The present invention relates to miniature receivers used in listening devices, such as hearing aids. In particular, the present invention relates to a method and apparatus for reducing or eliminating the electromagnetic interference emitted from such miniature receivers.
A conventional listening device such as a hearing aid includes, among other things, a microphone and a receiver. The microphone receives sound waves and converts the sound waves to an audio signal. The audio signal is then processed (e.g., amplified) and provided to the receiver. The receiver converts the processed audio signal into an acoustic signal and subsequently broadcasts the acoustic signal to the eardrum.
A receiver for a conventional listening device is shown in
A recent development in the field of listening devices in general and hearing aids in particular is the use of wireless communication. For example, it is now possible to program a listening device, such as a hearing aid, using radio frequency (RF) signals. The protocols for implementing such wireless communication are known to persons having ordinary skill in the art and will not be described here. In addition, two or more listening devices may now communicate directly with each other (e.g., for synchronization purposes) using a radio frequency link.
Listening devices such as hearing aids typically have very small batteries due to the reduced dimensions of the listening devices. Consequently, there is not a lot of power available for transmitting a radio frequency signal. The low power can result in a poor signal-to-noise ratio, which may render the listening devices extremely susceptible to interference. In some cases, even a moderate level of interference can disrupt the wireless communication, causing the programming or the synchronizing of the listening devices to fail.
One source of interference may be the receiver itself. For example, the audio signal processing circuitry in many modern receivers use a type of switching amplifier called a class D amplifier. These switching amplifiers are commonly used because they consume less power and are easier to implement than other types of amplifiers. Unfortunately, class D amplifiers are known to emit an electromagnetic signal having fundamental and harmonic frequencies that can interfere with the radio frequency signals received by the listening devices. And the housing or casing that encloses the audio signal processing circuitry is virtually transparent to the interference due to the material that it is made of. The problem is exacerbated by the close proximity of the receiver (and hence the class D amplifier) to the antenna of the listening device.
One possible solution is to provide a compensation coil around the receiver. A compensation circuit then supplies the compensation coil with a current that generates a counteracting field to the interference from the receiver. An example of this solution may be found in U.S. Published Application US20040028251 by Kasztelan et al. The Kasztelan et al. technique actively compensates for the interference by providing the compensation coil with an amplitude and phase-adjusted version of the original transmission signal. However, such a solution requires additional circuitry in the form of a compensation circuit, which makes the receiver more complex and costly to implement and occupies additional, already scarce space in the receiver.
A possible solution to the above problem is to implement some type of noise cancellation algorithm in the audio signal processing circuitry of the receiver. This solution, however, adds unwanted complexity to the operation of the listening device. And in any case, the electromagnetic signal emitted by the class D amplifier has a very unpredictable pattern, which makes it difficult to compensate for the interference using a noise canceling algorithm.
Accordingly, what is needed is a way to reduce or eliminate the interference emitted by the receiver in a listening device. Specifically, what is needed is a way to reduce or eliminate the interference in a manner that does not require any modifications to the audio signal processing circuitry of the listening device.
The present invention is directed to a method and apparatus for reducing or eliminating the interference generated by a receiver in a listening device. The method and apparatus of the invention involves placing an electrically conductive shield around the receiver. Such a shield helps suppress the electromagnetic signals emitted by the receiver, thereby reducing or eliminating the interference from the receiver. The shield is a passive shield and may be composed of one or more wires that are wound around the receiver and shorted together, or it may be an electrically conductive mesh, jacket, sleeve, or the like, that is placed around the receiver. The shield is then connected either to one of the input terminals of the receiver, or to a system ground of the receiver.
In general, in one aspect, the invention is directed to a receiver for a listening device. The receiver comprises audio signal processing circuitry configured to convert an audio signal into an acoustic signal and a housing enclosing the audio signal processing circuitry. An electrically conductive shield surrounds a substantial portion of the housing and is connected to the audio signal processing circuitry for suppressing electromagnetic emissions from the receiver in a passive manner.
In general, in another aspect, the invention is directed to a method of suppressing electromagnetic emissions from a receiver in a listening device. The method comprises the step of forming an electrically conductive shield around a substantial portion of the receiver. The electrically conductive shield is then electrically connected to the audio signal processing circuitry within the receiver to suppress the electromagnetic emissions in a passive manner.
In general, in still another aspect, the invention is directed to an electromagnetic shield for a receiver in a listening device. The electromagnetic shield comprises at least one electrically conductive wire wound into a coil substantially surrounding the receiver, and means for forming the coil into a closed electrical loop, the coil having substantially no current supplied thereto.
In general, in yet another aspect, the invention is directed to a receiver for a listening device comprising a switching amplifier. The receiver further comprises audio signal processing circuitry connected to the switching amplifier and configured to convert an audio signal into an acoustic signal. A housing encloses the audio signal processing circuitry and the switching amplifier. An electrically conductive coil surrounds a substantial portion of the housing for suppressing electromagnetic emissions from the switching amplifier in a passive manner. The electrically conductive coil forms a closed electrical circuit and is electrically connected to a system ground of the audio signal processing circuitry, and has a predetermined number of turns based on a frequency of the electromagnetic emissions to be suppressed.
The above summary of the present invention is not intended to represent each embodiment, or every aspect, of the present invention.
The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings, wherein:
While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
As mentioned above, the housing or casing that encloses most listening device receivers is virtually transparent to the electromagnetic emissions from the class D switching amplifier housed therein. Any solution involving a counteracting field or a noise cancellation algorithm would add unwanted complexity and be difficult to implement in any case because the pattern of electrical and magnetic fields emitted by the class D amplifier is unpredictable. Therefore, in accordance with the principles and teachings of the invention, an electrically conductive shield is placed over a substantial portion of the receiver housing. The electrically conductive shield helps suppress the electromagnetic signals emitted from the receiver, thereby reducing or eliminating the interference produced therefrom.
Although embodiments of the invention are discussed herein with respect to a class D switching amplifier, those of ordinary skill in the art will recognize that the invention may be applied to other types of switching amplifiers without departing from the scope of the invention.
Referring now to
Where the shield 206 is composed of one or more electrically conductive wires, the wires may be wound around the housing 202 in series or in parallel with each other, or a combination of both. The one or more electrically conductive wires may also be wound around the housing 202 in a clockwise or a counterclockwise direction relative to the input terminals 204a and 204b. The size or gauge of the wires may vary, for example, from 0.05 to 0.10 mm. Similarly, the number of turns or windings of wires may vary between 8 to 45 turns based on the frequency of the interference signal to be suppressed.
In some embodiments, instead of one or more electrically conductive wires, the shield may instead be implemented as an electrically conductive mesh, jacket, or sleeve. Such an arrangement is shown in
In one experiment, it was shown that suppression of up to 10 dB for frequencies from 100 kHz to 15 MHz is possible using the present invention. Importantly, the experiment showed that a shield according to embodiments of the invention does not significantly affect (i.e., neither improved nor deteriorated) the audio frequency magnetic radiation of the receiver. For an unbalanced system where neither one of the input terminals of the receiver are grounded, the greatest effectiveness was achieved when the shield is grounded. When the shield is ungrounded (i.e., floating), the bandwidth suppressed was limited to about 2 MHz. It was also observed that a shield composed of coils was about 10 dB more effective than a solid shield (e.g., a brass sleeve) when the antenna is very close to the receiver.
The experiment itself was conducted using an Advantest model R3265A spectrum analyzer and a Hewlett-Packard model HP-33120A function generator. Audio frequency measurements were performed using a Rohde & Schwarz UPL Audio Analyser DC-10 KHz and a telecoil. The radio frequency measurements were performed on an air-coil antenna placed at about 8 mm from the middle of the receiver and wound on a sleeve. The receiver was driven from the function generator at 5 V peak-to-peak and placed on a 40 mm turntable in order to determine polar patterns. Other factors affecting the experiment include the fact that the 1 kHz impedance of the receiver used for the experiment is 200 ohms, and that all coil-based shields were shorted to the negative terminal of the receiver. Some of the results from the experiment are described below.
One purpose of the experiment was to determine the amount of dampening that can be achieved versus frequency. A graph showing dampening in dB versus frequency for a coil-based shield can be seen in
The experiment described thus far has used shields that were grounded, but shields that are ungrounded (i.e., floating) may also be used.
Most of the measurements discuss above were made with the antenna located at a distance of about 8 mm from the middle of the receiver. In real world listening devices, the distance between the antenna and the receiver may often be less.
While the present invention has been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present invention. Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the claimed invention, which is set forth in the following claims.