For a better understanding of various embodiments of the invention, reference should be made to the following detailed description that should be read in conjunction with the following figures wherein like numerals represent like parts.
For simplicity and ease of explanation, the invention will be described herein in connection with various embodiments thereof. Those skilled in the art will recognize, however, that the features and advantages of the various embodiments may be implemented in a variety of configurations. It is to be understood, therefore, that the embodiments described herein are presented by way of illustration, not of limitation.
In general, various embodiments of the invention provide a system for communicating with and obtaining information using radio frequency identification (RFID). For example, the various embodiments may provide a system for obtaining real time inventories of items tagged with RFID identifiers.
Specifically, and referring to
As another example, as shown in
In various embodiments, RFID tags 60 may be passive radio reflective identification tags or passive RFID tags as shown in
In other various embodiments, RFID tags 70 may be active radio reflective identification tags or active RFID tags as shown in
It should be noted that the objects 54 shown in
It should be noted that the RFID interrogator 52 may be a stand alone unit, for example, a portable or handheld unit or may be integrated with another communication device, such as mobile or cellular telephones, personal digital assistants (PDAs), Blackberry devices, etc. Alternatively, the RFID interrogator 52 may be formed as part of a backplane as described in detail below. Further, components within, for example, a cellular telephone, such as the transceiver, processor and/or software may be modified to provide the same functionality and operation of the RFID interrogator 52. Still other alternatives include a plug-in or add-on unit, such as, a plug-in module for a PDA that includes therein the RFID interrogator 52.
In various embodiment, the RFID interrogator 52 may include an interrogator antenna 80 as shown in
In operation, and referring to the one or more multiplexers 84, these devices are configured as switches to control switching between the local antennas 86. The one or more multiplexers 84 operate such that the multiplexers 84 appear as passive RFID tags to the RFID interrogator 52. The RFID interrogator 52 transmits via the interrogator antenna 80 at least one of data and power to the main antenna 82. For example, a high frequency signal may transmit RFID control commands to control the switching and interrogation of the RFID tags 88 via the local antennas 86 and a low frequency signal may transmit power to the one or more multiplexers 84. Specifically, the one or more multiplexers 84 do not include a battery or other power source and when radio waves from the RFID interrogator 52 or other RFID transmitter (as is known) are detected by the main antenna 82, the energy is converted into electricity that can power up the one or more multiplexers 84. For example, a rectifier and regulator configuration may be used to derive DC power from the RF field of the RFID interrogator 52. The one or more multiplexers are then able to control, for example, switching and communication between the local antennas 86 and the RFID tags 88. The one or more multiplexers 84 may be configured in different manners. It should also be noted that the power signal from the RFID interrogator 52 also may power any passive RFID tags 88.
The one or more multiplexers 84 each include a unique identification number and may be controlled by RFID interrogator commands from the RFID interrogator 52. For example, a write command from the RFID interrogator 52 may be addressed to one or more of the multiplexers 84 to power and control the switching of the one or more multiplexers 84.
Various embodiments may be implemented in different applications to communicate using an RFID system and to acquire, for example, inventory information, which may be provided real-time or updated automatically (e.g., periodically performing interrogation of a plurality of RFID tags). An RFID shelf inventory system 100 is shown in
The various embodiments also may include additional components to provide further functionality. For example, a plurality of antennas 110, for example, near field antennas, may be provided on a front end 112 of the shelf read points 102. The plurality of antennas 110 may be configured to communicate with a mobile or handheld RFID interrogator 114, such that the handheld RFID interrogator 114 may couple to the shelf read points 102 as described herein. For example, if the RFID interrogator 52 is acquiring inventory information from shelf read points 102 forming lower shelves of a shelf display using the main antennas 82, then the RFID interrogator 112 may be used to acquire inventory information from the shelf read points 102 forming upper shelves of the shelf display using some of the corresponding antennas 110.
Further, in addition to having one or more multiplexers 84 provided in connection with each of the shelf read points 102, one or more multiplexers 84 also may be provided in connection with one or more backplanes 106. In this configuration, a plurality of backplanes 106 that may be provided in an array, may be connected to the RFID interrogator 52. For example, each backplane 106 may be provided in connection with a single shelf display unit such that the RFID interrogator 52 may acquire information from a plurality of shelf display units (e.g., a row of store display shelves).
As another example, a pallet inventory system 120 is shown in
The antennas 82 and 86, as well as feed lines and control lines 126 for the antennas 82 and 86 and the multiplexers 84 may be constructed of a metal foil or printed conductors attached to the flat sheet 124. Further, a foldable portion 128, for example, a bendable flap, may be defined by one or more fold lines 130, which may be formed by an indentation in the flat sheet 124 extending from one end of the flat sheet 124 to another end. The main antenna 82 may be positioned on the foldable portion 128.
One or more interface devices 122 may be used in connection with a pallet 140 as shown in
It should be noted that the interface device 122 also may be used in connection with individual cases of items. For example, in an application wherein a corrugated box contains items tagged with RFID devices, the interface devices 122 may be inserted in the case and also may be substantially aligned with the RFID devices for each item. The main antenna 82 then may be positioned at an outer edge of the case.
Accordingly, the main antenna 82, which may be, for example, a simple dipole antenna is positioned at the edge of a container, case, etc. such that the main antenna 82 may be exposed on the exterior of, for example, the pallet 140 of items. Essentially, the main antenna 82 may operate as a feed antenna. The multiplexers 84 and 84a-84d essentially operate as passive RFID transponders and include the functionality to control the selection of individual antennas in an array of antennas, for example, the local antennas 86. The multiplexers 84 and 84a-84d receive power via the main antenna 82 from the RF signal of RFID interrogator 52, and may respond to the RFID interrogator 52 with a unique ID. The multiplexers 84 and 84a-84d may select, for example, another multiplexer, an antenna and/or an array of antennas based on a write command from the RFID interrogator 52. The array of local antennas 86 may be formed from RF antennas and controlled by RF multiplexers. The position of the local antennas 86 and the geometry of the local antennas 86 (e.g., matrix shape or size) may be modified based on, for example, the packaging layout and/or contents.
Thus, as shown in
In operation, the RFID interrogator may wirelessly acquire information from RFID tags connected to or integrated with items that may be located in cases within a pallet using one or more multiplexers. One or more antennas associated with the one or more multiplexers may be selectively activated using RF power from an RF signal of the RFID interrogator (e.g., interrogator signal). The RF signal also may provide power for the one or more multiplexers. Using the various embodiments, which may be configured in different arrangements, information from RFID tags otherwise blocked by packaging or items within a pallet may be acquired.
Thus, various embodiments of the invention may provide an inventory, for example, a perpetual RFID shelf inventory, wherein communication to perform the inventory is provided wirelessly. The power for the controllers, such as multiplexers, to interrogate the RFID tags is supplied by the RF signal from the RFID interrogator. The RFID interrogator also wirelessly activates selected local antennas to perform RFID inventory operations to identify, for example, item IDs and location (e.g., location within a rack or shelf unit).
The various embodiments or components, for example, the RFID system and components therein, or the RFID interrogator and the components therein, may be implemented as part of one or more computer systems. The computer system may include a computer, an input device, a display unit and an interface, for example, for accessing the Internet. The computer may include a microprocessor. The microprocessor may be connected to a communication bus. The computer may also include a memory. The memory may include Random Access Memory (RAM) and Read Only Memory (ROM). The computer system further may include a storage device, which may be a hard disk drive or a removable storage drive such as a floppy disk drive, optical disk drive, and the like. The storage device may also be other similar means for loading computer programs or other instructions into the computer system.
As used herein, the term “computer” may include any processor-based or microprocessor-based system including systems using microcontrollers, reduced instruction set circuits (RISC), application specific integrated circuits (ASICs), logic circuits, and any other circuit or processor capable of executing the functions described herein. The above examples are exemplary only, and are thus not intended to limit in any way the definition and/or meaning of the term “computer”.
The computer system executes a set of instructions that are stored in one or more storage elements, in order to process input data. The storage elements may also store data or other information as desired or needed. The storage element may be in the form of an information source or a physical memory element within the processing machine.
The set of instructions may include various commands that instruct the computer as a processing machine to perform specific operations such as the methods and processes of the various embodiments of the invention. The set of instructions may be in the form of a software program. The software may be in various forms such as system software or application software. Further, the software may be in the form of a collection of separate programs, a program module within a larger program or a portion of a program module. The software also may include modular programming in the form of object-oriented programming. The processing of input data by the processing machine may be in response to user commands, or in response to results of previous processing, or in response to a request made by another processing machine.
As used herein, the terms “software” and “firmware” are interchangeable, and include any computer program stored in memory for execution by a computer, including RAM memory, ROM memory, EPROM memory, EEPROM memory, and non-volatile RAM (NVRAM) memory. The above memory types are exemplary only, and are thus not limiting as to the types of memory usable for storage of a computer program.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the various embodiments of the invention can be practiced with modification within the spirit and scope of the claims.