This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2009-83758, filed on Mar. 30, 2009, the entire contents of which are incorporated herein by reference.
The embodiments discussed herein are related to a radio frequency identification (RFID) tag and a method for manufacturing the RFID tag.
In recent years, RFID tags configured to receive power supply and data from external devices, such as reader/writers, and to transmit data to the external devices by using electric waves in a non-contact manner have been available.
A RFID tag includes a transmitting/receiving antenna and an integrated circuit (IC) chip disposed on a substrate composed of plastic, paper, or the like. The antenna and a capacitor inside the IC chip form a resonant circuit so that the RFID tag can communicate wirelessly with external devices through the antenna.
The outline of a method for manufacturing a common RFID tag will now be described with reference to
As illustrated in
Next, as illustrated in
During this operation, as illustrated in
Next, as illustrated in
As a result of performing the steps illustrated in
RFID tags may be employed in a distribution field to manage linen goods such as uniforms, for example. In order to use RFID tags for linen management, a quantity of RFID tags equal to the number of uniforms are necessary, and thus the unit price of the RFID tag should be low.
However, RFID tags for apparel or linen goods cannot withstand external force applied during washing or the like unless the nearby regions of IC chips are protected with reinforcing plates. As illustrated in
Japanese Laid-open Patent Publication No. 6-204654 (“JP 6-204654”) discloses a printed board, which is one structure of a RFID tag of this type that has been used before. According to the disclosure of JP 6-204654, thermal press-bonding is performed while having a lead tip of a tape carrier package mounted on a conductive pad on the printed board, and a reinforcing plate is bonded and fixed on the rear surface of the printed board at a position corresponding to the conductive pad.
However, according to the RFID tag 1′ in related art, the antenna 4 is pressed downward by the electrodes 11 of the IC chip 10 due to the heat and pressure applied by the bonding device 12. Since the antenna 4 bends inward as a result of the applied heat and pressure by the bonding device 12, a conductive filler 8 may become trapped (i.e., “a” in
Furthermore, when press-bonding is carried out with the bonding device 12, a filler attack (i.e., “c” in
As further described in JP 6-204654, deflection of the base 3 may cause the antenna 4 to contact the IC chip 10, which may result in a short-circuit between the base 3 and the IC chip 10.
According to an embodiment of the invention, there is provided a radio frequency identification tag. The radio frequency identification tag includes a base, an antenna formed on the base, an integrated circuit chip electrically connected to the antenna, and a bonding layer bonding the integrated circuit chip to the base. The bonding layer includes a conductive filler. The base is configured to bend away from a surface on which the integrated circuit chip is bonded.
The object and advantages of the invention will be realized and achieved by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory, and are not restrictive of the invention, as claimed.
The above and other features and advantages of the invention will become apparent from the following description of the embodiments in conjunction with the accompanying drawings, wherein:
Embodiments of a RFID tag and a method for manufacturing the RFID tag to be disclosed by this application will now be described with reference to the attached drawings.
First, the overall configuration of a RFID tag 1 of an embodiment of the invention is described.
As illustrated in
The RFID tag 1 can also include an IC chip 38 disposed on an upper surface of the base 33 and a reinforcing plate 50 disposed above the IC chip 38. The reinforcing plate 50 can be a glass epoxy plate in which a glass material and an epoxy material are combined. As described below, the reinforcing plate 50 can be configured to reinforce the upper part of the RFID tag 1.
As illustrated in
When the IC chip 38 is bonded onto the base 33 with an adhesive serving as a thermosetting material, a bonding layer 33b can be formed. A space (curved part) below the lower surface of the base 33 can also be filled with the adhesive. In particular, the adhesive filling a space 33a below the lower surface (curved part) of the base 33 can be cured by applying heat and pressure so that the lower part of the base 33 can be reinforced by the cured adhesive filling the space 33a.
In other words, according to the RFID tag 1 illustrated in
For the base 33, a substrate, such as a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film, that has high strength, high heat resistance, and high hydrolysis resistance can be used.
The antenna 35 can be formed of a conductor foil and can be mounted on a surface portion of the base 33 by a flip-chip technique. A pair of protrusions 37 can be disposed on the rear surface of the base 33.
Thus, the pair of protrusions 37 on the lower surface of the main body of the base 33 can allow the base 33 to bend away from (downward from in
As illustrated in
In other words, the pair of protrusions 37 can be provided so that a portion of the base 33 that extends over the size of the IC chip 38 bends away from the chip-mounting surface when the IC chip 38 is mounted. According to this structure of this embodiment, the short-circuit between the IC chip 38 and the base 33 can be prevented.
A through hole 34 can be formed at a center portion where the IC chip 38 is mounted on the base 33. An opening can be formed at the center of the antenna 35. The portion below the rear surface of the base 33 can be filled with an adhesive injected through the through hole 34 and cured by heat (thermally cured adhesive).
The IC chip 38 can include a communication circuit, a memory, and a controller circuit configured to record and read data without a manufacturing contact. The IC chip 38 can also include a pair of electrodes 39 configured to provide electrical connections to the antenna 35, and dummy posts 39a, as illustrated in
As described above, according to the RFID tag 1 illustrated in
Since the base 33 of the RFID tag 1 can be configured to bend away from the surface on which the IC chip 38 is bonded, failures, such as trapping of the conductive filler 8 (“a” in
Since the RFID tag 1 can include the bonding layer 33b that bonds the IC chip 38 to the base 33 and the reinforcing layer that can be made of a thermosetting material (adhesive), and furthermore can function as a reinforcing plate disposed below the lower surface, i.e., the curved surface, of the base 33, the number of reinforcing plates 50 required can be reduced and the cost of the RFID tag 1 can be lowered.
A method for manufacturing the RFID tag 1 will now be described with reference to
As illustrated in the flowchart of
First, a protrusion-forming step (step S1) of forming the protrusions 37 on the lower surface (rear surface) of the base 33 (
Next, a through hole forming step (step S2) for forming the through hole 34 (
Next, a substrate forming step (step S3) of forming a base that functions as a substrate of the RFID tag 1 can be performed. In this substrate forming step, a particular shape can be imparted to the base 33 to be placed inside the RFID tag 1 (see the lower part of the
To be more specific, according to the production system for the RFID tag 1 in accordance with an embodiment of the invention, as illustrated in
Then, as illustrated in
Next, the adhesive-filling step (step S4) for filling the portion below the base 33 with the adhesive can be performed. This adhesive-filling step is a step of forming a reinforcing layer under the base 33 with the adhesive.
To be more specific, as illustrated in
Next, a first heating and pressurizing step (step S5) of heating and pressurizing the base 33 can be performed. The first heating and pressurizing step can be a step of heating and pressurizing the IC chip 38 disposed above the base 33 by using a bonding device 40.
In particular, as illustrated in
During this operation, as illustrated in
Next, a second heating and pressurizing step (step S6) for disposing an elastomer member 41 and the reinforcing plate 50 above the base 33 can be performed. This second heating and pressurizing step can be a step of heating and pressurizing the elastomer member 41 and the reinforcing plate 50 disposed above the base 33.
In particular, as illustrated in
By performing the steps illustrated in
A method for manufacturing the RFID tag 1 in accordance with an embodiment of the invention will now be described.
According to the method for manufacturing the RFID tag in accordance with an embodiment of the invention, the base can be produced by using a stage 30a including a pair of protrusions 32 on which the base can be placed. That is, as illustrated in
According to the method for manufacturing the RFID tag in accordance with an embodiment of the invention, the pair of protrusions 32 fixed on the stage 30a can allow the base 33 to bend away from the IC chip 38 to be formed as in the method described above for another embodiment of the invention. In this manner, a short-circuit between the IC chip 38 and the base 33 can be prevented. The RFID tag can be reinforced by the thermosetting material (adhesive) filling the portion below the base, and thus the cost for an additional reinforcing plate can be cut. Since the step of forming the pair of protrusions 37 on the lower surface of the base 33 performed in a previously described embodiment can be omitted, the production steps can be streamlined.
For example, although the base 33 including the antenna 35 can be formed by manufacturing it to bend away from the surface on which the IC chip 38 is bonded, as previously described, a base that has been imparted a curved shape in advance so as to allow the portion below the base to be filled with the adhesive may be used.
All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the invention and the concepts contributed by the inventors to further the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiments of the invention have been described in detail, it will be understood by those of ordinary skill in the relevant art that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention as set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
2009-83758 | Mar 2009 | JP | national |