaping elements to a ground plane, thus making them appear transparent to the radiation pattern. The pattern shaping elements may be amorphous, have varying shape, and may be symmetrical or asymmetrical. Different configurations of selected pattern shaping elements may provide different shapes for a radiation pattern.
An embodiment of a wireless device may include an antenna array, a plurality of pattern shaping elements, and plurality of connecting elements. An antenna array comprising a plurality of antenna elements may generate a substantially omnidirectional radiation pattern. Each connecting elements may connect one or more pattern shaping elements to a ground. Each of the pattern shaping elements connected to ground may cause a change in the substantially omnidirectional radiation pattern generated by the antenna array.
Embodiments of the present invention use metal objects as pattern shaping elements for shaping a radiation pattern generated by one or more antennas. A MIMO antenna array generates an omnidirectional radiation pattern. One or more pattern shaping elements may act as directors or reflectors to shape the radiation pattern. The shaping may be controlled by selectively coupling the pattern shaping elements to a ground plane, thus making them appear transparent to the radiation pattern. The pattern shaping elements may be amorphous, vary in shape, symmetrical or asymmetrical, and varying heights and widths. The pattern shaping elements may be selected in different configurations to provide different shaping for a radiation pattern.
Wireless MIMO antenna system 100 may include a communication device for generating a radio frequency (RF) signal (e.g., in the case of transmitting node). Wireless MIMO antenna system 100 may also or alternatively receive data from a router connected to the Internet. Wireless MIMO antenna system 100 may then transmit that data to one or more of the remote receiving nodes. For example, the data may be video data transmitted to a set-top box for display on a television or video display.
The wireless MIMO antenna system 100 may form a part of a wireless local area network (e.g., a mesh network) by enabling communications among several transmission and/or receiving nodes. Although generally described as transmitting to a remote receiving node, the wireless MIMO antenna system 100 of
Wireless MIMO antenna system 100 includes a data encoder 101 for encoding data into a format appropriate for transmission to the remote receiving node via the parallel radios 120 and 121 illustrated in
Radios 120 and 121 as illustrated in
Wireless MIMO antenna system 100 further includes a circuit (e.g., switching network) 130 for selectively coupling the first and second RF signals from the parallel radios 120 and 121 to an antenna apparatus 140 having multiple antenna elements 140A-H. Antenna elements 140A-H may include individually selectable antenna elements such that each antenna element 140A-H may be electrically selected (e.g., switched on or off). By selecting various combinations of the antenna elements 140A-H, the antenna apparatus 140 may form a “pattern agile” or reconfigurable radiation pattern. If certain or substantially all of the antenna elements 140A-H are switched on, for example, the antenna apparatus 140 may form an omnidirectional radiation pattern. Through the use of MIMO antenna architecture, the pattern may include both vertically and horizontally polarized energy, which may also be referred to as diagonally polarized radiation. Alternatively, the antenna apparatus 140 may form various directional radiation patterns, depending upon which of the antenna elements 140A-H are turned on.
The RF within circuit 130 may be PIN diodes, gallium arsenide field-effect transistors (GaAs FETs), or virtually any RF switching device. The PIN diodes comprise single-pole single-throw switches to switch each antenna element either on or off (i.e., couple or decouple each of the antenna elements to the radio radios 120). A series of control signals may be applied via a control bus 155 to bias each PIN diode. With the PIN diode forward biased and conducting a DC current, the PIN diode switch is on, and the corresponding antenna element is selected. With the diode reverse biased, the PIN diode switch is off. In some embodiments, one or more light emitting diodes (LEDs) may be included in the coupling network as a visual indicator of which of the antenna elements is on or off. An LED may be placed in circuit with the PIN diode so that the LED is lit when the corresponding antenna element is selected.
Further, the antenna apparatus may include switching at RF as opposed to switching at baseband. Switching at RF means that the communication device requires only one RF up/downconverter. Switching at RF also requires a significantly simplified interface between the communication device and the antenna apparatus. For example, the antenna apparatus provides an impedance match under all configurations of selected antenna elements, regardless of which antenna elements are selected.
Wireless MIMO antenna system 100 includes pattern shaping elements 160. Pattern shaping elements 160 in
Wireless MIMO antenna system 100 may also include a controller 150 coupled to the data encoder 101, the radios 120 and 121, the circuit 130, and pattern shaping elements 160 via a control bus 155. The controller 150 may include hardware (e.g., a microprocessor and logic) and/or software elements to control the operation of the wireless MIMO antenna system 100.
The controller 150 may select a particular configuration of antenna elements 140A-H that minimizes interference over the wireless link to the remote receiving device. If the wireless link experiences interference, for example due to other radio transmitting devices, or changes or disturbances in the wireless link between the wireless MIMO antenna system 100 and the remote receiving device, the controller 150 may select a different configuration of selected antenna elements 140A-H via the circuit 130 to change the resulting radiation pattern and minimize the interference. Controller 150 may also select one or more pattern shaping elements 160. For example, the controller 150 may select a configuration of selected antenna elements 140A-H and pattern shaping elements 160 corresponding to a maximum gain between the wireless system 100 and the remote receiving device. Alternatively, the controller 150 may select a configuration of selected antenna elements 140A-H and pattern shaping elements 160 corresponding to less than maximal gain, but corresponding to reduced interference in the wireless link.
Controller 150 may also transmit a data packet using a first subgroup of antenna elements 140A-H coupled to the radio 120 and simultaneously send the data packet using a second group of antenna elements 140A-H coupled to the radio 121. Controller 150 may change the substrate of antenna elements 140A-H coupled to the radios 120 and 121 on a packet-by-packet basis. Methods performed by the controller 150 with respect to a single radio having access to multiple antenna elements are further described in, for example, U.S. patent publication number US 2006-0040707 A1. These methods are also applicable to the controller 150 having control over multiple antenna elements and multiple radios.
The horizontally polarized antenna member pair of
An RF signal may be fed to the horizontally polarized antenna member pair of
Second antenna element member 322 includes finger elements 315 and 350. Finger elements 315 and 350 are opposite to and form a magnetic pair with finger elements 330 and 355 of first antenna element 325.
The horizontally polarized antenna member pair of
An RF signal may be fed to the vertically polarized antenna member pair of
The pattern shaping elements of the presently disclosed invention may have a variety of shapes and forms. Pattern shaping element 410 as illustrated in
Each of the pattern shaping elements may be selectively coupled to a ground portion of an antenna system, such as for example a ground plane in a PCB. By selecting different combinations of pattern shaping elements having different shapes and designs to use as a reflector or director, the radiation pattern emitted from one or more RF antenna elements, antenna member pairs, or a combination of elements and antenna member pairs can be shaped in many ways.
Each of antennas 510, 520, 530 and 540 of
Though the pattern shaping elements are illustrated as being associated with a particular antenna, other configurations of pattern shaping elements are possible. For example, pattern shaping elements may be positioned in the middle of the PCB 500, along a portion of or entire perimeter of PCB 500, or arranged in some other manner irrespective of antennas on the PCB.
The invention has been described herein in terms of several preferred embodiments. Other embodiments of the invention, including alternatives, modifications, permutations and equivalents of the embodiments described herein, will be apparent to those skilled in the art from consideration of the specification, study of the drawings, and practice of the invention. The embodiments and preferred features described above should be considered exemplary, with the invention being defined by the appended claims, which therefore include all such alternatives, modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
725605 | Tesla | Apr 1903 | A |
1869659 | Broertjes | Aug 1932 | A |
2292387 | Markey et al. | Aug 1942 | A |
3488445 | Chang | Jan 1970 | A |
3568105 | Felsenheld | Mar 1971 | A |
3721990 | Gibson et al. | Mar 1973 | A |
3887925 | Ranghelli | Jun 1975 | A |
3967067 | Potter | Jun 1976 | A |
3969730 | Fuchser | Jul 1976 | A |
3982214 | Burns | Sep 1976 | A |
3991273 | Mathes | Nov 1976 | A |
4001734 | Burns | Jan 1977 | A |
4027307 | Litchford | May 1977 | A |
4176356 | Foster et al. | Nov 1979 | A |
4193077 | Greenberg et al. | Mar 1980 | A |
4203118 | Alford | May 1980 | A |
4253193 | Kennard | Feb 1981 | A |
4305052 | Baril et al. | Dec 1981 | A |
4513412 | Cox | Apr 1985 | A |
4554554 | Olesen et al. | Nov 1985 | A |
4733203 | Ayasli | Mar 1988 | A |
4764773 | Larsen et al. | Aug 1988 | A |
4800393 | Edward et al. | Jan 1989 | A |
4814777 | Monser | Mar 1989 | A |
4821040 | Johnson et al. | Apr 1989 | A |
4920285 | Clark et al. | Apr 1990 | A |
4937585 | Shoemaker | Jun 1990 | A |
5063574 | Moose | Nov 1991 | A |
5097484 | Akaiwa | Mar 1992 | A |
5173711 | Takeuchi et al. | Dec 1992 | A |
5203010 | Felix | Apr 1993 | A |
5208564 | Burns et al. | May 1993 | A |
5220340 | Shafai | Jun 1993 | A |
5241693 | Kim | Aug 1993 | A |
5282222 | Fattouche et al. | Jan 1994 | A |
5291289 | Hulyalkar et al. | Mar 1994 | A |
5311550 | Fouche et al. | May 1994 | A |
5337066 | Hirata et al. | Aug 1994 | A |
5373548 | McCarthy | Dec 1994 | A |
5434575 | Jelinek | Jul 1995 | A |
5453752 | Wang et al. | Sep 1995 | A |
5479176 | Zavrel | Dec 1995 | A |
5507035 | Bantz | Apr 1996 | A |
5532708 | Krenz et al. | Jul 1996 | A |
5559800 | Mousseau et al. | Sep 1996 | A |
5726666 | Hoover et al. | Mar 1998 | A |
5754145 | Evans | May 1998 | A |
5767755 | Kim et al. | Jun 1998 | A |
5767807 | Pritchett | Jun 1998 | A |
5767809 | Chuang et al. | Jun 1998 | A |
5786793 | Maeda et al. | Jul 1998 | A |
5802312 | Lazaridis et al. | Sep 1998 | A |
5828346 | Park | Oct 1998 | A |
5936595 | Wang | Aug 1999 | A |
5964830 | Durrett | Oct 1999 | A |
5966102 | Runyon | Oct 1999 | A |
5990838 | Burns et al. | Nov 1999 | A |
6005519 | Burns | Dec 1999 | A |
6005525 | Kivela | Dec 1999 | A |
6011450 | Miya | Jan 2000 | A |
6023250 | Cronyn | Feb 2000 | A |
6031503 | Preiss, II et al. | Feb 2000 | A |
6034638 | Thiel et al. | Mar 2000 | A |
6046703 | Wang | Apr 2000 | A |
6052093 | Yao et al. | Apr 2000 | A |
6061025 | Jackson | May 2000 | A |
6067053 | Runyon et al. | May 2000 | A |
6091364 | Murakami et al. | Jul 2000 | A |
6094177 | Yamamoto | Jul 2000 | A |
6097347 | Duan et al. | Aug 2000 | A |
6104356 | Hikuma et al. | Aug 2000 | A |
6169523 | Ploussios | Jan 2001 | B1 |
6249216 | Flick | Jun 2001 | B1 |
6266528 | Farzaneh | Jul 2001 | B1 |
6281762 | Nakao | Aug 2001 | B1 |
6288682 | Thiel et al. | Sep 2001 | B1 |
6292153 | Aiello et al. | Sep 2001 | B1 |
6307524 | Britain | Oct 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6323810 | Poilasne et al. | Nov 2001 | B1 |
6326922 | Hegendoerfer | Dec 2001 | B1 |
6326924 | Muramoto et al. | Dec 2001 | B1 |
6337628 | Campana, Jr. | Jan 2002 | B2 |
6337668 | Ito et al. | Jan 2002 | B1 |
6339404 | Johnson | Jan 2002 | B1 |
6345043 | Hsu | Feb 2002 | B1 |
6351240 | Karimullah et al. | Feb 2002 | B1 |
6356242 | Ploussios | Mar 2002 | B1 |
6356243 | Schneider et al. | Mar 2002 | B1 |
6356905 | Gershman et al. | Mar 2002 | B1 |
6366254 | Sivenpiper | Apr 2002 | B1 |
6377227 | Zhu et al. | Apr 2002 | B1 |
6392610 | Braun et al. | May 2002 | B1 |
6396456 | Chiang et al. | May 2002 | B1 |
6400329 | Barnes | Jun 2002 | B1 |
6404386 | Proctor, Jr. et al. | Jun 2002 | B1 |
6407719 | Ohira et al. | Jun 2002 | B1 |
RE37802 | Fattouche et al. | Jul 2002 | E |
6414647 | Lee | Jul 2002 | B1 |
6424311 | Tsai et al. | Jul 2002 | B1 |
6442507 | Skidmore et al. | Aug 2002 | B1 |
6445688 | Garces et al. | Sep 2002 | B1 |
6456242 | Crawford | Sep 2002 | B1 |
6476773 | Palmer | Nov 2002 | B2 |
6492957 | Carillo et al. | Dec 2002 | B2 |
6493679 | Rappaport et al. | Dec 2002 | B1 |
6496083 | Kushitani et al. | Dec 2002 | B1 |
6498589 | Horii | Dec 2002 | B1 |
6499006 | Rappaport et al. | Dec 2002 | B1 |
6507321 | Oberschmidt et al. | Jan 2003 | B2 |
6521422 | Hsu | Feb 2003 | B1 |
6531985 | Jones et al. | Mar 2003 | B1 |
6545643 | Sward | Apr 2003 | B1 |
6583765 | Schamberget et al. | Jun 2003 | B1 |
6586786 | Kitazawa et al. | Jul 2003 | B2 |
6593891 | Zhang | Jul 2003 | B2 |
6606059 | Barabash | Aug 2003 | B1 |
6611230 | Phelan | Aug 2003 | B2 |
6621029 | Galmiche | Sep 2003 | B2 |
6625454 | Rappaport et al. | Sep 2003 | B1 |
6633206 | Kato | Oct 2003 | B1 |
6642889 | McGrath | Nov 2003 | B1 |
6642890 | Chen | Nov 2003 | B1 |
6674459 | Ben-Shachar et al. | Jan 2004 | B2 |
6700546 | Benhammou et al. | Mar 2004 | B2 |
6701522 | Rubin et al. | Mar 2004 | B1 |
6724346 | Le Bolzer | Apr 2004 | B2 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6741219 | Shor | May 2004 | B2 |
6747605 | Lebaric | Jun 2004 | B2 |
6753814 | Killen et al. | Jun 2004 | B2 |
6757267 | Evans | Jun 2004 | B1 |
6762723 | Nallo et al. | Jul 2004 | B2 |
6774852 | Chiang et al. | Aug 2004 | B2 |
6774864 | Evans | Aug 2004 | B2 |
6779004 | Zintel et al. | Aug 2004 | B1 |
6819287 | Sullivan et al. | Nov 2004 | B2 |
6822617 | Mather et al. | Nov 2004 | B1 |
6839038 | Weinstein | Jan 2005 | B2 |
6859176 | Choi | Feb 2005 | B2 |
6859182 | Horii | Feb 2005 | B2 |
6864852 | Chiang et al. | Mar 2005 | B2 |
6876280 | Nakano | Apr 2005 | B2 |
6876836 | Lin | Apr 2005 | B2 |
6879293 | Sato | Apr 2005 | B2 |
6888504 | Chiang et al. | May 2005 | B2 |
6888893 | Li et al. | May 2005 | B2 |
6892230 | Gu et al. | May 2005 | B1 |
6894653 | Chiang et al. | May 2005 | B2 |
6903686 | Vance et al. | Jun 2005 | B2 |
6906678 | Chen | Jun 2005 | B2 |
6910068 | Zintel et al. | Jun 2005 | B2 |
6914566 | Beard | Jul 2005 | B2 |
6914581 | Popek | Jul 2005 | B1 |
6924768 | Wu et al. | Aug 2005 | B2 |
6931429 | Gouge et al. | Aug 2005 | B2 |
6933907 | Shirosaka | Aug 2005 | B2 |
6941143 | Mathur | Sep 2005 | B2 |
6943749 | Paun | Sep 2005 | B2 |
6950019 | Bellone et al. | Sep 2005 | B2 |
6950069 | Gaucher et al. | Sep 2005 | B2 |
6961028 | Joy et al. | Nov 2005 | B2 |
6965353 | Shirosaka et al. | Nov 2005 | B2 |
6973622 | Rappaport et al. | Dec 2005 | B1 |
6975834 | Forster | Dec 2005 | B1 |
6980782 | Braun et al. | Dec 2005 | B1 |
7023909 | Adams et al. | Apr 2006 | B1 |
7024225 | Ito | Apr 2006 | B2 |
7034769 | Surducan et al. | Apr 2006 | B2 |
7034770 | Yang et al. | Apr 2006 | B2 |
7043277 | Pfister | May 2006 | B1 |
7046201 | Okada | May 2006 | B2 |
7050809 | Lim | May 2006 | B2 |
7053844 | Gaucher et al. | May 2006 | B2 |
7064717 | Kaluzni | Jun 2006 | B2 |
7085814 | Ghandi et al. | Aug 2006 | B1 |
7088299 | Siegler et al. | Aug 2006 | B2 |
7088306 | Chiang et al. | Aug 2006 | B2 |
7089307 | Zintel et al. | Aug 2006 | B2 |
7098863 | Bancroft | Aug 2006 | B2 |
D530325 | Kerila | Oct 2006 | S |
7120405 | Rofougaran | Oct 2006 | B2 |
7130895 | Zintel et al. | Oct 2006 | B2 |
7148846 | Qi et al. | Dec 2006 | B2 |
7162273 | Ambramov et al. | Jan 2007 | B1 |
7164380 | Saito | Jan 2007 | B2 |
7171475 | Weisman et al. | Jan 2007 | B2 |
7193562 | Shtrom | Mar 2007 | B2 |
7206610 | Iacono et al. | Apr 2007 | B2 |
7215296 | Ambramov et al. | May 2007 | B2 |
7277063 | Shirosaka et al. | Oct 2007 | B2 |
7292198 | Shtrom | Nov 2007 | B2 |
7292870 | Heredia et al. | Nov 2007 | B2 |
7295825 | Raddant | Nov 2007 | B2 |
7298228 | Sievenpiper | Nov 2007 | B2 |
7312762 | Puente Ballarda et al. | Dec 2007 | B2 |
7319432 | Andersson | Jan 2008 | B2 |
7333460 | Vaisanen et al. | Feb 2008 | B2 |
7358912 | Kish et al. | Apr 2008 | B1 |
7362280 | Shtrom | Apr 2008 | B2 |
7385563 | Bishop | Jun 2008 | B2 |
7498999 | Shtrom et al. | Mar 2009 | B2 |
7511680 | Shtrom et al. | Mar 2009 | B2 |
7522569 | Rada | Apr 2009 | B2 |
7525486 | Shtrom | Apr 2009 | B2 |
7609648 | Hoffmann et al. | Oct 2009 | B2 |
7697550 | Rada | Apr 2010 | B2 |
7733275 | Hirota | Jun 2010 | B2 |
7782895 | Pasanen et al. | Aug 2010 | B2 |
7835697 | Wright | Nov 2010 | B2 |
7847741 | Hirota | Dec 2010 | B2 |
7864119 | Shtrom et al. | Jan 2011 | B2 |
7893882 | Shtrom | Feb 2011 | B2 |
7916463 | Aya et al. | Mar 2011 | B2 |
8068068 | Kish et al. | Nov 2011 | B2 |
8085206 | Shtrom | Dec 2011 | B2 |
8217843 | Shtrom | Jul 2012 | B2 |
8355912 | Keesey et al. | Jan 2013 | B1 |
8358248 | Shtrom | Jan 2013 | B2 |
8686905 | Shtrom | Apr 2014 | B2 |
8704720 | Kish | Apr 2014 | B2 |
8723741 | Shtrom | May 2014 | B2 |
8756668 | Ranade et al. | Jun 2014 | B2 |
8836606 | Kish | Sep 2014 | B2 |
9019165 | Shtrom | Apr 2015 | B2 |
9093758 | Kish | Jul 2015 | B2 |
20010046848 | Kenkel | Nov 2001 | A1 |
20020031130 | Tsuchiya et al. | Mar 2002 | A1 |
20020036586 | Gothard et al. | Mar 2002 | A1 |
20020047800 | Proctor, Jr. et al. | Apr 2002 | A1 |
20020080767 | Lee | Jun 2002 | A1 |
20020084942 | Tsai et al. | Jul 2002 | A1 |
20020101377 | Crawford | Aug 2002 | A1 |
20020105471 | Kojima et al. | Aug 2002 | A1 |
20020112058 | Weisman et al. | Aug 2002 | A1 |
20020119757 | Hamabe | Aug 2002 | A1 |
20020158798 | Chiang et al. | Oct 2002 | A1 |
20020163473 | Koyama et al. | Nov 2002 | A1 |
20020170064 | Monroe et al. | Nov 2002 | A1 |
20030026240 | Eyuboglu et al. | Feb 2003 | A1 |
20030030588 | Kalis et al. | Feb 2003 | A1 |
20030038698 | Hirayama | Feb 2003 | A1 |
20030063591 | Leung et al. | Apr 2003 | A1 |
20030122714 | Wannagot et al. | Jul 2003 | A1 |
20030169330 | Ben-Shachar et al. | Sep 2003 | A1 |
20030174099 | Bauer et al. | Sep 2003 | A1 |
20030184490 | Raiman et al. | Oct 2003 | A1 |
20030184492 | Chiang et al. | Oct 2003 | A1 |
20030189514 | Miyano et al. | Oct 2003 | A1 |
20030189521 | Yamamoto et al. | Oct 2003 | A1 |
20030189523 | Ojantakanen et al. | Oct 2003 | A1 |
20030210207 | Suh et al. | Nov 2003 | A1 |
20030214446 | Shehab | Nov 2003 | A1 |
20030227414 | Saliga et al. | Dec 2003 | A1 |
20040014432 | Boyle | Jan 2004 | A1 |
20040017310 | Vargas-Hurlston et al. | Jan 2004 | A1 |
20040017315 | Fang et al. | Jan 2004 | A1 |
20040017860 | Liu | Jan 2004 | A1 |
20040027291 | Zhang et al. | Feb 2004 | A1 |
20040027304 | Chiang et al. | Feb 2004 | A1 |
20040030900 | Clark | Feb 2004 | A1 |
20040032378 | Volman et al. | Feb 2004 | A1 |
20040036651 | Toda | Feb 2004 | A1 |
20040036654 | Hsieh | Feb 2004 | A1 |
20040041732 | Aikawa et al. | Mar 2004 | A1 |
20040048593 | Sano | Mar 2004 | A1 |
20040058690 | Ratzel et al. | Mar 2004 | A1 |
20040061653 | Webb et al. | Apr 2004 | A1 |
20040070543 | Masaki | Apr 2004 | A1 |
20040075609 | Li | Apr 2004 | A1 |
20040080455 | Lee | Apr 2004 | A1 |
20040090371 | Rossman | May 2004 | A1 |
20040095278 | Kanemoto et al. | May 2004 | A1 |
20040114535 | Hoffmann et al. | Jun 2004 | A1 |
20040125777 | Doyle et al. | Jul 2004 | A1 |
20040145528 | Mukai et al. | Jul 2004 | A1 |
20040153647 | Rotholtz et al. | Aug 2004 | A1 |
20040160376 | Hornsby et al. | Aug 2004 | A1 |
20040190477 | Olson et al. | Sep 2004 | A1 |
20040203347 | Nguyen | Oct 2004 | A1 |
20040207563 | Yang | Oct 2004 | A1 |
20040227669 | Okada | Nov 2004 | A1 |
20040260800 | Gu et al. | Dec 2004 | A1 |
20050022210 | Zintel et al. | Jan 2005 | A1 |
20050041739 | Li et al. | Feb 2005 | A1 |
20050042988 | Hoek et al. | Feb 2005 | A1 |
20050048934 | Rawnick et al. | Mar 2005 | A1 |
20050050352 | Narayanaswami et al. | Mar 2005 | A1 |
20050062649 | Chiang et al. | Mar 2005 | A1 |
20050074018 | Zintel et al. | Apr 2005 | A1 |
20050097503 | Zintel et al. | May 2005 | A1 |
20050122265 | Gaucher et al. | Jun 2005 | A1 |
20050128983 | Kim et al. | Jun 2005 | A1 |
20050128988 | Simpson et al. | Jun 2005 | A1 |
20050135480 | Li et al. | Jun 2005 | A1 |
20050138137 | Encarnacion et al. | Jun 2005 | A1 |
20050138193 | Encarnacion et al. | Jun 2005 | A1 |
20050146475 | Bettner et al. | Jul 2005 | A1 |
20050180381 | Retzer et al. | Aug 2005 | A1 |
20050184920 | Mahler et al. | Aug 2005 | A1 |
20050188193 | Kuehnel et al. | Aug 2005 | A1 |
20050237258 | Abramov et al. | Oct 2005 | A1 |
20050240665 | Gu et al. | Oct 2005 | A1 |
20050267935 | Gandhi et al. | Dec 2005 | A1 |
20060031922 | Sakai | Feb 2006 | A1 |
20060038734 | Shtrom et al. | Feb 2006 | A1 |
20060050005 | Shirosaka et al. | Mar 2006 | A1 |
20060094371 | Nguyen | May 2006 | A1 |
20060098607 | Zeng et al. | May 2006 | A1 |
20060109191 | Shtrom | May 2006 | A1 |
20060111902 | Julia et al. | May 2006 | A1 |
20060123124 | Weisman et al. | Jun 2006 | A1 |
20060123125 | Weisman et al. | Jun 2006 | A1 |
20060123455 | Pai et al. | Jun 2006 | A1 |
20060168159 | Weisman et al. | Jul 2006 | A1 |
20060184660 | Rao et al. | Aug 2006 | A1 |
20060184661 | Weisman et al. | Aug 2006 | A1 |
20060184693 | Rao et al. | Aug 2006 | A1 |
20060224690 | Falkenburg et al. | Oct 2006 | A1 |
20060225107 | Seetharaman et al. | Oct 2006 | A1 |
20060227062 | Francque et al. | Oct 2006 | A1 |
20060227761 | Scott, III et al. | Oct 2006 | A1 |
20060239369 | Lee | Oct 2006 | A1 |
20060251256 | Asokan et al. | Nov 2006 | A1 |
20060262015 | Thornell-Pers et al. | Nov 2006 | A1 |
20060291434 | Gu et al. | Dec 2006 | A1 |
20070027622 | Cleron et al. | Feb 2007 | A1 |
20070037619 | Matsunaga et al. | Feb 2007 | A1 |
20070055752 | Wiegand et al. | Mar 2007 | A1 |
20070115180 | Kish et al. | May 2007 | A1 |
20070124490 | Kalavade et al. | May 2007 | A1 |
20070130294 | Nishio | Jun 2007 | A1 |
20070135167 | Liu | Jun 2007 | A1 |
20080060064 | Wynn et al. | Mar 2008 | A1 |
20080062058 | Bishop | Mar 2008 | A1 |
20080075280 | Ye et al. | Mar 2008 | A1 |
20080096492 | Yoon | Apr 2008 | A1 |
20080109657 | Bajaj et al. | May 2008 | A1 |
20080136715 | Shtrom | Jun 2008 | A1 |
20080204331 | Shtrom | Aug 2008 | A1 |
20080212535 | Karaoguz et al. | Sep 2008 | A1 |
20080272977 | Gaucher et al. | Nov 2008 | A1 |
20090005005 | Forstall et al. | Jan 2009 | A1 |
20090103731 | Sarikaya | Apr 2009 | A1 |
20090187970 | Mower et al. | Jul 2009 | A1 |
20090217048 | Smith | Aug 2009 | A1 |
20090219903 | Alamouti et al. | Sep 2009 | A1 |
20090295648 | Dorsey et al. | Dec 2009 | A1 |
20090315794 | Alamouti et al. | Dec 2009 | A1 |
20100053023 | Shtrom | Mar 2010 | A1 |
20100103065 | Shtrom et al. | Apr 2010 | A1 |
20100103066 | Shtrom et al. | Apr 2010 | A1 |
20100299518 | Viswanathan et al. | Nov 2010 | A1 |
20100332828 | Goto | Dec 2010 | A1 |
20110007705 | Buddhikot et al. | Jan 2011 | A1 |
20110040870 | Wynn et al. | Feb 2011 | A1 |
20110047603 | Gordon et al. | Feb 2011 | A1 |
20110095960 | Shtrom | Apr 2011 | A1 |
20110126016 | Sun | May 2011 | A1 |
20110208866 | Marmolejo-Meillon et al. | Aug 2011 | A1 |
20120030466 | Yamaguchi | Feb 2012 | A1 |
20120054338 | Ando | Mar 2012 | A1 |
20120089845 | Raleigh | Apr 2012 | A1 |
20120098730 | Kish | Apr 2012 | A1 |
20120134291 | Raleigh | May 2012 | A1 |
20120257536 | Kholaif et al. | Oct 2012 | A1 |
20120284785 | Salkintzis et al. | Nov 2012 | A1 |
20120299772 | Shtrom | Nov 2012 | A1 |
20120322035 | Julia et al. | Dec 2012 | A1 |
20130007853 | Gupta et al. | Jan 2013 | A1 |
20130038496 | Shtrom | Feb 2013 | A1 |
20130047218 | Smith | Feb 2013 | A1 |
20130182693 | Sperling et al. | Jul 2013 | A1 |
20130207866 | Shtrom | Aug 2013 | A1 |
20130207877 | Shtrom | Aug 2013 | A1 |
20130212656 | Ranade et al. | Aug 2013 | A1 |
20130241789 | Shtrom | Sep 2013 | A1 |
20130269008 | Sheu et al. | Oct 2013 | A1 |
20140210681 | Shtrom | Jul 2014 | A1 |
20140282951 | Ranade | Sep 2014 | A1 |
20140334322 | Shtrom | Nov 2014 | A1 |
20150070243 | Kish | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
2003227399 | Oct 2003 | AU |
02494982 | Oct 2003 | CA |
10 2006 026350 | Dec 2006 | DE |
352 787 | Jan 1990 | EP |
0 534 612 | Mar 1993 | EP |
0 756 381 | Jan 1997 | EP |
0 883 206 | Dec 1998 | EP |
1 152 452 | Nov 2001 | EP |
1 152 542 | Nov 2001 | EP |
1 152 543 | Nov 2001 | EP |
1 376 920 | Jun 2002 | EP |
1 220 461 | Jul 2002 | EP |
1 315 311 | May 2003 | EP |
1 450 521 | Aug 2004 | EP |
1 608 108 | Dec 2005 | EP |
1 909 358 | Apr 2008 | EP |
1 287 588 | Jan 2009 | EP |
2 426 870 | Jun 2006 | GB |
2 423 191 | Aug 2006 | GB |
03038933 | Feb 1991 | JP |
2008088633 | Apr 1996 | JP |
2001-057560 | Feb 2001 | JP |
2002-505835 | Feb 2002 | JP |
2005-354249 | Dec 2005 | JP |
2006060408 | Mar 2006 | JP |
201351188 | Dec 2013 | TW |
WO 9004893 | May 1990 | WO |
WO 9955012 | Oct 1999 | WO |
WO 0113461 | Feb 2001 | WO |
WO 0169724 | Sep 2001 | WO |
WO 0207258 | Jan 2002 | WO |
WO 0207258 | Jan 2002 | WO |
WO 0225967 | Mar 2002 | WO |
WO 03079484 | Sep 2003 | WO |
WO 03081718 | Oct 2003 | WO |
WO 2004051798 | Jun 2004 | WO |
WO 2006023247 | Mar 2006 | WO |
WO 2006057679 | Jun 2006 | WO |
WO 2007076105 | Jul 2007 | WO |
WO 2007127087 | Nov 2007 | WO |
WO 2013119750 | Aug 2013 | WO |
WO 2013152027 | Oct 2013 | WO |
Entry |
---|
Alard, M., et al., “Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile Receivers,” 8301 EBU Review Technical, Aug. 1987, No. 224, Brussels, Belgium. |
Ando et al., “Study of Dual-Polarized Omni-Directional Antennas for 5.2 GHz-Band 2×2 MIMO-OFDM Systems,” Antennas and Propogation Society International Symposium, 2004, IEEE, pp. 1740-1743 vol. 2. |
Areg Alimian et al., “Analysis of Roaming Techniques,” doc.:IEEE 802.11-04/0377r1, Submission, Mar. 2004. |
“Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations” Rules and Federal Communications Commission, 47 CFR Part 2, and 90, Jun. 18, 1985. |
“Authorization of spread spectrum and other wideband emissions not presently provided for in the FCC Rules and Regulations,” Before the Federal Communications Commission, FCC 81-289, 87 F.C.C.2d 876, Gen Docket No. 81-413, Jun. 30, 1981. |
Bedell, Paul, “Wireless Crash Course,” 2005, p. 84, The McGraw-Hill Companies, Inc., USA. |
Behdad et al., Slot Antenna Miniaturization Using Distributed Inductive Loading, Antenna and Propagation Society International Symposium, 2003 IEEE, vol. 1, pp. 308-311 (Jun. 2003). |
Berenguer, Inaki, et al., “Adaptive MIMO Antenna Selection,” Nov. 2003. |
Casas, Eduardo F., et al., “OFDM for Data Communication Over Mobile Radio FM Channels—Part I: Analysis and Experimental Results,” IEEE Transactions on Communications, vol. 39, No. 5, May 1991, pp. 783-793. |
Chang, Nicholas B. et al., “Optimal Channel Probing and Transmission Scheduling for Opportunistics Spectrum Access,” Sep. 2007. |
Chang, Robert W., et al., “A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme,” IEEE Transactions on Communication Technology, vol. Com-16, No. 4, Aug. 1968, pp. 529-540. |
Chang, Robert W. “Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission,” The Bell System Technical Journal, Dec. 1966, pp. 1775-1796.C. |
Chuang et al., A 2.4 GHz Polarization-diversity Planar Printed Dipole Antenna for WLAN and Wireless Communication Applications, Microwave Journal, vol. 45, No. 6, pp. 50-62 (Jun. 2002). |
Cimini, Jr., Leonard J, “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing,” IEEE Transactions on Communications, vol. Com-33, No. 7, Jul. 1985, pp. 665-675. |
Cisco Systems, “Cisco Aironet Access Point Software Configuration Guide: Configuring Filters and Quality of Service,” Aug. 2003. |
Dell Inc., “How Much Broadcast and Multicast Traffic Should I Allow in My Network,” PowerConnect Application Note #5, Nov. 2003. |
Dutta, Ashutosh et al., “MarconiNet Supporting Streaming Media Over Localized Wireless Multicast,” Proc. of the 2d Int'l Workshop on Mobile Commerce, 2002. |
Dunkels, Adam et al., “Making TCP/IP Viable for Wireless Sensor Networks,” Proc. of the 1st Euro. Workshop on Wireless Sensor Networks, Berlin, Jan. 2004. |
Dunkels, Adam et al., “Connecting Wireless Sensornets with TCP/IP Networks,” Proc. of the 2d Int'l Conf. on Wired Networks, Frankfurt, Feb. 2004. |
Festag, Andreas, “What is MOMBASA?” Telecommunication Networks Group (TKN), Technical University of Berlin, Mar. 7, 2002. |
Frederick et al., Smart Antennas Based on Spatial Multiplexing of Local Elements (SMILE) for Mutual Coupling Reduction, IEEE Transactions of Antennas and Propogation, vol. 52., No. 1, pp. 106-114 (Jan. 2004). |
Gaur, Sudhanshu, et al., “Transmit/Receive Antenna Selection for MIMO Systems to Improve Error Performance of Linear Receivers,” School of ECE, Georgia Institute of Technology, Apr. 4, 2005. |
Gledhill, J. J., et al., “The Transmission of Digital Television in the UHF Band Using Orthogonal Frequency Division Multiplexing,” Sixth International Conference on Digital Processing of Signals in Communications, Sep. 2-6, 1991, pp. 175-180. |
Golmie, Nada, “Coexistence in Wireless Networks: Challenges and System-Level Solutions in the Unlicensed Bands,” Cambridge University Press, 2006. |
Hewlett Packard, “HP ProCurve Networking: Enterprise Wireless LAN Networking and Mobility Solutions,” 2003. |
Hirayama, Koji et al., “Next-Generation Mobile-Access IP Network,” Hitachi Review vol. 49, No. 4, 2000. |
Information Society Technologies Ultrawaves, “System Concept / Architecture Design and Communication Stack Requirement Document,” Feb. 23, 2004. |
Ken Tang, et al., “MAC Layer Broadcast Support in 802.11 Wireless Networks,” Computer Science Department, University of California, Los Angeles, 2000 IEEE, pp. 544-548. |
Ken Tang, et al., “MAC Reliable Broadcast in Ad Hoc Networks,” Computer Science Department, University of California, Los Angeles, 2001 IEEE, pp. 1008-1013. |
Mawa, Rakesh, “Power Control in 3G Systems,” Hughes Systique Corporation, Jun. 28, 2006. |
Microsoft Corporation, “IEEE 802.11 Networks and Windows XP,” Windows Hardware Developer Central, Dec. 4, 2001. |
Molisch, Andreas F., et al., “MIMO Systems with Antenna Selection—an Overview,” Draft, Dec. 31, 2003. |
Moose, Paul H., “Differential Modulation and Demodulation of Multi-Frequency Digital Communications Signals,” 1990 IEEE,CH2831-6/90/0000-0273. |
Pat Calhoun et al., “802.11r strengthens wireless voice,” Technology Update, Network World, Aug. 22, 2005, http://www.networkworld.com/news/tech/2005/082208techupdate.html. |
Press Release, Netgear RangeMax(TM) Wireless Networking Solutions Incorporate Smart MIMO Technology to Eliminate Wireless Dead Spots and Take Consumers Farther, Ruckus Wireles Inc. (Mar. 7, 2005), available at http://ruckuswireless.com/press/releases/20050307.php. |
RL Miller, “4.3 Project X—A True Secrecy System for Speech,” Engineering and Science in the Bell System, a History of Engineering and Science in the Bell System National Service in War and Peace (1925-1975), pp. 296-317, 1978, Bell Telephone Laboratories, Inc. |
Sadek, Mirette, et al., “Active Antenna Selection in Multiuser MIMO Communications,” IEEE Transactions on Signal Processing, vol. 55, No. 4, Apr. 2007, pp. 1498-1510. |
Saltzberg, Burton R., “Performance of an Efficient Parallel Data Transmission System,” IEEE Transactions on Communication Technology, vol. Com-15, No. 6, Dec. 1967, pp. 805-811. |
Steger, Christopher et al., “Performance of IEEE 802.11b Wireless LAN in an Emulated Mobile Channel,” 2003. |
Toskala, Antti, “Enhancement of Broadcast and Introduction of Multicast Capabilities in RAN,” Nokia Networks, Palm Springs, California, Mar. 13-16, 2001. |
Tsunekawa, Kouichi, “Diversity Antennas for Portable Telephones,” 39th IEEE Vehicular Technology Conference, pp. 50-56, vol. I, Gateway to New Concepts in Vehicular Technology, May 1-3, 1989, San Francisco, CA. |
Varnes et al., A Switched Radial Divider for an L-Band Mobile Satellite Antenna, European Microwave Conference (Oct. 1995), pp. 1037-1041. |
Vincent D. Park, et al., “A Performance Comparison of the Temporally-Ordered Routing Algorithm and Ideal Link-State Routing,” IEEE, Jul. 1998, pp. 592-598. |
W.E. Doherty, Jr. et al., The Pin Diode Circuit Designer's Handbook (1998). |
Weinstein, S. B., et al., “Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions on Communication Technology, vol. Com-19, No. 5, Oct. 1971, pp. 628-634. |
Wennstrom, Mattias et al., “Transmit Antenna Diversity in Ricean Fading MIMO Channels with Co-Channel Interference,” 2001. |
Petition Decision Denying Request to Order Additional Claims for U.S. Pat. No. 7,193,562 (Control No. 95/001078) mailed on Jul. 10, 2009. cited by other. |
Right of Appeal Notice for U.S. Pat. No. 7,193,562 (Control No. 95/001078) mailed on Jul. 10, 2009. |
European Examination Report for EP Application No. 05776697.4 mailed Jan. 21, 2011. |
European Second Examination Report for EP Application No. 07775498.4 dated Mar. 12, 2013. |
European Third Examination Report for EP Application No. 07775498.4 dated Oct. 17, 2011. |
European First Examination Report for EP Application No. 09014989.9 dated May 7, 2012. |
Supplementary European Search Report for EP Application No. EP05776697.4 dated Jul. 10, 2009. |
Supplementary European Search Report for EP Application No. EP07755519 dated Mar. 11, 2009. |
PCT Application No. PCT/US2005/27023, International Search Report and Written Opinion mailed Dec. 23, 2005. |
PCT Application No. PCT/US2006/49211, International Search Report and Written Opinion mailed Aug. 29, 2008. |
PCT Application No. PCT/US2007/09276, International Search Report and Written Opinion mailed Aug. 11, 2008. |
Chinese Application No. 200680048001.7, Office Action dated Jun. 20, 2012. |
Chinese Application No. 200780020943.9, Office Action dated Feb. 7, 2013. |
Chinese Application No. 200780020943.9, Office Action dated Aug. 29, 2012. |
Chinese Application No. 200780020943.9, Office Action dated Dec. 19, 2011. |
Chinese Application No. 200910258884.X, Office Action dated Aug. 3, 2012. |
Taiwan Application No. 094127953, Office Action dated Mar. 20, 2012. |
Taiwan Application No. 096114265, Office Action dated Jun. 20, 2011. |
U.S. Appl. No. 11/010,076, Office Action mailed Oct. 31, 2006. |
U.S. Appl. No. 11/010,076, Final Office Action mailed Aug. 8, 2006. |
U.S. Appl. No. 11/010,076, Office Action mailed Dec. 23, 2006. |
U.S. Appl. No. 11/022,080, Office Action mailed Jul. 21, 2006. |
U.S. Appl. No. 11/041,145, Final Office Action mailed Jan. 29, 2007. |
U.S. Appl. No. 11/041,145, Office Action mailed Jul. 21, 2006. |
U.S. Appl. No. 11/265,751, Office Action mailed Mar. 18, 2008. |
U.S. Appl. No. 11/413,461, Office Action mailed Jun. 7, 2007. |
U.S. Appl. No. 11/714,707, Final Office Action mailed May 30, 2008. |
U.S. Appl. No. 11/714,707, Office Action mailed Oct. 15, 2007. |
U.S. Appl. No. 11/924,082, Office Action mailed Aug. 29, 2008. |
U.S. Appl. No. 12/082,090, Office Action mailed Jan. 18, 2011. |
U.S. Appl. No. 12/404,124, Final Office Action mailed Feb. 7, 2012. |
U.S. Appl. No. 12/404,124, Office Action mailed Sep. 19, 2011. |
U.S. Appl. No. 12/953,324, Office Action mailed Mar. 24, 2011. |
U.S. Appl. No. 13/280,278, Office Action mailed Mar. 25, 2013. |
U.S. Appl. No. 13/280,278, Final Office Action mailed Aug. 22, 2012. |
U.S. Appl. No. 13/280,278, Office Action mailed Feb. 21, 2012. |
U.S. Appl. No. 13/305,609, Final Office Action mailed Jul. 3, 2012. |
U.S. Appl. No. 13/305,609, Office Action mailed Dec. 20, 2011. |
U.S. Appl. No. 13/485,012, Final Office Action mailed Mar. 3, 2013. |
U.S. Appl. No. 13/485,012, Office Action mailed Oct. 25, 2012. |
Abramov 2003—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562. |
Airgain 2004—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562. |
Cetiner 2003—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562. |
Chuang 2003—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562. |
Kalis 2002—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486. |
Qian 2000—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562. |
Shehab 2003—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562. |
Shtrom 198 & 280—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562. |
Simons 1994—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562. |
Vaughan 1995—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562. |
Bargh et al., “Fast Authentication Methods for Handovers between IEEE 802.11 Wireless LANs”, Proceedings of the ACM International Workshop on Wireless Mobile Applications and Services on WLAN Hotspots. Oct. 1, 2004. |
Kassab et al., “Fast Pre-Authentication Based on Proactive Key Distribution for 802.11 Infrastructure Networks”, WMuNeP'05, Oct. 13, 2005, Montreal, Quebec, Canada, Copyright 2005 ACM. |
European Second Examination Report for EP Application No. 09014989.9 dated Dec. 13, 2013. |
Taiwan Application No. 094141018, Office Action dated May 8, 2013. |
U.S. Appl. No. 13/653,405, Office Action mailed Dec. 19, 2013. |
Encrypted Preshared key; cisco corp. 14 pages, 2010. |
Request for Inter Partes Rexamination for U.S. Pat. No. 7,358,912, filed by Rayspan Corporation and Netgear, Inc. on Sep. 4, 2008. |
Third Party Comments after Patent Owner's Response in Accordance with 37 CFR 1.947 for U.S. Pat. No. 7,358,912 (Control No. 95/001079) mailed on Jul. 17, 2009. |
U.S. Appl. No. 95/001,078, filed Sep. 4, 2008, Shtrom et al. (Re-Exam). |
U.S. Appl. No. 95/001,079, filed Sep. 4, 2008, Shtrom et al. (Re-Exam). |
PCT Application No. PCT/US2005/027169, International Search Report and Written Opinion mailed Aug. 10, 2006. |
PCT Application No. PCT/US2013/34997, International Search Report mailed Jun. 17, 2013. |
Chinese Application No. 20058001532.6, Office Action dated Jun. 23, 2011. |
Chinese Application No. 200910258884.X, Office Action dated Apr. 15, 2013. |
Taiwan Application No. 094127953, Office Action dated Aug. 16, 2011. |
U.S. Appl. No. 12/404,127, Final Office Action mailed Feb. 7, 2012. |
U.S. Appl. No. 12/404,127, Office Action mailed Sep. 19, 2011. |
U.S. Appl. No. 11/877,465, Final Office Action mailed May 16, 2013. |
U.S. Appl. No. 11/877,465, Office Action mailed Oct. 3, 2012. |
U.S. Appl. No. 11/877,465, Final Office Action mailed Jun. 20, 2012. |
U.S. Appl. No. 11/877,465, Office Action mailed Sep. 19, 2011. |
U.S. Appl. No. 11/877,465, Final Office Action mailed Dec. 9, 2010. |
U.S. Appl. No. 11/877,465, Office Action mailed Apr. 12, 2010. |
U.S. Appl. No. 12/980,253, Final Office Action mailed Jun. 6, 2013. |
U.S. Appl. No. 12/980,253, Office Action mailed Aug. 17, 2012. |
U.S. Appl. No. 12/980,253, Office Action mailed Sep. 13, 2011. |
U.S. Appl. No. 12/980,253, Office Action mailed Mar. 1, 2011. |
U.S. Appl. No. 12/425,374, Office Action mailed Jul. 6, 2010. |
U.S. Appl. No. 13/653,405, Office Action mailed Dec. 19, 2012. |
U.S. Appl. No. 13/731,273, Office Action mailed May 23, 2013. |
U.S. Appl. No. 13/396,484, Office Action mailed Oct. 11, 2013. |
U.S. Appl. No. 13/370,201, Office Action mailed May 13, 2013. |
U.S. Appl. No. 13/439,844, Final Office Action mailed Oct. 28, 2013. |
U.S. Appl. No. 13/439,844, Office Action mailed Jun. 5, 2013. |
U.S. Appl. No. 11/877,465, Office Action mailed Jul. 29, 2014. |
U.S. Appl. No. 14/242,689, Victor Shtrom, Pattern Shaping of RF Emission Patterns, filed Apr. 1, 2014. |
U.S. Appl. No. 12/980,253, Office Action mailed Mar. 27, 2014. |
U.S. Appl. No. 13/396,484, Final Office Action mailed Apr. 11, 2014. |
U.S. Appl. No. 13/439,844, Office Action mailed Apr. 22, 2014. |
Google, “Hotspots pre-shared keys”. Date of download: Nov. 24, 2014. |
IEEE Xplore Digital Library “Hotspots shared keys”. Date of download: Nov. 24, 2014. |
PCT Application No. PCT/US2013/34997, Written Opinion mailed Jun. 17, 2013 (Date of Online Publication: Oct. 4, 2014). |
U.S. Appl. No. 13/862,834, Office Action mailed Apr. 27, 2015. |
U.S. Appl. No. 12/980,253, Final Office Action mailed Jan. 23, 2015. |
U.S. Appl. No. 13/396,484, Office Action mailed Jan. 21, 2015. |
U.S. Appl. No. 12/980,253, Office Action mailed Sep. 28, 2015. |
U.S. Appl. No. 13/862,834, Final Office Action mailed Sep. 22, 2015. |
U.S. Appl. No. 13/396,484, Final Office Action mailed Aug. 20, 2015. |
U.S. Appl. No. 14/275,887, Victor Shtrom, Adjustment of Radiation Patterns Utilizing a Position Sensor, filed May 13, 2014. |
U.S. Appl. No. 14/294,012, Prashant Ranade, Dynamic PSK for Hotspots, filed Jun. 2, 2014. |
Number | Date | Country | |
---|---|---|---|
20130207865 A1 | Aug 2013 | US |