MicroCoaXial (MCX) interfaces or ports are typically employed in headend cable boxes/devices for splitting/combining Radio Frequency (RF) signals fed from one or more coaxial cables. To maximize system capacity, each MCX device has a plurality of interfaces or ports disposed, in close proximity, i.e., a high density of ports. An example of such MCX interfaces includes the Advanced Technology eXtended (ATX) Maxnet II Platinum Series Ultra Dense Signal Management Systems available from PPC Inc., located in Syracuse, N.Y., USA.
Each MCX port includes a female socket which is recessed relative to a face surface of the cable box/device. To effect an electrical ground, the female socket receives a multi-fingered male plug connected to a cable connector which, in turn, connects to the outer braided conductor of a prepared coaxial cable. To facilitate assembly/disassembly, each female socket is fabricated with a small degree of draft/taper to receive the retention member or male plug of the MCX connector. As a consequence, the manufacture can result in a loose fit between the male plug and female socket, which, in turn, can (i) reduce the reliability of the electrical cable ground, (ii) produce significant RF signal egress/ingress, and (iii) reduce signal performance. With respect to recessed ports employing a plurality of radially biased resilient fingers, egress/ingress of RF energy is exacerbated by the slots between the resilient fingers of the male plug. Finally, the efficacy of the RF signal can be degraded by signal interference with external sources. The high density of recessed ports employed on MCX devices creates additional challenges with respect to signal interference.
Therefore, there is a need to overcome, or otherwise lessen the effects of, the disadvantages and shortcomings described above.
Features and advantages of the present disclosure are described in, and will be apparent from, the following Brief Description of the Drawings and Detailed Description.
A shielded RF connector is provided for a recessed interface port comprising an inner conductor engager, an outer conductor engager, a coupling device and a resilient RF shield. The inner and outer conductor engagers are configured to engage the inner and outer conductors, respectively, of the coaxial cable while a coupling device includes a retention member or male plug for engaging the recessed port. The coupling member also includes a forward body which is connected to the retention member at one end and to the outer conductor engager at the other end. The forward body defines an opening or bore configured to center the inner conductor engager, and is operative to mechanically and electrically engage the retention member with an end of the outer conductor engager. The resilient Radio Frequency (RF) shield connects to the forward body and conforms to a surface of the recessed port upon axial engagement of the coupling device with the recessed port.
In one embodiment the resilient RF shield is an elastomer sleeve comprising a nickel/graphite-filled silicone elastomer having a loading density of between approximately 2.0 g/cm3 to approximately 2.4 g/cm3. Furthermore, the elastomer sleeve comprises a resistivity of approximately 0.10 ohm-cm to approximately 0.06 ohm-cm.
In another embodiment, the resilient RF shield comprises a conductive cone having a ring portion and a cone portion wherein the ring portion engages a first portion of the outer conductor engager and the conductive cone portion diverges outwardly in a radial direction from the axis of the outer conductor engager. The conductive cone portion defines a cone angle of between about 15 degrees to about 25 degrees relative to the axis of the outer conductor engager.
In another embodiment, the resilient RF shield comprises a plurality of spring-biased nesting segments. The segments variably overlap depending upon the angular position of each segment relative to the axis of the port. The segments are fully nested when the cone angle is at a minimum and fully spread when the cone angle is at a maximum. Even when the cone angle is at a maximum, the segments remain at least partially overlapped.
1. Overview
1.1 Networks and Interfaces
Referring to
In one distribution method, the data service provider operates a headend facility or headend system 26 coupled to a plurality of optical node facilities or node systems, such as node system 28. The data service provider operates the node systems as well as the headend system 26. The headend system 26 multiplexes the TV channels, producing light beam pulses which travel through optical fiber trunklines. The optical fiber trunklines extend to optical node facilities in local communities, such as node system 28. The node system 28 translates the light pulse signals to RF electrical signals.
In one embodiment, a drop line coaxial cable or weather-protected or weatherized coaxial cable 29 is connected to the headend facility 26 or node facility 28 of the service provider. In the example shown, the weatherized coaxial cable 29 is routed to a standing structure, such as utility pole 31. A splitter or entry junction device 33 is mounted to, or hung from, the utility pole 31. In the illustrated example, the entry junction device 33 includes an input data port or input tap for receiving a hardline connector or pin-type connector 3. The entry junction box device 33 also includes a plurality of output data ports within its weatherized housing. It should be appreciated that such a junction device can include any suitable number of input data ports and output data ports.
The end of the weatherized coaxial cable 35 is attached to a hardline connector or pin-type connector 3, which has a protruding pin insertable into a female interface data port of the junction device 33. The ends of the weatherized coaxial cables 37 and 39 are each attached to one of the connectors 2 described below. In this way, the connectors 2 and 3 electrically couple the cables 35, 37 and 39 to the junction device 33. In one embodiment, the pin-type connector 3 has a male shape which is insertable into the applicable female input tap or female input data port of the junction device 33. The two female output ports of the junction device 33 are female-shaped in that they define a central hole configured to receive, and connect to, the inner conductors of the connectors 2.
In one embodiment, each input tap or input data port of the entry junction device 33 has an internally threaded wall configured to be threadably engaged with one of the pin-type connectors 3. The network 5 is operable to distribute signals through the weatherized coaxial cable 35 to the junction device 33, and then through the pin-type connector 3. The junction device 33 splits the signals to the pin-type connectors 2, weatherized by an entry box enclosure, to transmit the signals through the cables 37 and 39, down to the distribution box 32 described below.
In another distribution method, the data service provider operates a series of satellites. The service provider installs an outdoor antenna or satellite dish at the environment 6. The data service provider connects a coaxial cable to the satellite dish. The coaxial cable distributes the RF signals or channels of data into the environment 6.
In one embodiment, the multichannel data network 5 includes a telecommunications, cable/satellite TV (“CATV”) network operable to process and distribute different RF signals or channels of signals for a variety of services, including, but not limited to, TV, Internet and voice communication by phone. For TV service, each unique radio frequency or channel is associated with a different TV channel. The set-top unit 22 converts the radio frequencies to a digital format for delivery to the TV. Through the data network 5, the service provider can distribute a variety of types of data, including, but not limited to, TV programs including on-demand videos, Internet service including wireless or WiFi Internet service, voice data distributed through digital phone service or Voice Over Internet Protocol (VoIP) phone service, Internet Protocol TV (“IPTV”) data streams, multimedia content, audio data, music, radio and other types of data.
In one embodiment, the multichannel data network 5 is operatively coupled to a multimedia home entertainment network serving the environment 6. In one example, such multimedia home entertainment network is the Multimedia over Coax Alliance (“MoCA”) network. The MoCA network increases the freedom of access to the data network 5 at various rooms and locations within the environment 6. The MoCA network, in one embodiment, operates on cables 4 within the environment 6 at frequencies in the range 1125 MHz to 1675 MHz. MoCA compatible devices can form a private network inside the environment 6.
In one embodiment, the MoCA network includes a plurality of network-connected devices, including, but not limited to: (a) passive devices, such as the PoE filter 8, internal filters, diplexers, traps, line conditioners and signal splitters; and (b) active devices, such as amplifiers. The PoE filter 8 provides security against the unauthorized leakage of a user's signal or network service to an unauthorized party or non-serviced environment. Other devices, such as line conditioners, are operable to adjust the incoming signals for better quality of service. For example, if the signal levels sent to the set-top box 22 do not meet designated flatness requirements, a line conditioner can adjust the signal level to meet such requirement.
In one embodiment, the modem 16 includes a monitoring module. The monitoring module continuously or periodically monitors the signals within the MoCA network. Based on this monitoring, the modem 16 can report data or information back to the headend system 26. Depending upon the embodiment, the reported information can relate to network problems, device problems, service usage or other events.
At different points in the network 5, cables 4 and 29 can be located indoors, outdoors, underground, within conduits, above ground mounted to poles, on the sides of buildings and within enclosures of various types and configurations. Cables 29 and 4 can also be mounted to, or installed within, mobile environments, such as land, air and sea vehicles.
As described above, the data service provider uses coaxial cables 29 and 4 to distribute the data to the environment 6. The environment 6 has an array of coaxial cables 4 at different locations. The connectors 2 are attachable to the coaxial cables 4. The cables 4, through use of the connectors 2, are connectable to various communication interfaces within the environment 6, such as the female interface ports 14 illustrated in
In one embodiment, each of the female interface ports 14 includes a receptacle 34 illustrated in
In one embodiment receptacle or socket 14 is shaped and sized to be compatible with a standard MCX connector. It should be understood that, depending upon the embodiment, the receptacle 34 can have a smooth outer surface. Further, the receptacle 34 can be operatively coupled to, or incorporated into, a device 40 which can include, for example, a cable splitter of a distribution box 32, outdoor cable junction box 10 or service panel 12; a set-top unit 22; a TV 24; a wall plate; a modem 16; a router 18; or the junction device 33.
During installation, an installer couples a cable 4 to an interface port 14 by screwing or pushing the connector 2 onto the interface port 14. Once installed, the connector 2 establishes an electrical connection between the cable 4 and the electrical contacts of the interface port 34.
After installation, the connectors 2 often undergo various forces. For example, there may be tension in the cable 4 as it stretches from one device 40 to another device 40 imposing a steady, tensile load on the connector 2. A user might occasionally move, pull or push on a cable 4 from time to time, causing forces on the connector 2. Alternatively, a user might swivel or shift the position of a TV 24, causing bending loads on the connector 2. As described below, the connector 2 is structured to maintain a suitable level of electrical connectivity despite such forces.
1.2 Cable
Referring to
The inner conductor 44 is operable to carry data signals to and from the data network 5. Depending upon the embodiment, the inner conductor 44 can be a strand, a solid wire or a hollow, tubular wire. The inner conductor 44 is, in one embodiment, constructed of a conductive material suitable for data transmission, such as a metal or alloy including copper, including, but not limited, to copper-clad aluminum (“CCA”), copper-clad steel (“CCS”) or silver-coated copper-clad steel (“SCCCS”).
The insulator 46, in one embodiment, is a dielectric having a tubular shape. In one embodiment, the insulator 46 is radially compressible along a radius or radial line 54, and the insulator 46 is axially flexible along the longitudinal axis 42. Depending upon the embodiment, the insulator 46 can be a suitable polymer, such as polyethylene (“PE”) or a fluoropolymer, in solid or foam form.
In the embodiment illustrated in
In one embodiment, as described below, the connector 2 electrically grounds the outer conductor 50 of the coaxial cable 4. When the inner conductor 44 and external electronic devices generate magnetic fields, the grounded outer conductor 50 sends the excess charges to ground. In this way, the outer conductor 50 cancels all, substantially all or a suitable amount of the potentially interfering magnetic fields. Therefore, there is less, or an insignificant, disruption of the data signals running through inner conductor 44. Also, there is less, or an insignificant, disruption of the operation of external electronic devices near the cable 4.
In one such embodiment, the cable 4 has one or more electrical grounding paths. One grounding path extends from the outer conductor 50 to the cable connector's conductive post, and then from the connector's conductive post to the interface port 14. Depending upon the embodiment, an additional or alternative grounding path can extend from the outer conductor 50 to the cable connector's conductive body, then from the connector's conductive body to the connector's conductive nut or coupler, and then from the connector's conductive coupler to the interface port 14.
The conductive foil layer 48, in one embodiment, is an additional, tubular conductor which provides additional shielding of the magnetic fields. In one embodiment, the foil layer 48 includes a flexible foil tape or laminate adhered to the insulator 46, assuming the tubular shape of the insulator 46. The combination of the foil layer 48 and the outer conductor 50 can suitably block undesirable radiation or signal noise from leaving the cable 4. Such combination can also suitably block undesirable radiation or signal noise from entering the cable 4. This can result in an additional decrease in disruption of data communications through the cable 4 as well as an additional decrease in interference with external devices, such as nearby cables and components of other operating electronic devices.
In one embodiment, the jacket 52 has a protective characteristic, guarding the cable's internal components from damage. The jacket 52 also has an electrical insulation characteristic. In one embodiment, the jacket 52 is compressible along the radial line 54 and is flexible along the longitudinal axis 42. The jacket 52 is constructed of a suitable, flexible material such as polyvinyl chloride (PVC) or rubber. In one embodiment, the jacket 52 has a lead-free formulation including black-colored PVC and a sunlight resistant additive or sunlight resistant chemical structure.
Referring to
Depending upon the embodiment, the components of the cable 4 can be constructed of various materials which have some degree of elasticity or flexibility. The elasticity enables the cable 4 to flex or bend in accordance with broadband communications standards, installation methods or installation equipment. Also, the radial thicknesses of the cable 4, the inner conductor 44, the insulator 46, the conductive foil layer 48, the outer conductor 50 and the jacket 52 can vary based upon parameters corresponding to broadband communication standards or installation equipment.
In one embodiment illustrated in
Depending upon the embodiment, the components of the cable 4 can be constructed of various materials which have some degree of elasticity or flexibility. The elasticity enables the cable 4 to flex or bend in accordance with broadband communications standards, installation methods or installation equipment. Also, the radial thicknesses of the cable 4, the inner conductor 44, the insulator 46, the conductive foil layer 48, the outer conductor 50 and the jacket 52 can vary based upon parameters corresponding to broadband communication standards or installation equipment.
In one embodiment illustrated in
In one embodiment the weatherized coaxial cable 29, illustrated in
2.0 Coaxial Cable Connector Having an RF Shielding Member
For the purposes of defining spatial relationships, and establishing a frame of reference, it will be useful to define the geometry and structure of the connector 100 in terms of the MCX interface port/device, i.e., the connecting component. More specifically, and referring to
The cable connector 100 according to an embodiment of the present disclosure includes an inner conductor engager 230 configured to receive the inner conductor 44 of a coaxial cable 4, and an outer conductor engager 310 configured to receive the outer conductor 50 of the coaxial cable 4. In one embodiment, the cable connector 100 employs a coupling device 210, 220 including a male plug 210 and forward body 220 supporting the male plug 210. The coupling device 210, 220, discussed in greater detail below, further employs a plurality of spring-biased retention members operative to capture the inner conductor engager 230 of the connector 100 upon axial engagement of the coupling device 210, 220 within the socket of the recessed port 120.
In
Structurally, the first or forward portion 200 of the connector 100 includes: (i) a coupling device 210, 220, (ii) an inner conductor receptacle or engager 230 centered within a portion 220 of the coupling device 210, 220 and configured to receive the inner conductor 44 of the coaxial cable 4, and (iii) first and second spool-shaped insulators 240, 244 defining first and second aligned apertures 234, 238, respectively, for centering the inner conductor engager 230 within a bore or opening 214 of the coupling device 210, 220.
The coupling member includes a retention member or male plug 210 and a forward body 220 coupled to, or integrated with, an aft end of the retention member 210. The retention member 210 includes a plurality of spring biased retention fingers 212 configured to seat within, and engage, the recessed port 120. The retention fingers 212 are separated by a plurality of elongate slots 213 (see
The forward body 220 connects to, or is integrated with, the retention fingers 212 of the coupling device 210, 220, and is operative to: (i) center the inner conductor engager 230, and (ii) mechanically and electrically connect the retention fingers 212 to a forward end 260 of the outer conductor engager 310. The forward body 220, therefore, functions to provide the primary structural and electrical load path between the coaxial cable 4, i.e., the inner and outer conductors 44, 50 thereof, and the recessed port 120.
Furthermore, the forward body 220 produces a circumferential step 226 by an abrupt change in diameter from a first or forward region 222 to a second or aft region 224. More specifically, the first region 222 defines a first diameter dimension which is less than the second diameter dimension of the second region 224. Moreover, the first region 222 has a prescribed length L (see
The inner conductor engager 230 includes an aft guide 223 defining a funnel-shaped throat 225 (
The second or aft portion 300 of the connector 100 electrically and mechanically engages a prepared end 130 of the coaxial cable 4. More specifically, the aft portion 300 electrically couples the prepared end 130 of the cable connector 100 to the inner and outer conductors 44, 50 of the coaxial cable 4. Furthermore, the aft portion 300 effects a frictional and mechanical interlock between the connector 100 and the cable 4. The mechanical interlock is augmented by a barbed sleeve 330 of the outer conductor engager
Structurally, the aft portion 300 includes: (i) an outer conductor engager 310 having an opening 314 coaxially aligned with the aligned apertures 234, 238 of the forward body 220, (ii) an aft body 320 disposed over and configured to form an annular cavity 324 (see
The outer conductor engager 310 also includes a forward sleeve 312 which is connected to an aft end 260 of the forward body 220. More specifically, the aft end 260 may be press fit, threaded, welded, or soldered to the forward sleeve 312 of the outer conductor engager 310. Notwithstanding the manner by which the outer conductor engager 310 integrates with the forward body 220, it should be appreciated that a structural and electrical connection or path is created from the outer conductor engager 310 to the recessed port 120, i.e., from the retention member or male plug 210 to the outer conductor 310 of the coaxial cable 4, through the forward body 220.
To obviate redundancy of description, the aft portion 300 secures the connector 100 to the coaxial cable 4 in essentially the same manner, i.e., employing the same structure and materials, as those previously discussed in connection with
A resilient Radio Frequency (RF) shielding member or shield 250 circumscribes the forward body 220 and conforms to the internal shape of the recessed port 120 upon axial engagement of the connector 100 with the recessed port. The RF shielding member 250 is disposed over the forward body 220 and configured to form an electrical connection/shield with a conductive inner surface 124 of the female socket or port 120 of the MCX device 150. This device 150 may be similar, i.e., have a similar port configuration, to the device 40 discussed earlier in connection with
The shielding member 250 may comprise a compliant, electrically conductive sleeve 250 disposed over the first region 222 of the forward body 220. In the described embodiment, the sleeve 250 is shown as a continuous structure, however, it should be appreciated that the sleeve 250 may be split, or segmented, to facilitate assembly/disassembly. Furthermore, while shielding member 250 provides three-hundred and sixty degrees (360°) of coverage, it will be appreciated that, depending upon the underlying structure, the degree of coverage may be less than the a full revolution. Hence, a small circumferential gap, e.g., five or ten degrees (5° or 10°), may be allowable, while still functioning as intended.
The resilient sleeve 250 may be comprised of a nickel/graphite-filled silicone elastomer having a loading density of between approximately 2.0 g/cm3 to approximately 2.4 g/cm3. Additionally, the electrical resistivity of the resilient sleeve 250 may be approximately 0.10 ohm-cm to approximately 0.06 ohm-cm. Finally, the resilient sleeve 250 has a prescribed length S which is less than the prescribed length L of the first region 222 of the forward body 220. In the illustrated embodiment, the difference ΔL is shown as the differential between the prescribed lengths S and L of the sleeve .250 and first region 222, respectively. As such, the sleeve 250 may travel a prescribed length S, i.e., displaced a distance ΔL, to effect radial displacement as the resilient sleeve 250 contacts the circumferential step 226. The import of these features and dimensions will also become apparent in the subsequent discussion concerning the operation of the resilient sleeve 250.
Each female port 120 of an MCX device 150 includes a recess 140 for receiving the coupling device 210 of the connector 100. The recess 140 defines: (i) a lower receptacle 142, (ii) an outwardly facing annular groove or lip 144 disposed at the base of the lower receptacle 142, (iii) an upper receptacle 146, and (iv) a step or shoulder 148 disposed between the lower and upper receptacles 142, 146 effecting a change in diameter or size from the lower to the upper receptacles 142, 146. Furthermore, the step or shoulder 148 is a predetermined length or distance from the lip 144. The upper receptacle 146 may be frustum-shaped, i.e., have a slightly diverging taper defining an angle θ of approximately one (1) to two (2) degrees relative to the elongate axis 100A of the connector 100. The angle θ of the diverging taper has been exaggerated for illustration purposes. Additionally, the port 120 includes a conductive pin receptacle 154 for receiving a forward pin 229 of the inner conductor receptacle 230.
Assembly & Operation
During assembly, and referring to
In one embodiment, the resilient sleeve 250 slides over the directional ridges 221a, 221b as the connector 100 is inserted into the port 120. The directional ridges 221a, 221b facilitate axial movement of the sleeve 250 in one direction, i.e., in a rearward direction R, but retard its motion in the other direction, i.e., in a forward direction F, to maintain its position during operation. In addition to maintaining position, the directional ridges 221a, 221b serve to concentrate the conductive material, i.e., the particulate matter, in the sleeve 250 such that a broader band of RF energy may be blocked or shielded. That is, by concentrating or diminishing the size of the opening between conductive fibers or particulate matter within the loaded elastomer sleever 250, bands of RF energy having a higher frequency may now be blocked from passage.
Additionally, the shielding member 250 of the present disclosure blocks or attenuates RF energy within the recess 140 of the MCX device 150 by “capping-off” the recess 140. Whereas the prior art attempts to close-off an upper region of the resilient fingers, the prior art does not provide three-hundred and sixty degrees (360°) of protection around the port 120. The flexibility of the conductive resilient sleeve 250, along with its ability to conform to the shape of the recess 140, fills in and closes gaps and/or deviations which may exist between an edge of the receptacle 146 and the sleeve 250.
Furthermore, the shielding member 250 prevents the ingress of RF energy from adjacent connectors 100 which may be in close proximity. Finally, the properties of the shielding member 250 serve to eradicate RF leakage due to flaws or deviations in a manufacturing process or method. While only one MCX interface port 150 has been depicted, it should be appreciated that the MCX connector 100 has greatest application when applied to multiple sockets/ports disposed in close proximity. More specifically, the shielding member 250 mitigates interference or cross-talk between connectors.
In this embodiment, a resilient Radio Frequency (RF) shield 450 circumscribes the forward body 420 and conforms to the shape of the recessed port 420, or part thereof, upon axial engagement of the coupling member with the recessed port 420. In this embodiment, the shield engages the circular edge 442 of the recessed port 405. The resilient shield 450 may include a conductive cone 460 defining an outwardly diverging angle β relative to the central axis 400A of the recessed port 405.
In the described embodiment, the cone defines an angle β of between about fifteen degrees (15°) to about twenty-five degrees (25°) relative to the axis of the recessed port 420. While angles between five degrees (5°) and forty-five degrees (45°) may be employed, shallow angles provide additional flexibility, i.e., allow the cone to conform without bending or buckling. In the illustrated embodiment, the cone angle is seventeen degrees (17°).
In summary, a first embodiment employs a compliant elastomer sleeve disposed about the forward body of the connector to produce an 360 degree RF shield about the circumference of the forward body. The sleeve is conductive (i.e., a metal particulate suspended in a silicone rubber) and conforms to the shape of the recessed port when a coupling device, forward of the resilient sleeve, engages an annular groove at the base of the recessed port. The resilient shield prevents the transmission of RF energy across the sleeve, trapping the RF energy within the recessed port. Furthermore, the compliant elastomer sleeve provides a secondary path for grounding the outer conductor of the coaxial cable.
A second embodiment but includes a compliant metallic cone circumscribing the forward body and diverging outwardly toward the edges of the recessed port. The compliant metallic cone contacts the edge of the port upon axial engagement of the coupling device with the recessed port (i.e., in the same manner as the previous embodiment. The compliant cone provides a 360 degree RF shield about the circumference of the forward body.
Additional embodiments include any one of the embodiments described in the above-identified Exhibits, where one or more of its components, functionalities or structures is interchanged with, replaced by or augmented by one or more of the components, functionalities or structures of a different embodiment described in such Exhibits.
It should be understood that various changes and modifications to the embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present disclosure and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Although several embodiments of the disclosure have been disclosed in the above-identified Exhibits, it is understood by those skilled in the art that many modifications and other embodiments of the disclosure will come to mind to which the disclosure pertains, having the benefit of the teaching presented in the foregoing description and associated drawings. It is thus understood that the disclosure is not limited to the specific embodiments disclosed herein above, and that many modifications and other embodiments are intended to be included within the scope of this disclosure. Moreover, although specific terms are employed herein, they are used only in a generic and descriptive sense, and not for the purposes of limiting the present disclosure.
This application is a continuation of, and claims the benefit and priority of U.S. Non-provisional patent application Ser. No. 14/576,302, filed Dec. 19, 2014, which is a non-provisional patent application of, and claims the benefit and priority of, U.S. Provisional Patent Application No. 61/919,149, filed on Dec. 20, 2013, and of U.S. Provisional Patent Application No. 62/040,668, filed Aug. 22, 2014. The entire contents of such applications are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61919149 | Dec 2013 | US | |
62040668 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14576302 | Dec 2014 | US |
Child | 15656200 | US |