This invention relates in general to communication equipment, and more specifically to radio frequency power amplifiers.
Radio-frequency power amplifiers are essential components of transmitters found in radio communication systems, and are deployed in various applications, such as mobile telephony, broadcast, wireless data networking, radiolocation and other fields. Generally, they function to make copies of their inputs, which are signals generated by other components of communication equipment, such as base transmitters, mobile devices, or the like, where the copies or output signals are powerful enough to propagate for appropriate distances. Two often conflicting requirements that constrain radio frequency power amplifiers are linearity and efficiency.
The linearity requirement or constraint on a radio frequency power amplifier is that it reproduces the form of its input signal faithfully. Small distortions in the form of the output signal relative to the input can cause the radio frequency power amplifier output signal to interfere with other radio services, in violation of regulatory requirements, or make it difficult or impossible to receive/demodulate the signal accurately. These distortions may be caused, for example, by the fact that the characteristics of the components of which a radio frequency power amplifier is composed (e.g. transistors) are non-ideal, e.g., vary with the electrical currents that they carry, which necessarily include the signal being reproduced. A conventional method (“class A operation”) of getting good linearity in this situation is to add a large “bias” current to signal currents so that current variations due to the signal are small in comparison.
The efficiency requirement or constraint means that the amplifier should not consume excessive power relative to its desired output power: thus, for example, an amplifier required to produce 10 Watts of output power may typically consume 100 Watts. This is often caused by the use of large bias currents, as described above, to improve linearity. The power (90 Watts in the example) “wasted” in this way causes many problems. For example, the power dissipated is manifested as heat, which has to be removed—often with large heat sinks and fans—before it causes temperature rises that damage the amplifier or other circuits. When equipment is battery-operated (e.g. in cell phones or in fixed installations (base transmitters) that are running on backup batteries during a power failure), battery size and hence weight and cost increases directly with power requirements.
Relatively efficient power amplifier circuits are known, and for radio frequency power amplifiers one of the more efficient is known as type or class “E”. These amplifiers attempt to operate their transistors as pure switches, which in principle dissipate (and hence waste) no power. Their operation depends on synchronization between closing the “switch” device and the “ringing” of a resonant load circuit, such that the switch is only driven closed at times when the voltage across it is almost zero. However, class E amplifiers pose problems. For example, since their output power is effectively set by a power supply voltage, they are difficult to amplitude-modulate and attempts to do so have resulted in both poor efficiency and poor linearity. The inability to modulate amplitude severely limits the applicability of class E amplifiers in most modern systems employing complex forms of modulation with varying amplitude or amplitude inverting signals.
Another switching power amplifier is known as class “D”. This amplifier architecture has been used for audio-frequency applications. Class D amplifiers in theory have low power dissipation (e.g. a switch does not dissipate power). In practice, Class D amplifiers are continually discharging capacitance (e.g., when turned on) and this can amount to significant power dissipation at radio frequencies.
Sigma delta technology is a known technique that allows feedback to be used to linearize, for example, class “D” switching amplifiers for audio-frequency use, but ordinarily this technology requires that switching events be synchronous to a fixed clock frequency. Typically, a sigma delta loop samples the output of a loop filter at a fixed rate that is independent of any input signal. This causes problems for class E radio frequency power amplifiers since their inputs need to be synchronized with a high frequency signal. Note that sigma delta and delta sigma are expressions that may be used interchangeably in this document.
The accompanying figures where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages in accordance with the present invention.
In overview, the present disclosure primarily concerns communication equipment including radio frequency transmitters or amplifiers such as used in infrastructure equipment including base stations or in communications units. Such radio frequency amplifiers for example, may be found in cellular, two-way, and the like radio networks or systems in the form of fixed or stationary and mobile equipment. The fixed equipment is often referred to as base stations or transmitters and the mobile equipment can be referred to as communication units, devices, handsets, or mobile stations. Such systems and equipment are normally used to support and provide services such as voice and data communication services to or for such communication units or users thereof.
More particularly, various inventive concepts and principles are embodied in systems or constituent elements, communication units, transmitters and methods therein for providing or facilitating radio frequency amplifiers or power amplifiers with significant improvements in efficiency, linearity or signal to noise, and costs. Note that costs include costs associated with size and operational issues. The improvements are associated, for example, with power supplies and heat management issues as impacted by improved efficiency. The improvements also are reflected in lower component or production costs since the concepts and principles allow less expensive components, such as smaller transistors, to be used for higher power levels. The radio frequency power amplifiers advantageously use a feedback control system employing in some embodiments a version of a delta sigma modulator as well as an amplitude limiting system and in some instances a second feedback system thereby advantageously yielding a practical and readily producible power amplifier provided such amplifiers are arranged and constructed in accordance with the concepts and principles discussed and disclosed herein.
The communication systems and communication transmitters that are of particular interest are those that may employ some form of complex modulation and that may provide or facilitate voice communication services or data or messaging including video services over local area networks (LANs) or wide area networks (WANs), such as conventional two way systems and devices, various cellular phone systems including but not limited to, CDMA (code division multiple access) and variants thereof, GSM, GPRS (General Packet Radio System), 12.5G and 3G systems such as UMTS (Universal Mobile Telecommunication Service) systems, 4G OFDM (Orthogonal Frequency Division Multiplexed) systems, WiMax (IEEE 802.16), ETSI HiperMAN and variants or evolutions thereof.
The inventive concepts and principles described and discussed herein may be advantageously applied in any field where variable radio frequency power is required or appropriate. For example, certain medical, heating, lighting, and sensing applications may find the concepts and principles useful.
The instant disclosure is provided to further explain in an enabling fashion the best modes of making and using various embodiments in accordance with the present invention. The disclosure is further offered to enhance an understanding and appreciation for the inventive principles and advantages thereof, rather than to limit in any manner the invention. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
It is further understood that the use of relational terms, if any, such as first and second, top and bottom, and the like are used solely to distinguish one from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions.
Much of the inventive functionality and many of the inventive principles are best implemented with or in integrated circuits (ICs) such as custom ICs with some ICs using high speed and relatively high power technologies. It is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such ICs with minimal experimentation. Therefore, in the interest of brevity and minimization of any risk of obscuring the principles and concepts according to the present invention, further discussion of such ICs, if any, will be limited to the essentials with respect to the principles and concepts of the exemplary embodiments.
These radio frequency power amplifiers can advantageously be implemented as one or more integrated circuits. For example, the switching stage and some elements of the amplitude limiting or clipper system, e.g., diodes, can be implemented in a high power density gallium arsenide, gallium nitride, silicon based power device, or the like process. For the feedback systems and feedback control loop or system or one or more constituent elements, a known high frequency submicron silicon based process may be advantageous.
Referring to
The radio frequency power amplifier 100 comprises a radio frequency switching stage 103 with an output 105 that is coupled to the resonant circuit 101 and configured to provide an output signal at output 105 with complex modulation, e.g., amplitude modulation (AM) and/or phase modulation (PM), corresponding to modulation of an input signal at input 107 when, for example, powered from a fixed voltage power supply, VDD 109, via, e.g., a feed choke or inductor 111. The
The feedback control system 113 is configured to provide a sequencer output at output 117 that is used to drive the radio frequency switching stage 103. The sequencer output can be provided by, e.g., a sequencer 115 that is included with the feedback control system 113. Advantageously, the sequencer output has at least one state, e.g., an OFF state, with a starting time or which begins at a variable time that is determined by the feedback control system 113. The feedback system 123 is coupled and responsive to the sequencer output at output 117 (alternatively referred to as sequencer output 117) and provides a second feedback signal at 125 that is coupled to the feedback control system 113 in varying embodiments as further described below. The sequencer output 117 will correspond to one or more of the output signal, the input signal, the second feedback signal, a combination of the output, input, and feedback signals, or the like as will be further discussed below.
The amplitude control system or clipper system 127 is coupled to the output of the radio frequency switching stage or output signal 105 and configured to control or limit an amplitude of the output signal, e.g., to a constrained or maximum amplitude. Thus, the feedback signal corresponds to the output signal as limited, e.g., with the maximum or constrained amplitude. Furthermore, the output signal as limited is applied to the resonant circuit or resonant load. Advantageously with the amplitude control or limiting system 127 in this or other embodiments described below, the maximum value of the output signal can be significantly decreased (e.g., by a factor of 2-3 is some instances) which helps protect the radio frequency switching stage or allows use of technologies for the switching stage with lower breakdown voltages. Furthermore, when the maximum amplitude is limited or constrained with the control or clipping system 127, the required dynamic range of various circuits in the feedback control system 119, e.g., loop filter, can be designed with lower dynamic ranges which often results in using less substrate area in integrated circuit embodiments and therefore lower costs. The radio frequency switching stage 103 may be implemented in various forms, however it may be particularly advantageous when the switching stage together with the resonant circuit 101 is arranged as a radio frequency power amplifier similar to a class E configuration or a class F configuration.
The radio frequency power amplifier 100 of
For example, if the input signal is at or centered at a desired carrier frequency (e.g., 900 MHz, 2.4 GHz, etc) or some other frequency, such as an intermediate frequency, that is above 0 hertz, a band pass filter may be advantageous. Alternatively if the input signal is centered at 0 hertz or a relatively low frequency, e.g. a base band frequency, relative to the carrier frequency, a low pass filter can be more useful. In the latter case or where the input signal is not centered at the carrier frequency, a mixer arrangement can be employed to provide a first feedback signal, e.g., input signal to the filter, where the feedback signal corresponds to the output signal as down converted by the mixer arrangement and provide a sequencer input corresponding to the filtered signal, i.e., in some embodiments a combination of the input signal and the feedback signal, as up converted by the mixer arrangement.
It is further noted that the second feedback signal can be directly combined with the filtered signal, or used as an additional input to the loop filter or may be used to affect or modify or otherwise change the filtered signal and thus impact the sequencer input and therefore sequencer output. These alternatives will be described below in additional detail with reference to, e.g.,
Referring to
Additionally included is a radio frequency switching stage 213 that is driven by the sequencer output and configured to provide an output signal at 215. As shown in one or more embodiments the switching stage is supplied DC (direct current) power from a constant voltage source VDD 220 via a feed choke or inductor 217. The output signal is coupled to an amplitude limiter or clipper circuit that is configured similarly to
The output signal is coupled via an attenuator 218 back to be combined with the input signal at summer 219. Thus, the feedback signal 207 corresponds to the output signal 215 as limited or clipped. The summer 219 provides the signal at 203 to the loop filter 201, i.e., the signal coupled to the input of the loop filter can be an error signal corresponding to an algebraic combination of the input signal and the feedback signal. The radio frequency switching stage in one or more embodiments is a field effect transistor (FET or JFET) but may also be a bipolar transistor or the like. In some embodiments the FET or JFET is formed using known GaAs (gallium arsenide), GaN (gallium nitride), LDMOS (Laterally Diffused Metal Oxide Semiconductor) process technology as noted earlier. It can be advantageous for various reasons (parasitics, similar breakdown voltage requirements, etc.) to form the diode array 232 in the same technologies as the switching stage(s). Note that while the switching stage is shown as one transistor a plurality of transistors may be used essentially in parallel to perform the switching function. Note also that appropriate circuitry, such as additional gain stages will be needed, either as part of the sequencer or switching stage in order to insure that the switching stage is properly driven.
Those of ordinary skill will recognize that if the sequencer 209 provides a quantized output, i.e. a finite number of fixed levels or states, the amplifier of
The output signal at 215 is applied to a resonant circuit 221 and via the resonant circuit 221 to a load 223. Placed across the switching stage 213 is a diode (catch or snub diode) 225 that is configured and operates to clamp the output signal to a voltage that is non-negative, i.e., essentially at ground potential. Note that diode 225 may be a parasitic diode, e.g., source to substrate diode or the like for the switch 213, or the switch itself may turn on or be turned on when the voltage at 215 is at or below ground. The resonant circuit 221 includes a series resonant inductor capacitor pair 227 that couples the output signal as filtered by the series resonant pair 227 to the load 223. Across or in parallel with the load is a parallel resonant inductor capacitor pair 229. Further included in the resonant circuit 221 is a capacitor 231 that is coupled in parallel with the switching stage 213. Those of ordinary skill will appreciate that the capacitor 231 will include at least a parasitic capacitance of switching stage 213 and depending on the particular embodiment the capacitor 231 may only include this and other parasitic capacitance.
Those of ordinary skill in the field will recognize the switching stage 213 (and others in other figures) together with the resonant circuit as shown and described can be arranged in or similar to a class F configuration. Alternative embodiments of the switching stage and the resonant circuit can be arranged in a known class E configuration (for example, eliminate the parallel inductor capacitor pair 229). Other architectures for class F or class E exist and may also be utilized. Class E and F power amplifiers while taking advantage of the open or short circuit zero power dissipation characteristics also recognize that in practice the switching stage takes a finite time period to change between these states and if both voltage and current are non-zero during the time period between states, power will be dissipated. Such power amplifier architectures attempt to avoid dissipating energy stored in the parasitic capacitance (at least part of capacitor 231) of the switching device or stage by insuring this energy is provided to or comes from the resonant circuit, e.g., resonant circuit 221, rather than being dissipated in the switching device 213. Thus these configurations strive to perform switching between states (ON/OFF) during those times when the voltage of the output signal, i.e., signal across the switching device, is ideally zero volts and furthermore if possible when the derivative of this voltage is also zero, i.e. switching currents will also be zero.
In practice with class E or class F and others these conditions can only be approached and then only when the output signal is at or nearly at a predetermined amplitude or power level for a given VDD level. In contrast, the radio frequency amplifier disclosed herein and in related applications, i.e., class M power amplifier, allows the amplitude or power level of the output signal over a frequency band of interest (in-band) to vary, e.g., in accordance with AM modulation requirements as reflected by modulation on an input signal, and encourages or controls the switching stage to switch between states at appropriate times which approach the ideal situation, i.e., with a voltage across the switching device that is relatively low and approaching or at zero as often as possible. For example, where, as here, the radio frequency switching stage is configured to drive a resonant load and controlled by the feedback control system, the switching stage can be configured to switch ON responsive to the sequencer output so that over a multitude of switch ON events an average voltage, e.g., root mean square of the voltages, imposed on the resonant load and across the switching stage at the switch ON event is less than ½, typically less than ¼ and often less than 1/10 of a maximum voltage imposed on the resonant load, e.g., in practice a voltage approaching the specified breakdown voltage associated with the radio frequency switching stage.
Furthermore, when amplitude modulation must be reproduced or included in the output signal, known class E and class F configurations are typically inefficient and exhibit poor linearity, i.e., known architectures simply do not work as a linear radio frequency power amplifier. In stark contrast, the radio frequency power amplifiers, i.e. class M radio frequency power amplifiers, as disclosed herein and in related applications are arranged such that the radio frequency switching stage as driven by the sequencer output is configured to provide an output signal including complex modulation (AM or PM) as imposed on the input signal while, for example, powered from a constant voltage power supply with reasonable efficiency and linearity performance. Thus the present radio frequency switching stage as driven by the sequencer output is configured to provide an output signal that includes an amplified replica of the input signal over an input signal bandwidth or relevant input signal bandwidth, where the input signal includes at least one of amplitude modulation and phase modulation.
Referring to
The radio frequency switching stage 313 can be powered from a constant voltage supply VDD 320, e.g., 10 volts, via a feed inductor 317 and is coupled to the amplitude limiting system 350 which is arranged and configured to limit or constrain a peak or maximum amplitude of the output signal at 315. The switching stage 313 is also coupled to and drives a resonant circuit 321 comprised of a series resonant inductor capacitor pair 327 and capacitor 331 that operates to filter the output signal and drive a load 323. A catch or snub diode 325 is located as shown in parallel with the switching stage. The switching stage 313 with the resonant circuit 321 will be recognized as a radio frequency amplifier that can as known be arranged in or similar to a class E configuration with appropriate values of the inductors and capacitors given a frequency of interest.
The sequencer 309 further comprises a flip flop, such as a D flip flop 331 or other appropriately arranged flip flop or the like that is clocked, for example, from the combiner output at input 332. The sequencer 309 is configured to provide the sequencer output in the OFF state (low voltage state) when triggered by the combiner 316, i.e., the OFF state has a starting time that corresponds to the combiner output. Note in this embodiment, when the output signal at 308 from the loop filter 301 plus the second feedback signal 314 crosses a switching threshold at a clock input 332 of the D flip flop, the Q output 333 goes high (Vcc since the D input is tied to Vcc) and the Q bar output 335 goes low. When the Q bar output 335 or sequencer output at 311 goes low (OFF state), a switch 337 is opened.
The open switch 337 allows a capacitor 339 to begin charging toward Vcc through a resistor 341. The junction of the capacitor and resistor is coupled to a Reset input 343. When the capacitor has charged to the Reset threshold of the D flip flop 331 at a time determined by the RC time constant of resistor 341 and capacitor 339, the D flip flop will be reset and the Q bar output will go high, the switch 337 will be closed holding the Reset input at a low potential, and the sequencer will thus provide the sequencer output at 311 in an ON state (switching stage 313 is ON) after a time lapse determined by the Reset signal (in this embodiment the RC time constant) for the D flip flop. This sequencer 309 is often referred to as an edge triggered one shot. It has been found that a time lapse on the order of a half cycle of the radio frequency carrier can be an appropriate time duration for the OFF state, e.g., at 1000 MHz, approx 0.5 nanosecond. After the D flip flop has been reset, when the combiner output again goes high, the sequencer 309 will again provide an output in the OFF state.
Note that when the sequencer output is in the OFF state, the switching stage is an open circuit, i.e., stage is turned OFF, and the resonant circuit 321 may be charging up through the feed inductor 317 or the inductor capacitor pair may be charging up capacitor 331 thus causing a positive going pulse in the output signal at 315. Conversely when the sequencer output is in the ON state, the switching stage is a short circuit, i.e., the switching stage is turned ON, the output signal at 315 is approx zero volts, and the resonant circuit 321 may be discharging through the switching stage. These and other relationships between waveforms in an embodiment of the radio frequency power amplifier similar to
For high-frequency operation, an appropriate sequencer operates in an asynchronous manner, i.e. there is no clock as in conventional architectures. Note that for reasonable efficiency when reproducing input signals it is necessary that the sequencer output produce a drive signal for the class E/F amplifier that is compatible with its requirements, e.g., switching at or near zero voltage, etc. This normally means that the sequencer will need to switch at or near the carrier frequency and that the sequencer will need to vary or modulate the timing of its switching decisions with a resolution that is fine in comparison with the period of the carrier, e.g. at ⅛ or smaller increments of the period. This is in stark contrast to conventional feedback architectures, such as sigma-delta architectures, which are synchronized to a clock that is independent from and thus whose phase relationship to the carrier is essentially random.
Thus, the sequencer 309 (and 209, 115) should, in embodiments where efficiency is desired, be configured to provide the sequencer output with a second state, e.g., ON state, that has a starting time corresponding to, e.g., at or near to or on average at or near to, a voltage minimum for the output signal as will become more evident with the review of the simulation waveforms below. As discussed above, the sequencer in certain embodiments is configured to provide the sequencer output where the OFF state has a minimum time duration (e.g., determined by the RC time constant) and the sequencer output further has an ON state having a variable time duration (in the described and various embodiments the ON state once it begins will last until the output of the combiner 316, i.e., output of the loop filter as modified in accordance with the second feedback signal, triggers the D flip flop). In the embodiment noted above, the sequencer is configured to provide the sequencer output with an OFF state having a predetermined time duration, i.e., a time duration determined by the RC time constant.
Note that other embodiments may use a sequencer that is configured to provide the sequencer output with an OFF state having a variable time duration where the variable time duration is equal to or greater than the minimum time duration. For example a pulse generator 345 (optional) that is triggered by a positive going output or some predetermined state from the combiner or loop filter to provide a negative going pulse at the Reset input and otherwise provide an open circuit will discharge capacitor 339 and thus provide a variable time duration for the OFF state. Note that the switch and RC circuit coupled to the Reset input of the D flip flop may be viewed as an edge triggered one shot, where as with the addition of the pulse generator 345, this may be viewed as an edge triggered and re-triggerable one shot. Those of ordinary skill will appreciate that various circuit architectures can be utilized to perform the functions of the pulse generator.
Thus in the sequencer using the optional pulse generator 345, the sequencer can be configured to provide the sequencer output in the OFF state when the filter output as modified by or in accordance with the second feedback signal 314 corresponds to a predetermined state (the clock level for the D flip flop) and to provide the sequencer output in the ON state after a time lapse that is variable and that corresponds to the minimum time duration starting at the last occurrence of the predetermined state. As noted above, the sequencer is configured to provide the sequencer output asynchronously, i.e., the sequencer is clocked by the combiner output, i.e., loop filter output as modified by the second feedback signal or the control loop may be viewed as self clocked. Note that the sequencer may also be viewed as clocked by various signals, e.g. the output signal (drain voltage) as that ultimately determines the filter output signal, for a given input signal.
In a further alternative embodiment, not specifically depicted, an envelope detector monitors the input signal and when an envelope level of around 20% of the peak envelope is detected, the envelope detector or functionality responsive thereto will operate a switch. The switch would add an additional capacitor in parallel with capacitor 339. If the additional capacitor had a capacitance that was, e.g., 2 times that of capacitor 339, the time constant would be about 3 times the initial time constant and this would extend the OFF state to approximately 3 times the original. The net result is the duty cycle of the switching stage is reduced when signal levels are low, the current in the feed inductor is reduced, and this ultimately results in reducing power consumption of the switching stage.
The amplitude limiting system 350 includes the diode or diode array 351 coupled from the output or output signal at 315 to a capacitor 353 that is coupled to ground and a DC to DC converter 355. The capacitor 353 is an RF capacitor that in some embodiments is several nano farads. The voltage across the capacitor 353 and input to the DC to DC converter 355 is fixed or set or regulated to be at a voltage (clipping voltage or reference voltage) so as to clip or limit the upper voltage or amplitude of the control signal to a desired level, e.g., 2-3 times VDD 320. Thus, the voltage across the capacitor and at the cathode of the diode corresponds to the maximum amplitude of the output signal.
The DC to DC converter can take various forms. In one embodiment the DC to DC converter is powered from VDD 320 and simply operates as a voltage source and thus a current sink to maintain the voltage at the desired or clipping level. This form of DC to DC converter is often referred to as a 2 quadrant converter since the output voltage is maintained either when sinking or supplying current. This approach results in dissipating whatever power flows through the diode array 351 and into the capacitor 353. In another embodiment described in more detail below with reference to
Referring to
The mixer arrangement 401 includes linear I/Q mixers 405, 407 (e.g., Gilbert cell arrangements) and is configured to provide the feedback signal 409, where the feedback signal corresponds to the output signal at 315 as frequency translated or down converted to the frequency of the input signal by the mixer arrangement or more specifically mixer 405. Note that under appropriate circumstances mixers other than Gilbert cells can be used. The feedback signal 409 is combined with the input signal 403 in the summer 411 with the resultant complex signal coupled to a loop filter 413. The complex conversion is a multiple mixer complex conversion providing two outputs coupled to two inputs of the filter so as to provide image rejection without undue delay as discussed in Section 9 of a University of Toronto, Department of Electrical Engineering Doctoral Thesis titled Intermediate Function Synthesis, authored by Snelgrove in December 1981, hereby incorporated herein. The mixer arrangement further provides a sequencer input at input 432 that corresponds to the filter output or output signal from the loop filter 413 as frequency translated or up converted by the mixer arrangement 401, specifically mixer 407 to the carrier frequency, and as modified in accordance with the second feedback signal at 420. Note that only one of the complex signal components (I or Q) from mixer 407 is needed to drive the sequencer or alternatively a combiner 421. In particular, the Q or imaginary component or alternatively the I or real component can be utilized; however the sequencer could be driven by a complex signal. Use of the complex signal may help in that, e.g., error-signal envelop information is readily available.
Thus the sequencer input or input signal corresponds to a combination of the input signal and the feedback signal as filtered and up converted. Note that the mixer arrangement may be viewed as part of the feedback control system of
The mixer arrangement in addition to the mixers 405, 407 includes a local oscillator 415 that provides a local oscillator signal at a frequency equal to the carrier plus or minus the center frequency of the input signal. Thus if the input signal is at or centered at DC the local oscillator oscillates at the carrier frequency and otherwise at the carrier frequency plus or minus the intermediate frequency. The local oscillator signal is coupled to both mixers, however the signal coupled to mixer 407 is time-shifted or phase delayed by the phase shifter 417. The phase shifter 417 in some embodiments delays the oscillator signal to mixer 407 by approximately one-quarter cycle (at the carrier frequency) and forms the conjugate phase (the sign of the gain for the Q channel in the down conversion mixer 405 is opposite to the sign for the Q channel in the up conversion mixer 407) for the oscillator signal applied to the mixer 407 as compared to the signal applied to the mixer 405.
The time shift can be selected or adjusted to compensate for time delays in the feedback control system or loop or otherwise improve performance results in parameters such as signal to noise, linearity (noise plus distortion), stability, or the like. One approach for varying the time shift can utilize the second feedback system 419, which is responsive to the output signal from the sequencer and provides a control signal or second feedback signal at an output 420 to the phase shifter 417. This control or feedback signal can be used to provide or add to a phase shift to the local oscillator signal driving mixer 407. Thus the phase shift varies in accordance with the second feedback signal. This phase shift can be in lieu of or in addition to a fixed phase shift that was provided by the phase shifter 417. Note that the output of mixer 407 is the loop filter output signal as up converted or frequency translated and as modified in accordance with the second feedback signal. The second feedback signal can also be used in a further embodiment to modify or change the output signal (frequency translated loop filter output signal) from mixer 407 by coupling the second feedback signal 420 to combiner 421 where it is added to the output of the mixer 407 with the combiner then providing an input signal to the sequencer 409. The latter approach for affecting the signal at the input to the sequencer is similar to the approaches discussed with reference to, e.g.,
Thus the radio frequency power amplifier of
Time domain simulations of the radio frequency power amplifier 400 of
In contrast to these results, a Class A amplifier in an equivalent comparison circuit, with the same input signal and output signal power and linearity would achieve a power efficiency of approximately 7 to 8 percent. Note that further optimization work may yield different performance results and component values. One of ordinary skill will realize that more detailed models may be required and that different performance values may be obtained, for example, at higher frequencies.
Referring to
The second feedback system 527 as well as the feedback systems 123, 212, 312, 419 of
The output of delay stage 531 in alternative embodiments can be coupled to a further delay stage 535 with the output of that delay stage 535 coupled to a corresponding gain stage 537. The basic architecture of delay stages and gain stages can be repeated if desired as indicated by the dotted lines 543. Generally, the one or more delay stages, i.e., delay stage 531, 535, etc., may advantageously be implemented as a tapped delay line with each tap coupled, respectively, to a different one of the one or more gain stages, i.e., gain stage 533, 537, etc. When the sequencer provides a 2 state output, i.e., with a high or ON state and a low or OFF state, the delay stages can be implemented as a series coupled array of logic gates or buffers with each buffer or gate adding a characteristic delay. For example in one embodiment, a series coupled group of sixteen buffers has been used for the delay stage.
The output of the gain stages 533, 537, etc. are added together via one or more adders or combiners 539, 541, etc. to provide the second feedback signal at 544. Note that in embodiments of the second feedback system that use only one delay stage and one gain stage, e.g., delay stage 531 and gain stage 533, the output of gain stage 533 is the second feedback signal and this signal can be coupled directly to combiner 545. The feedback system or network 527 and others can take many forms, however normally at least one and often all of the one or more delay stages and at least one and often all of the corresponding one or more gain stages is operating asynchronously or continuously in the time domain rather than in a clocked mode, i.e., the output is a function of the input for any instant in time. Other gain stages or delay stages may operate in a discrete time mode (i.e., output is a function of input at discrete times as determined by a clock). The delay stages essentially provide a memory function in that a second feedback signal is representative of the sequencer output at some past instant (the amount of the delay) in time.
Various experimental and simulation efforts have shown favorable performance when the delay stages add a delay around one half cycle, e.g., ranging from 0.25 to 0.75 cycle at the carrier frequency, e.g., at 1000 MHz—approximately 0.25 to 0.75 nano-second (ns) of delay for each delay stage. The gain of the gain stages are typically fractional values that will vary depending, e.g., on the typical output level of the loop filter as well as output level of the delay stages. For example, with a 1 volt rms level at the output of the loop filter and a signal varying from +1 volt to −1 volt at the output of the delay stages, a typical value for the first gain stage 533 can be 0.1 ranging from 0.05 to 0.35, and can be either positive or negative (180 degree phase shift). Some embodiments perform well when gain stage 533 is a negative value (180 degree phase shift), e.g., −0.1, and gain stage 537 is a positive value, e.g., 0.1, with alternating stages negative and positive. It can be expected that for any particular implementation, these values will need to be experimentally optimized to account for various factors such as other loop delays within the power amplifier as well as other factors, e.g. loop filter, sequencer, the switching device and the load that the switching device is driving.
An alternative embodiment (not specifically shown) of a second feedback system suitable for use in one or more radio frequency power amplifiers in accordance with various exemplary embodiments includes one or more parallel networks where each of the parallel networks is a series coupled delay stage and gain stage. Each of the delay stages is coupled to the sequencer output signal at 511 and thus each of the delay stages couples a delayed version of the sequencer output to a corresponding gain stage. The output from the gain stage, either alone or together with other gain stage outputs, is the second feedback signal at 544. This structure can be repeated as needed with the outputs from all gain stages combined via summers or combiners, etc. to provide the second feedback signal at 544. In view of the approaches discussed it will be evident that many forms of networks can be utilized as well as any order between the gain stages and the delay stages, provided appropriate steps are taken to insure the needed gain and delay is applied to the signal at the sequencer output.
Referring to
The diode(s) 351 or diode array and their in circuit disposal or physical placement need to present minimal inductance from the switching device drain to the diode or this inductance must be otherwise tuned out in order to insure protection for the switching device in terms of breakdown voltages across the device. The diode should have low self impedance at frequencies of interest, i.e. low inductance and low series resistance in order to provide effective amplitude limiting or control. The diode will need reasonably fast, relative to the radio frequency, recovery characteristics when switching from a forward to reverse biased state. The diode should have low parasitic capacitance and demonstrate limited change in that capacitance when switching from a forward to reverse bias conditions, although again some of this capacitance or change in capacitance can be tuned out or otherwise compensated for with the resonant load characteristics. The capacitor 353 needs to have good high frequency characteristics (low impedance). The capacitor 353 is normally in parallel with a much larger capacitor at the input of the DC to DC converter 603 and thus energy stored on capacitor 353 by pulses at the radio frequency will flow to this larger capacitance.
The power recovery system 355 includes in various embodiments, DC to DC converter 603 which is configured to provide output power, e.g., a portion of the DC power for the radio frequency switching stage or power amplifier at VDD 356 or VS 358. The DC to DC converter 603 can be a known Buck regulator arranged for down conversion of the input voltage at 605 or in some embodiments a synchronized version (typical Buck regulator diode replaced with a switch and corresponding control logic to synchronize this switch with the conventional switch), with the output section of this regulator replaced with a current source 607 in one or more generally known configurations. Thus the DC to DC converter 603 supplies an output current at 609, when enabled via enable signal at 611 as provided by enabling circuitry 610.
The enabling circuitry is configured to enable the DC to DC converter when a comparison of the voltage at 601 and a reference voltage at 615 satisfies a known condition, e.g., the voltage at 601 exceeds the reference voltage at 615, as determined by comparator 613. In practice the reference voltage at 615 can be provided via a resistor divider coupled to VDD or any other convenient DC voltage and the voltage at the positive input of the comparator can be provided by a resistor divider coupled to 601 where the various resistors are selected to set the reference voltage and the voltage at the positive input of the comparator and thus the corresponding voltage at 601 (i.e. upper value of amplitude or maximum amplitude for the output signal).
One further aspect of the power recovery system 355 or one or more embodiments of the DC to DC converter is the electronic switch 617. The electronic switch allows the power recovery system to be isolated from the voltages VDD or VS (which ever is coupled to the output) when the power recovery system is not supplying any power, i.e., when not enabled or if enabled until the DC to DC converter has ramped up sufficiently and current 609 is available. The electronic switch 617 basically compares the voltage at the output of the DC to DC converter to the voltage VDD or VS and when the voltage at the output of the converter exceeds the destination supply voltage (VDD or VS) the switch is closed and the current flows to the destination. The electronic switch functionally is a diode, however advantageously the switch has significantly lower voltage drop than a diode, e.g., 0.1 volts versus 0.7 volts.
As power is recovered and provided to the destination supply voltage, the voltage across the capacitor 353 or input to the DC to DC converter will begin to drop, the converter will be disabled, the electronic switch 617 will open, and the input voltage will rise again as the output signal is limited or clipped. Note that some hysteresis in the operation of the comparator 613 can be helpful in order to avoid undue hunting. Thus the power recovery system and specifically the DC to DC converter in contrast to conventional converters is configured and operates to regulate the voltage at the input to the DC to DC converter and converts stored energy in capacitor 353 as well as capacitance at the input to the converter into power that is recovered.
Use of the
Referring to
Further shown is a second feedback system that provides one or more second feedback signals with one provided by feedback network 703 which is coupled to combiner 545 and thus to the sequencer input and another provided by feedback network 707 which is coupled at 709 to summer 519 and thus the input to the loop filter 701 or at 711 to the loop filter 701. The second feedback system 727, specifically one or more of feedback networks 703, 707 includes one or more of a discrete time portion, a continuous time portion, and a memory portion (portion where present output is affected at least in part by a previous input). Note that only one of the feedback networks needs to be present in some embodiments, e.g., feedback network 703 in various of the above discussed embodiments where the feedback system is coupled to the sequencer input. In other embodiments only feedback network 707 is present and serves similar purposes provided appropriate responses are chosen for the network, e.g., different delays and gains. When the feedback network is coupled to the loop filter it can be done via a transconductor coupled to an internal filter state (presuming the loop filter is implemented using gmC elements), thus varying the output of the loop filter in accordance with the second feedback signal.
Referring to
The loop filter is typically a bandpass filter in the
The sequencer output signal at 211 is shown in
Note that rising edges, e.g., 1503, 1505, etc., at the output of the combiner 216 (sequencer input
By observation and comparison of
Essentially the second feedback signal in
Additionally as observed, e.g., in the 3-6 ns and again between 11 and 13 ns range, in
Also it will be evident that the second feedback system and signal are deployed and operate to over steer the sequencer output in the sense that long (using a T/2 reference length) duration ON states are longer due to the second feedback signal and correspondingly the variable time associated with the beginning of an OFF state is delayed due to the second feedback signal than either would have been without the second feedback signal. Similarly the second feedback system and signal further operates to over steer the sequencer output in the sense that short (using the T/2 reference length) duration ON states are shorter and correspondingly the variable time associated with the beginning of an OFF state is advanced due to the second feedback signal than either would have been without the second feedback signal.
For example the ON state 1609 would have been longer than T/2 when a zero crossing due to the rising edge at 1509 is projected without the effects of the second feedback signal and is even longer (zero crossing delayed) with the effects of the second feedback signal. Similar observations can be made with reference to ON state 1611. In contrast a short ON state 1613, 1615 is even shorter due to the zero crossing being advanced (see 1511, 1513) due to the second feedback signal. In essence the second feedback signal magnifies or operates to increase a difference (magnitude) between the reference duration of the ON state and an actual duration. This may be viewed as the second feedback signal increasing the second moment, variance, or variation in the duration of the ON states as well as the variable time when the OFF state begins.
The load voltage after some filtering and thus removal of out of band noise and harmonic content is shown in
Those familiar with class F or class E power amplifiers will note that normally these stages are designed to and typically will switch at near zero volts (pulses 1701) across the switching stage, thereby minimizing power dissipation in the switching stage. However class F or class E in order to consistently switch near zero volts have to provide near a maximum output power given the voltage supply, VDD, for the switching stage and other design values, i.e. class E and class F are not normally capable of AM modulation or PM modulation of more than very small deviations without degrading either efficiency or linearity and typically both. In the embodiment simulated above, the class E amplifier is driven to replicate AM and PM modulation on the input signal, e.g. provide an output signal that is often less than the maximum output given a particular voltage supply, VDD 220, as well as replicate PM modulation. One of the artifacts of reproducing AM and PM modulation using the power amplifier of
However this dissipation can be minimized by turning the switching stage ON when the output signal voltage is near a minimum voltage as depicted by many of the pulses in
For example, if the efficiency does not suffer more than 15% as a result of the specific time (before or after minimum voltage) that the output pulses are terminated (switching stage enters ON state), the starting time of the second or ON state may be viewed as near to or corresponding to a voltage minimum for the output signal. Note also that the switching stage when driven by the sequencer in the feedback control system may turn the switching device ON at a point that is not close to a voltage minimum for a particular pulse in order to provide near optimum turn on times for many successive pulses. In essence, if on average the pulses are being terminated near a voltage minimum, efficiency will be near an optimum value given that AM and PM modulation is being imposed on a carrier signal by a class E or class F or the like power amplifier.
Generally the particular implementation of a sequencer will depend on a multitude of factors including the switching stage, feed inductor, resonant circuit(s) amplitude control or clipping system, feedback path(s) and loop filter gain and phase parameters. The sequencer should be implemented such that given all of the other parameters the sequencer output is provided in the proper state and at the proper time and for the proper time duration to cause the switching stage to turn ON or OFF so as to generate an output signal that when fed back and combined with the input signal will drive the output of the loop filter toward zero. This may be referred to as generating a counter phase or opposing phase loop filter output. Similarly, the particular implementation of the second feedback system will depend on other factors and elements in the radio frequency power amplifier and feedback control system and specifically various delays therein. Generally the second feedback system will have less inherent loop delay than the feedback control system in combination with the switching stage. This fact or observation can be used to “predict” what will occur with the switching stage and the like and compensate for undesirable aspects thereof. For example, in the simulations discussed above the second feedback signal resulting from a given sequencer output arrives at or begins to affect the input to the sequencer at least T/2 seconds before the output signal and resultant feedback signal begins to have an impact on the sequencer input.
Referring to
The filter of
Note that this filter has a resonant or center frequency of 0.5 Hz but may be frequency scaled in accordance with known techniques. While this filter is known to work appropriately, there are various other appropriate filter transfer functions.
When the radio frequency power amplifier uses frequency translation and down converts the output signal to a base band frequency corresponding to an input signal centered at DC a low pass filter will normally be used. This may be comprised of single integrator stages, one for a real (I) path and one for an imaginary (Q) path. Higher order filters may also be used, such as the filter depicted in
Referring to
Given that a sufficient number of these preconditions are satisfied, the state machine waits for the loop filter plus second feedback signal or system to say go, i.e., waits for an initiating signal from the loop filter, etc.,—“filtwt” 2205 (filter wait). If the loop filter with second feedback system says “go” (i.e. makes a transition to a positive value) while we're still seeing positive switch current (meaning that the pulse will go positive if the switching stage is opened), then open the switching stage, i.e., go to state “Off” 2207. Note that once the switching stage is turned off actual output power starts to be generated, i.e. applied to the resonant circuit and thus load. Otherwise if the switch current goes negative before the filter and second feedback system says “go”, go to state “Iwt” 2209 (“current wait”). “Iwt” just waits for the switch current and loop-filter current phase to be proper and then goes back to waiting on the filter 2205. This means that filter output is negative and thus a positive transition is expected and further means the switch current is positive so when opened a positive pulse is generated.
Given that the state machine is in the “Off” state 2207; if a maximum time “offMax” is exceeded in this state, go back 2208 to state “On” 2203. This was originally proposed as a failsafe operating mode. This has been implemented as the one-shot that resets the D flip flop after a certain period of time. Note that when this transition happens, we may be wasting power when the switch is not being turned on at a safe time (i.e. when drain voltage is zero). Alternatively if the derivative of drain or output voltage goes negative, then the voltage of the output signal is on the way back down and the machine goes to state “Off2” 2211.
In state “Off2”, the drain or output signal voltage is on the way down; and either it will cross zero or it will turn around, i.e., start increasing (see
Referring to
The fixed clock running at 8 times the carrier frequency is a compromise. Higher rates would be better for power amplifier performance, and the sequencer would work at a somewhat lower rate, however 8× is a reasonable compromise between the difficulties of high speeds and the poor performance of coarser sampling. The D flip flop 2307, NAND gate 2309 & inverter 2311 are a zero-crossing detector. The input 2313 from “filter output” is assumed to be appropriately level shifted so that an analogue zero corresponds to the trigger point of logic inputs. The NAND gate is looking for situations where the input used to be 0 (so Q bar is “1”) but is now “1”. The inverter 2311 converts that into a “1”, i.e., positive logic.
The cross-coupled NOR gates 2315 functionally operate as an RS flip-flop. A “1” out of the zero crossing detector (inverter 2311) forces its upper output, i.e. sequencer output at 2301 to “0”, i.e. the OFF state, which results in a) turning OFF the RF switching stage 2305 and thus causing a pulse to start and b) starts the one-shot counting. The one-shot 2317 is a binary down counter that can be preloaded, e.g. with 011 (J0, J1). When the RF switch is “ON”, this counter is preloaded to “011”, i.e. 3 counts plus one delay at a rate of 8× carrier, hence one half-cycle of the carrier. During this “switch ON”—state the carry-out (negative logic, hence inverted) is zero, keeping the RS flip flop 2315 ready to be triggered by the zero-crossing detector. When the RS flip flop 2315 is triggered and the RF switch turns OFF, the counter starts to count down towards zero. When it reaches zero, the carry-out resets the RS flip flop 2315 and the switch and system return to the “switch-ON” state awaiting another trigger.
Note that advantageously the feedback control system 113 of
Other embodiments of the sequencer (not depicted) can select from a plurality of sequencer outputs using interpolation. For example by noting the filter output and possible earlier or intermediate results from the filter (e.g., prior to last integrator) at a clock time or at sequential clock times (the clock having a frequency similar to the carrier frequency), an estimate of the filter output in the recent past and near future can be made and thus one of the plurality of pulses can be selected, e.g. from a look up table, to provide the OFF state or ON state with an appropriate time profile, i.e. a starting time and ending time. The plurality of pulses would be selected such that each varied from the other by a few degrees and thus the appropriate resolution over a carrier period required to control the switching stage would be provided.
Referring to
The method 2400 is a method of providing a radio frequency signal with complex modulation (AM, PM, or AM & PM), e.g. an amplified version of an input signal with the same modulation, and begins at 2401 with providing an input signal including complex modulation (AM/PM modulation) at base band (BB), an intermediate frequency (IF) or radio frequency (RF). At 2403 as shown, combining the input signal with a first feedback signal at the same frequency is performed. Next the method includes filtering the combination of the input signal and the feedback signal 2405 to provide a filtered signal, where the filtering is done with a low pass filter if the combination signal is a base band signal and ordinarily with a bandpass filter if the signal is centered at an IF or RF (carrier) frequency. As noted earlier if the input signal is at base band or at IF typically, it and the feedback signal will be in complex form and the combining process and filtering processes will handle complex signals.
Next the optional process 2407 can be used to up convert or frequency translate the filtered signal when that signal is at BB or IF. Then 2425 shows adding a second feedback signal discussed below to the filtered signal. Then 2409 shows generating, responsive to the filtered signal plus second feedback signal, a quantized signal having an OFF state, ON state, etc. where the OFF state begins at a variable time, e.g., that corresponds to the filtered signal plus second feedback signal. Thus the generating the quantized signal can be directly responsive to the second feedback signal. Then 2423 shows providing, responsive to the quantized signal, a second feedback signal having, e.g. appropriate gains and delays, and deployed to affect the generating the quantized signal. For example, the second feedback signal can as depicted be added to the filtered signal at 2425 and thus affect or modify the filtered signal with the resultant signal used to trigger the generating the quantized signal. In alternative embodiments the second feedback signal can be coupled at 2427 to the up conversion process and used, e.g., to vary a phase shift of a local oscillator, and thus a phase of the filtered signal as up converted or frequency translated with the resultant signal used to trigger generating the quantized signal.
The providing the second feedback signal in some embodiments comprises forming one or more delayed and weighted versions of the quantized signal and combining the one or more delayed and weighted versions of the quantized signal to provide the second feedback signal. The forming and the combining in some embodiments comprises forming and combining continuously and asynchronously at least a portion of the one or more delayed and weighted versions of the quantized signal. As noted above, the providing the second feedback signal can include providing one or more second feedback signals using one or more of a discrete time process, a continuous time process, and a process with memory. In various embodiments, the second feedback signal is deployed to cause the OFF state to begin either earlier or later with the second feedback signal than without the second feedback signal. Furthermore, the second feedback signal as deployed can affect the variable time to a greater extent when the filtered signal (input to ADD process 2425) is smaller than when the filtered signal is larger. Additionally in some embodiments the generating the quantized signal further comprises generating a quantized signal having an ON state with a duration and the second feedback signal is deployed to increase a magnitude of a difference between the duration of the ON state and a reference duration, e.g., T/2, as noted above.
Controlling a radio frequency switching stage with the quantized signal to provide an output signal to a resonant load occurs at 2411. Then at 2412 limiting or clipping an amplitude of the output signal is undertaken and this process can feed a power recovery process 2414. The output signal as amplitude limited or clipped is level adjusted 2413 and optionally down converted in a base band system 2415 and used to provide the first feedback signal at BB, IF, or RF 2417 to the combining process at 2403. Note that the output signal comprises an amplified version of the input signal with the complex modulation, i.e., the radio frequency signal with the complex modulation. The first feedback signal corresponds to the output signal as clipped or amplitude limited as level adjusted and in some instances frequency converted. The output signal is filtered 2419 with typically a band pass filter and then output 2421 to a load (antenna, cable, etc.) as a radio frequency signal with modulation.
Generating the quantized signal can include generating a quantized signal having a second state, where the second state starts at a time near a voltage minimum for the output signal. The quantized signal can further comprise an OFF state having a minimum time duration and an ON state having a variable time duration.
The limiting an amplitude of the output signal 2412 can include coupling the output signal to a voltage source through one or more diodes, where the voltage source establishes an upper value for the amplitude of the output signal. The recovering power 2414 corresponds to the limiting the amplitude of the output signal, in that the power recovered is the power included in the higher level pulses. The recovering power further can include regulating a voltage using a DC to DC converter having an input coupled to the voltage and an output configured to provide a portion of DC power for the radio frequency switching stage, where the voltage that is regulated corresponds to an upper value for the amplitude of the output signal (see discussion referring to
The processes, apparatus, and systems, discussed above, and the inventive principles thereof are intended to and can alleviate problems caused by prior art radio frequency power amplifiers. Using these principles of defining/providing a radio frequency switching stage with a resonant load and managing or controlling switching times using a feedback control loop or system in addition to a clipper or amplitude limiting technique and in some embodiments a second feedback system can simplify faithfully reproducing complex modulation with such switching stages and also allow for reasonable amplifier efficiencies, size and costs. Using the above noted principles and concepts allows the use of less capable switching stages (lower costs) as well as facilitates the use of alternative switching stages from alternative manufacturers of such devices with limited if any change to the radio frequency power amplifier. This is expected to reduce “costs” (economic, size, weight, life expectancy, power consumption, etc.) associated with radio frequency power amplifiers in present and future communication systems and thus facilitate connectivity for users of such systems.
One of the principles used is to control switching times given the switching stage, accompanying resonant load, and specifics of a radio frequency signal with complex modulation, such that on average the switching occurs at or near a voltage minimum across the switching stage. Using the amplitude limiting or clipping techniques as above described is beneficial in protecting switching stages, lowers dynamic range requirements for some elements, increases output power for a given level of breakdown voltage in the switching devices and with the power recovery techniques maintains or improves efficiency, and improves signal to noise (linearity). The use of the second feedback system and signal as variously noted above allows for longer loop delays in the radio frequency power amplifier while improving or at least maintaining satisfactory signal to noise (linearity) and efficiency and additionally has provided a surprising improvement in signal to noise and efficiency even without loop delay. This dramatically reduces power dissipation in and thus increases efficiency of the resultant radio frequency power amplifier. Various embodiments of methods, systems, and apparatus for effecting control of switching stages so as to facilitate and provide for faithful complex modulation of resultant radio frequency power amplifier output signals in an efficient manner have been discussed and described. It is expected that these embodiments or others in accordance with the present invention will have application to many communication networks. Using the inventive principles and concepts disclosed herein advantageously facilitates communications using linear complex modulation which will be beneficial to users and providers a like.
This disclosure is intended to explain how to fashion and use various embodiments in accordance with the invention rather than to limit the true, intended, and fair scope and spirit thereof. The foregoing description is not intended to be exhaustive or to limit the invention to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The embodiment(s) was chosen and described to provide the best illustration of the principles of the invention and its practical application, and to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims, as may be amended during the pendency of this application for patent, and all equivalents thereof, when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
This application is a continuation in part of pending application titled RADIO FREQUENCY POWER AMPLIFIER AND CORRESPONDING METHOD, Ser. No. 11/089,834 by Snelgrove et al., filed on Mar. 25, 2005, which is hereby incorporated herein in its entirety by reference. This application is related to co-pending application titled RADIO FREQUENCY POWER AMPLIFIER AND METHOD USING A PLURALITY OF FEEDBACK SYSTEMS, Docket number 34-003P01 filed Apr. 28, 2006, which is hereby incorporated herein in its entirety by reference. This application also claims priority from Provisional Application, Ser. No. 60/675,614, filed on Apr. 28, 2005 and Provisional Application, Ser. No. 60/675,704, filed on Apr. 28, 2005, which are also hereby incorporated herein in their entirety by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11089834 | Mar 2005 | US |
Child | 11413999 | Apr 2006 | US |