The present disclosure relates to communication systems and, in particular, to radio frequency (“RF”) filters.
One type of filter for RF applications is a resonator filter comprising a group of coaxial resonators. The overall transfer function of the resonator filter is a function of the responses of the individual resonators as well as the electromagnetic coupling between different pairs of resonators within the group.
U.S. Pat. No. 5,812,036 (“the '036 patent”), the entire disclosure of which is incorporated herein by reference, discloses different resonator filters having different configurations and topologies of resonators. For example, the '036 patent discusses a six-stage resonator filter having a 2-by-3 array of cavities between an input terminal and an output terminal, where each cavity has a respective resonator therein. The resonator filter also includes a conductive housing, which defines a portion of the outer conductors of each of the resonators. The remainder of each resonator outer conductor is formed by interior common walls. The resonators may comprise, for example, either air-filled cavity resonators or dielectric-loaded coaxial resonators.
An interior wall 120 extends inside the housing 110 between groups of resonators R. An upper surface of the interior wall 120 includes holes 121 for screws for attaching a tuning cover to the interior of the filter 100, and an upper surface of a perimeter defined by outer walls of the housing 110 includes holes 101 for screws for attaching an outer cover. The upper surface of the perimeter also includes a channel 102 for a gasket, such as an O-ring, that loops around the housing 110.
The filter 100, however, may be undesirably bulky and heavy. As an example, the filter 100 may have a length of 210 millimeters (mm) in a direction Y, a width of 155 mm in a direction X, and a height of 63.5 mm in a direction that is perpendicular to the directions X and Y. Moreover, the filter 100 may have a volume of 2 liters and a weight of 2.6 kilograms (kg).
A filter device, according to some embodiments herein, may include a housing. The filter device may include a plurality of resonators inside the housing. The filter device may include a wall inside the housing between a first of the resonators and a second of the resonators, and an average thickness of the wall may be 3.0 mm or thinner. The filter device may include an outer cover on the housing. The filter device may include adhesive tape that attaches the outer cover to the housing. The filter device may include a tuning cover between the resonators and the outer cover. Moreover, the filter device may include a plurality of cleaning holes in the tuning cover.
In some embodiments, a lower surface of the outer cover may be attached to a flat upper surface of the housing by the adhesive tape. The outer cover and the flat upper surface of the housing may each free of any screw therein. Moreover, the adhesive tape may extend in a continuous loop on the flat upper surface of the housing.
According to some embodiments, the tuning cover may include a plurality of blind holes therein. A plurality of press-in standoffs may be in the blind holes, respectively. Moreover, the filter device may include a gas-discharge circuit. A first of the press-in standoffs may extend through a printed circuit board (“PCB”) that includes the gas-discharge circuit.
In some embodiments, the filter device may include a plurality of non-debris tuning elements in the tuning cover. Moreover, the outer cover may be a flat metal sheet.
According to some embodiments, the average thickness of the wall may be 1.5 mm or thinner. The filter device may have fewer than fourteen of the resonators. The first and the second of the resonators may be configured to operate in a receive frequency band and a transmit frequency band, respectively. Moreover, a third of the resonators may be a broadband resonator that is configured to operate in both the receive frequency band and the transmit frequency band.
A filter device, according to some embodiments herein, may include resonators and a cover that is attached by double-sided adhesive tape to a housing that includes the resonators. In some embodiments, the double-sided adhesive tape may extend continuously around a perimeter of the housing.
According to some embodiments, the housing may include four exterior walls that collectively surround the resonators. The four exterior walls may have respective flat upper surfaces that are each free of any opening therein. The double-sided adhesive tape may be on the respective flat upper surfaces of the four exterior walls and on an opposite, lower surface of the cover. Moreover, the filter device may include an interior wall that is inside the housing and is between a first of the resonators and a second of the resonators.
In some embodiments, a thickness of the cover may be 1 mm or thinner. Moreover, the cover may be an outer cover of the filter device, and the filter device may include a tuning cover between the resonators and the outer cover. The filter device may include a cleaning hole and/or a non-debris tuning element in the tuning cover.
A filter device, according to some embodiments herein, may include resonators and a tuning cover that overlaps the resonators and has cleaning holes therein. In some embodiments, the filter device may include a housing including the resonators and the tuning cover therein. The filter device may include an outer cover that is attached to the housing by double-sided adhesive tape. Moreover, the filter device may include a non-debris tuning element in a hole in the tuning cover, and each of the cleaning holes may have a diameter that is narrower than a diameter of the hole that the non-debris tuning element is in.
A filter device, according to some embodiments herein, may include a housing and a plurality of resonators inside the housing. Moreover, the filter device may include a wall inside the housing between a first of the resonators and a second of the resonators. An average thickness of the wall may be 3.0 mm or thinner.
In some embodiments, the average thickness of the wall may be 1.0-2.0 mm, 1.3-1.7 mm, or 1.4-1.6 mm. Moreover, the wall may be an interior wall, the housing may include four exterior walls that collectively surround the resonators and the interior wall, and the four exterior walls may have respective flat upper surfaces that are each free of any opening therein.
A method of manufacturing an RF filter device may include pressing a plurality of press-in standoffs into a plurality of blind holes, respectively, that are in an upper surface of a tuning cover. The method may include soldering a lower surface of the tuning cover that is opposite the upper surface to an interior of the RF filter device. The method may include cleaning, via a plurality of cleaning holes that extend through the tuning cover, the interior of the RF filter device after performing the soldering. Moreover, the method may include attaching, by adhesive tape, a lower surface of an outer cover to an upper surface of a housing of the RF filter device after performing the cleaning.
Pursuant to embodiments of the present inventive concepts, RF filter devices, such as diplexers or duplexers that include a plurality of resonators, are provided. Conventional RF filters, such as the filter 100 (
According to embodiments of the present inventive concepts, however, RF filters having reduced size are provided. For example, a filter may, in some embodiments, achieve thinner exterior walls by using (a) adhesive tape instead of (b) screws to attach an outer cover to a housing of the filter. Because screws are not necessary to attach the outer cover, holes 101 (
The size of the filter can also be reduced by attaching a tuning cover to the inside of the filter primarily with solder rather than screws. As an example, solder may be used in place of some (or all) of the screws and corresponding holes 121 (
Though it may be difficult to remove the tuning cover to clean the filter after the tuning cover is soldered to the inside of the filter, the filter may, in some embodiments, be cleaned without removing the tuning cover. For example, the tuning cover may include cleaning holes through which excess solder flux or other debris can be removed while the tuning cover is joined to the inside of the filter. Moreover, non-debris tuning elements and press-in standoffs may be used in the tuning cover to reduce/prevent metal debris (e.g., shavings) inside the filter. The cleaning holes, the non-debris tuning elements, and/or the press-in standoffs may help to reduce/prevent the generation of passive intermodulation (“PIM”) distortion when the filter is operated.
Example embodiments of the present inventive concepts will be described in greater detail with reference to the attached figures.
The upper surface 210U may be a flat upper surface of an exterior wall 210W of the housing 210. For example, the housing 210 may have a generally rectangular shape that is provided by four of the exterior walls 210W, which have respective flat upper surfaces 210U that are coplanar (in an X-Y plane) with each other. Moreover, the coplanar flat upper surfaces 210U may be connected to each other to provide a continuous flat upper surface 210U that extends continuously around a perimeter of the housing 210. As an example, the continuous flat upper surface 210U may provide a rectangular border with a thickness in the X-Y plane of 4.0 mm. The tape 230 may likewise extend in a continuous loop (
The outer cover 240 and the upper surface 210U may not include (i.e., may each be free of) any screw therein. Accordingly, in contrast with outer covers of conventional RF filters, such as the filter 100 (
In some embodiments, the filter 200 may provide a compact filter for small cell applications, such as small cell base stations, which are discussed in U.S. Patent Application No. 62/722,416, the entire disclosure of which is incorporated herein by reference. The filter 200 is not limited to small cell applications, however, and may, in some embodiments, be used for macro cell applications, such as macro cell base stations.
For example, the resonators R-TX1 through R-TX5 may be configured to operate in a transmit frequency band, such as 880-960 megahertz (“MHz”) or a portion thereof, and the resonators R-RX1 through R-RX6 may be configured to operate in a receive frequency band, such as 694-862 MHz or a portion thereof. As an example, the filter 200 may be a diplexer or duplexer 200D in which the resonators R-TX1 through R-TX5 provide a transmit-only filter and the resonators R-RX1 through R-RX6 provide a receive-only filter. Moreover, the filter 200 may, in some embodiments, include a broadband resonator R-B that is configured to operate in both the receive frequency band and the transmit frequency band. Collectively, the resonators R-B, R-TX1 through R-TX5, and R-RX1 through R-RX6 may be referred to herein as resonators R.
The resonators R may have circular conductive upper surfaces in the X-Y plane. As an example, the resonators R may be steel and may be electrically connected to one or more ports P via conductive lines, such as copper strip lines.
The resonators R-B and R-TX1 through R-TX5 may provide two transmission zeros in the receive frequency band. Moreover, the resonators R-B and R-RX1 through R-RX6 may provide three transmission zeros in the transmit frequency band.
In both the receive frequency band and the transmit frequency band, the filter 200 may typically have an insertion loss of 0.3 decibels (“dB”) and a maximum insertion loss of 0.5 dB. The filter 200 may typically have a return loss in the receive frequency band and the transmit frequency band of 23 dB and a minimum return loss of 20 dB. Moreover, the filter 200 may typically have rejection of 53 dB and a minimum rejection of 50 dB, in both the receive frequency band and the transmit frequency band.
In the receive frequency band, the filter 200 may typically have a group delay of 20 nanoseconds (“ns”) and a maximum group delay of 40 ns. In the transmit frequency band, the filter 200 may typically have a group delay of 30 ns and a maximum group delay of 45 ns.
In some embodiments, the housing 210 may be a metal housing. For example, a single machined or die-cast piece may, in some embodiments, comprise the exterior walls 210W and/or a bottom surface of the housing 210. Accordingly, the flat upper surfaces 210U may be metal surfaces. Moreover, the ports P may be on the exterior walls 210W. As an example, the ports P may include two ports that protrude outward from a first of the exterior walls 210W in the direction Y and one port that protrudes outward from an opposite second of the exterior walls 210W. The two ports on the first of the exterior walls 210W may be electrically connected to the first group of resonators R-TX1 through R-TX5 and the second group of resonators R-RX1 through R-RX6, respectively.
Though five resonators R are shown in the first group and six resonators R are shown in the second group, more (i.e., six, seven, or more) or fewer (e.g., three, four, or five) resonators R may be included in either group. In some embodiments, the weight and dimensions of the filter 200 may be advantageously reduced relative to the conventional filter 100 (
As an example, by having (a) twelve resonators R, (b) the thin interior wall 220, and (c) the thin exterior wall 210W, the filter 200 may have a length of 149.5 mm in the direction Y, a width of 144.5 mm in the direction X, and a height of 55.3 mm in the direction Z. The filter 200 may also have a volume of 1.19 liters and a weight of 1.48 kg. Accordingly, the weight and volume of the filter 200 may each be reduced by at least forty percent relative to the conventional filter 100.
In some embodiments, one of the twelve resonators R may be a broadband resonator R-B. Moreover, to achieve small dimensions, the twelve resonators R may be arranged along the direction Y in four rows that each have three resonators R. By contrast, if one of the rows instead has four resonators R, then the length and/or the width of the filter 200 may increase. For example, the filter 200 may have a length of 165 mm, a width of 149 mm, a height of 55.3 mm, a volume of 1.3 liters, and a weight of 1.6 kg if one of the rows has four resonators R arranged along the direction Y. Moreover, if fourteen resonators R are used instead of twelve, then the filter 200 may have a length of 181 mm, a width of 144.5 mm, a height of 55.3 mm, a volume of 1.4 liters, and a weight of 1.9 kg.
The filter 200 may include tuning elements 280/290. For example, tuning elements 280 may be between a pair of adjacent resonators R, and tuning elements 290 may be in the resonators R. As an example, the tuning elements 290 may be in center portions (e.g., openings) of respective resonators R. The tuning elements 280/290 may be metal tuning elements or dielectric tuning elements, such as metal tuning screws or dielectric tuning screws. Both a dielectric tuning element and a metal tuning element can change capacitive coupling(s) (a) between resonators R and/or (b) between resonators R and the housing 210.
Example tuning elements are discussed in U.S. Patent Application No. 62/696,959 (“the '959 application”), the entire disclosure of which is incorporated herein by reference. In some embodiments, the tuning elements 280/290 may be tuning elements that prevent/reduce metal debris formation, such as the tuning elements discussed in the '959 application, and thus may be referred to herein as “non-debris” tuning elements. For example, a contact portion of each of the tuning elements 280/290 may be free of threading. In some embodiments, a diameter in the X-Y plane of a top surface of each tuning element 280 may be narrower than a diameter in the X-Y plane of a top surface of each tuning element 290.
One or more PCBs 270 may be inside the filter 200 at a level in the direction Z that is above the resonators R. For example, the PCB(s) 270 may be attached to an upper surface 250U (
In some embodiments, the tuning cover 250 may include both (i) cleaning holes 250H and (ii) non-debris tuning elements 280/290. As an example, the cleaning holes 250H may advantageously facilitate cleaning of the filter 200 upon detecting a PIM failure, which may not necessarily be caused by the tuning elements 280/290. Moreover, excess solder flux, which may result from joining the tuning cover 250 to the interior of the housing 210, may be removed via the cleaning holes 250H.
Rather than using a large number (e.g., dozens) of screws to attach the tuning cover 250 inside the housing 210 (
In some embodiments, screws S may extend through the tuning cover 250 to inhibit movement of the tuning cover 250 that may otherwise occur during welding/soldering thereof. For example, one or more of the screws S may be in the welding areas 250W, and one or more others of the screws S may be in a middle portion of the tuning cover 250. The tuning cover 250 may, in some embodiments, include a total of ten or fewer screws S. By contrast, the conventional filter 100 (
A lower surface of the tuning cover 250 is the surface that is joined to the interior of the filter 200. The depiction of the welding areas 250W in
In some embodiments, the PCB 270 may comprise a gas-discharge circuit 274 adjacent each port P (
Welding areas 250W (
In some embodiments, the perimeter wall 211 may surround the resonators R. For example, the perimeter wall 211 may comprise four walls/sides that provide a rectangular perimeter around the resonators R. Moreover, the interior wall 220 may protrude from the perimeter wall 211 toward a middle portion inside the housing 210.
An RF filter device 200 (
The present inventive concepts have been described above with reference to the accompanying drawings. The present inventive concepts are not limited to the illustrated embodiments. Rather, these embodiments are intended to fully and completely disclose the present inventive concepts to those skilled in this art. In the drawings, like numbers refer to like elements throughout. Thicknesses and dimensions of some components may be exaggerated for clarity.
Spatially relative terms, such as “under,” “below,” “lower,” “over,” “upper,” “top,” “bottom,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the example term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Herein, the terms “attached,” “connected,” “interconnected,” “contacting,” “mounted,” and the like can mean either direct or indirect attachment or contact between elements, unless stated otherwise.
Well-known functions or constructions may not be described in detail for brevity and/or clarity. As used herein the expression “and/or” includes any and all combinations of one or more of the associated listed items.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present inventive concepts. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used in this specification, specify the presence of stated features, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, operations, elements, components, and/or groups thereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/105929 | 9/16/2019 | WO |